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Hybrid Uncertainty and Sensitivity Analysis of the Model of a Twin-Jet Aircraft

The mathematical models employed in the risk assessment of complex, safety-critical engineering systems cannot capture all the characteristics of the system under analysis, due to: (i) the intrinsically random nature of several of the phenomena occurring during system operation (aleatory uncertainty); (ii) the incomplete knowledge about some of the phenomena (epistemic uncertainty). In this work, we consider the model of a twin-jet aircraft, which includes twenty-one inputs and eight outputs. The inputs are affected by mixed aleatory and epistemic uncertainties represented by probability distributions and intervals, respectively. Within this context, we address the following issues: (A) improvement of the input uncertainty models (i.e., reduction of the corresponding epistemic uncertainties) based on experimental data; (B) sensitivity analysis to rank the importance of the inputs in contributing to output uncertainties; (C) propagation of the input uncertainties to the outputs; (D) extreme case analysis to identify those system configurations that prescribe extreme values of some system performance metrics of interest (e.g., the failure probability). All the tasks are tackled and solved by means of an efficient combination of: (i) Monte Carlo Simulation (MCS) to propagate the aleatory uncertainty described by probability distributions; (ii) Genetic Algorithms (GAs) to solve the numerous optimization problems related to the propagation of epistemic uncertainty by interval analysis, and (iii) fastrunning Artificial Neural Network (ANN) regression models to reduce the computational time related to the repeated model evaluations required by uncertainty and sensitivity analyses. = extreme lower CDF bounding the distributional p-box of x j N train = size of the training set of an Artificial Neural Network (ANN) x t = {x 1,t , x 2,t , …, x j,t , …,

Nomenclature

t n int
x , } = t-th input pattern of the training set of an ANN (t = 1, 2, …., N train ) g t = {g 1,t , g 2,t , ..., g l,t , ..., t n out g , } = t-th output pattern of the training set of an ANN (t = 1, 2 = reduced (improved) space of variation for the epistemically-uncertain parameters/coefficients of p 1 Ω 5,red = reduced (improved) space of variation for the epistemically-uncertain parameters/coefficients of p 5 Ω 12,red = reduced (improved) space of variation for the epistemically-uncertain parameters/coefficients of p 12 Ω 21,red = reduced (improved) space of variation for the epistemically-uncertain parameters/coefficients of p 21 all red Ω = reduced (improved) space of variation for θ all all low , 1 θ = realization of θ all for which J 1 = 1 J all up , 1 θ = realization of θ all for which J 1 = 1 J all low , 2 θ = realization of θ all for which J 2 = 2 J all up , 2 θ = realization of θ all for which J 2 = 2 J R i (Q) = sensitivity rank of parameter p i evaluated according to indicator Q = x j , J 1 , J 2 R acc,i = R i (J 1 ) + R i (J 2 ) = accumulated sensitivity ranking of p i evaluated as the sum of the rankings of J 1 and J 2

I. Introduction

HE quantitative analyses of the phenomena occurring in safety-critical (e.g., civil, nuclear, aerospace and chemical) engineering systems are based on mathematical models [START_REF] Epa | Guidance on the Development, Evaluation, and Application of Environmental Models, Council for Regulatory Environmental Modeling[END_REF][START_REF] Usnrc | Guidance on the Treatment of Uncertainties Associated with PRAs in Risk-Informed Decision Making[END_REF][START_REF]Risk-Informed Decision Making Handbook[END_REF] . In practice, not all the characteristics of the system under analysis can be captured in the model: thus, uncertainty is present in both the values of the model input parameters and hypotheses. This is due to: (i) the intrinsically random nature of several of the phenomena occurring during system operation (aleatory uncertainty); (ii) the incomplete knowledge about some of the phenomena (epistemic uncertainty). Such uncertainty propagates within the model and causes uncertainty in its outputs: the characterization and quantification of this output uncertainty is of paramount importance for making robust decisions in safety-critical applications [START_REF] Apostolakis | The concept of probability in safety assessment of technological systems[END_REF][START_REF] Helton | Alternative representations of epistemic uncertainties[END_REF][START_REF] Helton | Survey of sampling-based methods for uncertainty and sensitivity analysis[END_REF] . Furthermore, the identification by sensitivity analysis of the model parameters and hypotheses that contribute the most to the output uncertainty plays a fundamental role in driving resource allocation for uncertainty reduction [START_REF] Borgonovo | Moment Independent Importance Measures: New Results and Analytical Test Cases[END_REF][START_REF] Plischke | Global Sensitivity Measures from Given Data[END_REF][START_REF] Saltelli | Global sensitivity analysis, The Primer[END_REF][START_REF] Storlie | Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models[END_REF] .

In this work, we consider the mathematical (black-box) model of a twin-jet aircraft described in Ref. analysis to identify the epistemic realizations that prescribe extreme values of two performance metrics of interest (i.e., the mean of the so-called worst-case requirement metric and the system failure probability).

T

In more detail, in task (A) the challengers provide 'real' empirical realizations of one of the model outputs; on the basis of this information the uncertainty models of five input parameters belonging to categories (II) and (III) have to be improved (i.e., the corresponding epistemic uncertainties reduced). This issue is here tackled within a constrained optimization framework. First, a free p-box (i.e., a couple of bounding upper and lower cumulative distribution functions-CDFs) for the output of interest is built by means of the empirical data provided: to this aim, a non-parametric approach based on the Kolmogorov-Smirnov (KS) confidence limits is considered [START_REF] Ferson | Constructing probability boxes and Dempster-Shafer structures, Sandia National Laboratories[END_REF][START_REF] Ferson | Experimental Uncertainty Estimation and Statistics for Data Having Interval Uncertainty[END_REF] . Then, the improved (i.e., reduced) uncertainty model (in practice, range or space of variation) of the epistemically-uncertain parameters/coefficients is optimally determined as the one producing a distributional p-box for the output with the following (possibly conflicting) properties: (i) it contains the maximal 'amount' of epistemic uncertainty (here quantified by the area included between the corresponding upper and lower CDFs) [START_REF] Ferson | Sensitivity analysis using probability bounding[END_REF][START_REF] Ferson | Application of uncertainty analysis to ecological risks of pesticides[END_REF] ; (ii) it is contained by the non-parametric, free p-box constructed on the basis of data. Notice that the resulting reduced uncertainty model has the following characteristics: (i) it might not be a connected set; (ii) contrary to Bayesian-based approaches, it is not a probabilistic set. In this paper, only an empirical map of discrete sampling points belonging to the reduced set is generated, rather than a rigorous, mathematically defined set in the continuum of the epistemic uncertainty space.

The task of sensitivity analysis (B) is here tackled by resorting to two different conceptual settings [START_REF] Saltelli | Global sensitivity analysis, The Primer[END_REF] . In the first (namely, 'factor prioritization') we rank the category (II) and (III) input parameters according to degree of reduction in the output epistemic uncertainty which one could hope to obtain by refining their (epistemic) uncertainty models, i.e., by reducing the epistemic uncertainty range. In the second (namely, 'factor fixing') we look for those parameters that can be assumed constant without affecting the output of interest. In order to address the first issue in the 'factor prioritization' setting, a novel sensitivity index is introduced in analogy with variance-based Sobol indices [START_REF] Saltelli | Global sensitivity analysis, The Primer[END_REF][START_REF] Borgonovo | Moment independent and variance-based sensitivity analysis with correlations: An application to the stability of a chemical reactor[END_REF][START_REF] Marrel | Calculations of Sobol indices for the Gaussian process metamodel[END_REF][START_REF] Sobol | Sensitivity analysis for nonlinear mathematical model[END_REF][START_REF] Volkova | Global sensitivity analysis for a numerical model of radionuclide migration from the RRC "Kurchatov Institute" redwaste disposal site[END_REF] : in this view, the most important category (II) and (III) parameters in the ranking are those that give rise to the highest expected reduction in the amount of epistemic uncertainty contained in the outputs of interest when the corresponding epistemically-uncertain parameters/coefficients are considered fixed constant values (i.e., when the amount of their epistemic uncertainty is reduced to zero). Notice that the 'amount' of epistemic uncertainty is here defined in different ways according to the different requests by the challengers: in subproblem (B.1) we quantify it by the area included between the upper and lower CDFs of the model outputs of interest, whereas in subproblems (B.2) and (B.3) the challengers define it as the length of the intervals of two relevant performance metrics (i.e., the mean of the worst case requirement metric and the system failure probability, respectively). Instead, in the 'factor fixing' setting sensitivity analysis aims at finding those parameters that minimally affect the outputs, i.e., that can be assumed to take on a fixed constant value without incurring in significant 'error': in this context, we quantify the 'error' as the mismatch (i.e., lack of overlapping) between the output quantities of interest obtained using the original uncertainty models and those produced by fixing one of the parameters to a constant value (again, depending on the subproblem the quantites of interest may be represented by the p-box distributions of the model output variables or by the intervals describing the epistemic uncertainty in the mean of the worst case requirement metric and in the system failure probability). This problem is solved within an optimization framework. In particular, for each parameter we exhaustively explore its entire range of variation to find the corresponding (constant) values that give rise to the maximal mismatch (i.e., maximal error) between the output quantities of interest. If such maximal error is sufficiently small (e.g., lower than 1% in the present paper), then there exists no realization of the parameter under analysis that affects appreciably the output: in other words, the parameter can be considered not important and can be thus neglected in the system model. In all the tasks related to sensitivity analysis, the original (black-box) mathematical model of the system is replaced by a fast-running, surrogate regression model based on Artificial Neural Networks (ANNs), in order to reduce the computational cost associated to the analysis [START_REF] Bishop | Neural Networks for pattern recognition[END_REF][START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF][START_REF] Deng | Structural reliability analysis for implicit performance function using radial basis functions[END_REF][START_REF] Hurtado | Filtered importance sampling with support vector margin: a powerful method for structural reliability analysis[END_REF][START_REF] Cardoso | Structural reliability analysis using Monte Carlo simulation and neural networks[END_REF][START_REF] Cheng | A new artificial neural network-based response surface method for structural reliability analysis[END_REF] : in particular, the computational time is reduced by about three orders of magnitude.

Finally, tasks (C) and (D) are here tackled together by solving the (optimization) problem of identifying the values of the epistemically-uncertain coefficients of the category (II) and (III) parameters that yield the smallest and largest values (i.e., the ranges) of the two performance metrics defined above [START_REF] Crespo | Reliability-based analysis and design via failure domain bounding[END_REF][START_REF] Crespo | Uncertainty analysis via failure domain characterization: unrestricted requirement functions[END_REF][START_REF] Crespo | Uncertainty analysis via failure domain characterization: polynomial requirement functions[END_REF][START_REF] Crespo | Bounding of the failure probability range of polynomial systems subject to p-box uncertainties[END_REF] ; during the optimization search the (aleatory) uncertainty described by probability distributions is propagated by standard Monte Carlo Simulation (MCS) [START_REF] Kalos | Monte Carlo methods. Volume I: Basics[END_REF][START_REF] Zio | The Monte Carlo Simulation Method for System Reliability and Risk Analysis[END_REF] .

Finally, notice that all the tasks involved in the challenge require the solution of several nonlinear, constrained optimization problems, which are efficiently tackled by resorting to heuristic approaches (i.e., evolutionary algorithms): such methods deeply explore the search space by evaluating a large number (i.e., a population) of candidate solutions in order to find a near-optimal solution [START_REF] Konak | Multi-Objective Optimization Using Genetic Algorithms: A Tutorial[END_REF][START_REF] Yang | Engineering optimization: an introduction with metaheuristic applications[END_REF] . Notice that the population-based nature of such evolutionary algorithms allows an efficient exploration and characterization of abrupt and disconnected search spaces, which is the case of the present challenge.

The remainder of the paper is organized as follows. In Section II, the main characteristics of the mathematical system model under analysis are outlined; in Section III, the NASA Langley Multidisciplinary Uncertainty Quantification Challenge (MUQC) Problems is addressed: the approaches adopted to tackle the problems of are described in detail and the results obtained are reported; finally, conclusions are drawn in the last Section.

II. The System

In Section II.A, we detail the mathematical model used to describe the dynamics of the Generic Transport Model (GTM), a remotely operated twin-jet aircraft developed by NASA Langley Research Center; in Section II.B, we characterize the aleatory and epistemic uncertainties affecting the input parameters to the model [START_REF] Crespo | The NASA Langley Multidisciplinary Uncertainty Quantification Challenge[END_REF] .

A. The Mathematical Model

We consider the mathematical model S that is employed to evaluate the performance of the multidisciplinary system under investigation and evaluate its suitability. Let p = {p i : i = 1, 2, …, n inp = 21} be a vector of n inp = 21 parameters in the system model whose value is uncertain and d a vector of design variables whose value can be set by the analyst (in the following, it is kept constant). Furthermore, let g = {g o : o = 1, 2, …, n out = 8} be a set of n out = 8 requirement metrics used to evaluate the system's performance. The values of g depends on both p and d. The system is considered requirement compliant if it satisfies the set of inequality constraints g < 0. For a fixed value of the design variables d, the set of p-points where g < 0 is called the safe domain, while its complement set is called the failure domain [START_REF] Crespo | The NASA Langley Multidisciplinary Uncertainty Quantification Challenge[END_REF] .

The relationship between the inputs p and d, and the output g is given by several functions, each representing a different subsystem or discipline. In particular, the function prescribing the output vector g = {g o : o = 1, 2, …, n out = 8} of the multidisciplinary system is given by ( )

d x, o o f g = , o = 1, 2, …, n out = 8 (1) 
where x = {x j : j = 1, 2, …, n int = 5} is a set of intermediate variables whose dependence on p is given by ( ) ( ) 
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For the sake of compact notation, in ( 2)-( 6) we call p j the vector of the inputs to function h j (•), j = 1, 2, …, 5: for example, p 3 = {p i : i = 11, 12, …, 15} in (4). Input parameters p = {p i : i = 1, 2, …, n inp = 21} are affected by uncertainties whose nature is characterized in the following Section II.B.

B. Aleatory and Epistemic Uncertainties in the Model Input Parameters

The uncertain parameters p = {p i : i = 1, 2, …, n inp = 21} are classified into three categories (Table 1): (I) purely aleatory parameters modeled as random variables with probability distributions of fixed functional form ( )

i i p p q i θ (resp., Cumulative Distribution Function-CDF ( ) i i p p F i θ ) and known coefficients θ i = {θ i,l : l = 1, 2, …, n p,i , i = 1, 2, …, 21}
, where θ i,l is the l-th internal coefficient of the aleatory probability distribution ( ) 1). The distributional p-box for a generic parameter p i is indicated as

i i p p q i θ of the
( ) i p p PB i = ( ) { } i i i i p p F i Ω θ θ ∈ :
and represents in practice a bundle of probability distributions with the same shape (e.g., exponential, beta, normal, …) but different internal coefficients (e.g., different values of the mean, variance, …). By way of example and only for illustration purposes, Figure 1 shows four CDFs belonging to the distributional p-box ( )

1 1 p PB p
of parameter p 1 (dashed lines); also, the figure reports the extreme upper and lower CDFs, ( )

1 1 p F p = ( ) { } 1 1 1 1 : max 1 1 1 Ω θ θ Ω θ ∈ ∈ p F p and
( )

1 1 p F p = ( ) { } 1 1 1 1 : min 1 1 1 Ω θ θ Ω θ ∈ ∈ p F p , ℜ ∈ ∀ 1 p
, bounding the distributional p-box ( )
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(solid lines). It is worth mentioning that when the uncertainty in a parameter is represented by a p-box, some quantities of interest, such as percentiles or exceedance probabilities, are not represented by single point values, but rather by intervals. For example, with reference to Figure 1, the probability P[p 1 > p 1 * = 0.9] that parameter p 1 exceeds p 1 * = 0.9 is given by

( ) ( ) [ ] * ] [ , * ] [ 1 1 1 1 1 1 p F p F p p - - = [0.0072, 0.4318].
Notice that if the internal coefficients θ i,l , l = 1, 2, …, n p,i , of the distribution ( ) i i p p q i θ of parameter p i are epistemically-independent (i.e., their uncertainty models are built using independent information sources, e.g., different experts, observers or data sets), then the entire (joint) space of variation Ω i of the coefficients vector θ i is given by the Cartesian product of the intervals

l θi ∆ , , i.e., Ω i = ∏ = i p n l l θi ∆ , 1
, . [START_REF] Usnrc | Guidance on the Treatment of Uncertainties Associated with PRAs in Risk-Informed Decision Making[END_REF][START_REF] Apostolakis | Pitfalls in risk calculations[END_REF][START_REF] Beer | Engineering quantification of inconsistent information[END_REF][START_REF] Couso | Independence concepts in evidence theory[END_REF][START_REF] Fetz | Propagation of uncertainty through multivariate functions in the framework of sets of probability measures[END_REF][START_REF] Pedroni | Empirical comparison of methods for the hierarchical propagation of hybrid uncertainty in risk assessment, in presence of dependences[END_REF][START_REF] Pedroni | Uncertainty analysis in fault tree models with dependent basic events[END_REF][START_REF] Pedroni | Hierarchical propagation of probabilistic and non-probabilistic uncertainty in the parameters of a risk model[END_REF][START_REF] Stein | Bayesian quantification of inconsistent information[END_REF][START_REF] Stein | Bayesian Approach for Inconsistent Information[END_REF] For example, referring to Table 1, the space of variation Ω 1 of the internal coefficients θ 1 = [m, s 2 ] of the Beta distribution ( )

1 1 1 θ p q p = Beta(m, s 2 ) of parameter p 1 is given by Ω 1 = 2 , 1 1 , 1 θ θ ∆ ∆ × = 2 s m ∆ ∆ × = [3/5, 4/5] x [1/50, 1/25].
For the sake of compact notation, in the following we call j

x θ the vector of the epistemically-uncertain parameters/coefficients related to the input vector p j to function h j (•) and j

x Ω the corresponding (joint) space of variation. For example, with reference to
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Finally, the vector of all the epistemically-uncertain parameters/coefficients contained in the entire system model S is indicated as

θ all = [ 1 x θ , 2
x θ , 3

x θ , 4

x θ , 5

x θ ] and the corresponding (joint) space of variation as all

Ω = ∏ = 5 1 j x j Ω .
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A. Subproblem (A): Uncertainty Characterization

In this subproblem, the main task of interest is as follows: 11 using a vector of observations of x 1 (2) (provided by the challengers), improve the uncertainty models of category (II) and (III) parameters p 1 , p 2 , p 4 and p 5 , i.e., reduce the corresponding epistemic uncertainty. Notice that the observations of x 1 (2) correspond to its 'true uncertainty model', i.e., a model where p 1 is a well defined Beta random variable, p 2 is a constant and p 4 and p 5 are described by two possibly correlated Normal random variables. In Section IV.A.1, the approach adopted is illustrated in detail; in Section IV.A.2, the results of the application of the method to Subproblem (A) are reported.

The Proposed Approach

This subproblem is tackled by performing the following two main conceptual steps: 2) the improved (i.e., reduced) ranges of (i) the epistemically-uncertain coefficients θ i of the probability distributions ( )

i i p p q i
θ of the category (III) input parameters p i , i = 1, 4, 5 (Table 1) and (ii) the epistemically-uncertain category (II) input parameter p 2 (Table 1) are optimally determined as those producing a distributional p-box ( )

1 1 x PB x
for x 1 that is coherent with the data available, i.e. with the nonparametric free p-box built at step 1. above: in particular, we look for the distributional p-box containing all the CDFs of x 1 that are bounded by the non-parametric, free p-box constructed on the basis of data.

In more detail, if a vector d 1

x of n d observations of random variable x 1 (2) is available, an empirical CDF ( )

1 , 1 ˆx F d n x
for x 1 can be constructed; however, the shape of this CDF is affected by significant "sampling uncertainty", which arises because of the finiteness (and typically limitedness) of the random sample employed. [START_REF] Ferson | Constructing probability boxes and Dempster-Shafer structures, Sandia National Laboratories[END_REF][START_REF] Ferson | Experimental Uncertainty Estimation and Statistics for Data Having Interval Uncertainty[END_REF] We account for this uncertainty by building the Kolmogorov-Smirnov (KS) confidence limits with a statistical confidence of 100•(1 -α)%: [START_REF] Kolmogorov | Confidence limits for an unknown distribution function[END_REF][START_REF] Smirnov | On the estimation of the discrepancy between empirical curves of distribution for two independent samples[END_REF] ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) d x x n KS x d x x n KS x n D x F x F x F n D x F x F x F d d , , 0 max , , 1 min 1 1 , 1 1 1 , 1 1 1 1 1 1 1 α α α α - = = + = = (7) 
where D(α, n d ) is the one-sample Kolmogorov-Smirnov critical statistic for intrinsic (two-sided) hypotheses testing for confidence level 100•(1 -α)% and sample size n d . "Analogous to simple confidence intervals around a single number, these are bounds on a statistical distribution as a whole. As the number of samples becomes very large, these confidence limits would converge to the empirical distribution function (although the convergence is rather slow)" [START_REF] Ferson | Experimental Uncertainty Estimation and Statistics for Data Having Interval Uncertainty[END_REF] . ‡ It is worth recalling that the critical statistic D(α, n d ) is computed as ( )

d n K α
, where ( ) α K is the (1 -α)-th quantile of the Kolmogorov distribution K, i.e., the value ( )

α K such that ( ) [ ] α α - = ≤ 1 K K P
. [START_REF] Kolmogorov | Confidence limits for an unknown distribution function[END_REF][START_REF] Smirnov | On the estimation of the discrepancy between empirical curves of distribution for two independent samples[END_REF] Tabled values of D(α, n d ) can be found in Ref. [START_REF] Miller | Table of percentage points of Kolmogorov statistics[END_REF] Given the empirical bounds 2), the improved uncertainty models (i.e., the reduced sets describing the epistemic uncertainty) of the corresponding category (II) and (III) input parameters p 1 , p 2 , p 4 and p 5 could be rigorously obtained by exhaustively searching for all the possible combinations of values of the epistemically-uncertain coefficients (θ i , i = 1, 4, 5) and parameters (p 2 ) that produce a distributional p-box ( )

( ) ( ) 1 , 1 x F x n KS d α and ( ) ( ) 1 , 1 x F x n KS d α (7) on x 1 = h 1 (p 1 , p 2 , p 3 , p 4 , p 5 ) (
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for x 1 coherent with the available data, i.e., with the empirical bounds (7). In other words, we should look for the distributional p-box ( )

( ) ( ) 1 , 1 x F x n KS d α and ( ) ( ) 1 , 1 x F x n KS d α
1 1 x PB x
containing all the CDFs of x 1 that are bounded everywhere by the non-parametric, free p-box [

( ) ( ) 1 , 1 x F x n KS d α , ( ) ( ) 1 , 1 x F x n KS d α ] (7)
constructed on the basis of data. [START_REF] Ferson | Sensitivity analysis using probability bounding[END_REF][START_REF] Ferson | Application of uncertainty analysis to ecological risks of pesticides[END_REF] This amounts to solving the following problem of feasible region identification:
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indicates the CDF of x 1 = h 1 (p 1 , p 2 , p 3 , p 4 , p 5 ) (2) obtained when the (epistemicallyuncertain) internal coefficients of the probabability distributions of the corresponding category (III) input parameters p 1 , p 4 and p 5 and category (II) input parameter p 2 are fixed to constant values within their ranges Ω 1 , Ω 4 , Ω 5 and

2 p ∆ ,
respectively. The subset

1 x n d Ω of 1
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x -represents the requested feasible region, i.e., the improved, reduced uncertainty model for parameters 1

x θ = [θ 1 , p 2 , θ 4 , θ 5 ] = [m, s 2 , p 2 , µ 4 , σ 4 2 , µ 5 , σ 5 2 , ρ]. With respect
to that, it is very important to remember that 1

x n d Ω is found using a single data set d 1

x , which introduces an epistemic dependence between the values that θ 1 , p 2 , θ 4 and θ 5 may assume: thus, differently from the initial 1

x Ω , in general

1 x n d
Ω cannot be expressed as the Cartesian product of the separate ranges of variation of θ 1 , p 2 , θ 4 and θ 5 . In passing, also notice that from a strictly mathematical viewpoint, solving problem ( 8) is equivalent to finding all the CDFs ( )

5 4 2 1 1 , , , 1 θ θ θ p x F x
that result in a p-value p val larger than or equal to α in a KS statistical test with the empirical CDF ( )

1 , 1 ˆx F d n x
constructed with one sample d 1 x of size n d . In particular, we test the "null hypothesis" that sample

d 1 x of size n d comes from distribution ( ) 5 4 2 1 1 , , , 1 θ θ θ p x F x
: the corresponding test statistic is then the well-known

Kolmogorov-Smirnov statistic ( ) ( ) ( ) 5 4 2 1 1 1 , , , , max 1 1 1 θ θ θ p x F x F n D x n x x d d - =
(i.e., the maximal 'vertical' distance between the two CDFs). It is worth recalling that the p-value p val is used in the context of "null hypothesis testing" in order to quantify the idea of statistical significance of evidence. More rigorously, the p-value is the probability of obtaining a test statistic result D at least as extreme or as close to the one that is actually observed ( ( )

d n D ),
assuming that the "null hypothesis" is true (i.e., assuming that sample d 1

x actually comes from ( )

5 4 2 1 1 , , , 1 θ θ θ p x F x
):

in this case,

p val = P[D ≥ D(n d )].
When the p-value p val turns out to be less than a predetermined significance level α, then the "null hypothesis" is rejected: actually, such an outcome indicates that the observed result (i.e., the empirical CDF ( )

1 , 1 ˆx F d n x
constructed with sample d 1 x ) would be highly unlikely if the "null hypothesis" was true (i.e., if ( )

5 4 2 1 1 , , , 1 θ θ θ p x F x
was the real underlying distribution of x 1 ). Finally, it is worth admitting that in the present case also the "null hypothesis" distribution ( )

5 4 2 1 1 , , , 1 θ θ θ p x F x
is obtained by plain random sampling, i.e., by propagating N = 100000 realizations of parameters p 1 , p 2 , …, p 5 through the model x 1 = h 1 (p 1 , p 2 , p 3 , p 4 , p 5 ) (2): thus, a two-sample KS test should be rigorously carried out instead of a one-sample test. However, since N is very large, then "null hypothesis" CDF ( )

5 4 2 1 1 , , , 1 θ θ θ p x F x
can be considered as the "reference" one with acceptable approximation: actually, as verified by the authors but not shown here for brevity sake, the results obtained in the two different cases are practically identical.

With respect to the approach proposed, it is worth mentioning that [START_REF] Ferson | Constructing probability boxes and Dempster-Shafer structures, Sandia National Laboratories[END_REF][START_REF] Ferson | Experimental Uncertainty Estimation and Statistics for Data Having Interval Uncertainty[END_REF] : (i) KS bounds are distribution-free constructions, i.e., they do not require any knowledge about the real shape of the underlying distribution (which is the case for the intermediate variable x 1 under analysis); (ii) KS limits require the assumption that the samples d 1 x are independent and identically distributed (which is verified for variable x 1 ); and (iii) KS limits are not certain bounds, but only statistical ones: the associated statistical statement is that 100•(1 -α)% of the times such bounds are constructed from n d random samples, they will totally enclose the true distribution ( )

1 1 x F x of x 1 .
In this paper, we tackle problem ( 8) by resorting to a population-based, heuristic optimization technique, i.e., a Genetic Algorithm (GA) [START_REF] Konak | Multi-Objective Optimization Using Genetic Algorithms: A Tutorial[END_REF][START_REF] Yang | Engineering optimization: an introduction with metaheuristic applications[END_REF] . In the present case, the search space is represented by the entire space of variation 1

x Ω of the epistemically-uncertain coefficients/parameters 1

x θ = [θ 1 , p 2 , θ 4 , θ 5 ] and the objective function to optimize (in particular, to maximize) is the p-value p val obtained in a statistical KS test between the CDFs ( )

5 4 2 1 1 , , , 1 θ θ θ p x F x and ( ) 1 , 1 ˆx F d n x : [ ] [ ] [ ] { } ( ) [ ] { } ( ) ( ) ( ) 5 4 2 1 1 1 , 5 2 5 5 5 4 2 4 4 4 2 1 2 1 , , , max , max max : , , , , , , , , , i.e. 
, Find

1 1 1 1 1 θ θ θ p x F x F n D n D D P p p ∆ p s m x n x x d d val val p x x d x x - = ≥ = = ∈ = ∈ = ∈ ∈ = ∈ ρ σ µ ρ σ µ (9)
In the present paper, GAs are tailored to the particular problem of identifying a feasible region: in particular, during the GA evolution towards the optimum, all the candidate solutions 1

x θ that are found to satisfy the property in (8) are stored; at the end of the search, the ensemble of the feasible solutions found and stored during the optimization search constitute an 'empirical map' of the feasible region

1 x n d Ω .
Notice that the resulting (empirical) reduced uncertainty model has the following characteristics: (i) it might not be a connected set; (ii) contrary to Bayesian-based approaches, it is not a probabilistic set. Several considerations are in order with respect to the proposed approach. In this subproblem, GAs are not used with the main purpose of identifying a global optimum (i.e., val p ): instead, their population-based nature and their genetic operators (relying on the criterion of survival of the fittest) are rather exploited for intelligently and thoroughly exploring the entire space of variation

1 x Ω of 1 x θ = [θ 1 , p 2 , θ 4 , θ 5
] in order to find as many feasible candidates as possible (and, thus, to make the 'empirical map' of the feasible region 1

x n d Ω as complete and reliable as possible). Although this is not the traditional intended use of GAs, applications in this direction can be found in the literature, see, e.g., Ref. 47. In addition, it has to be acknowledged that the proposed approach cannot solve task (8) in a rigorous mathematical way. Actually, we cannot find all the combinations of 1

x θ = [θ 1 , p 2 , θ 4 , θ 5 ] for which the property in (8) holds, but rather we are only able to find some combinations by means of a GA, used in this case as an "intelligent" sampling approach. Given that we can only identify a finite number of combinations (but we do not know what happens in between sampling points), we cannot prescribe mathematically the set

1 x n d Ω in the continuum of space 1
x Ω that has infinitely many elements. In facts, the property in (8) provides only the means to test the membership of a candidate 1

x θ to 1

x n d Ω , but not the means to calculate mathematically the desired set. In order to do that, set bounding approaches, such as those presented in Refs. 26, 27, 28 and 29, should be adopted. On the other hand, it has to be also considered that this limitation does not absolutely impair the quality and validity of the results of the following subproblems of the challenge. Actually, all the tasks related to sensitivity analysis (III.B), uncertainty propagation (III.C) and extreme case analysis (III.D) are based on a GA optimization search within the continuum of space 1

x Ω . In this framework, the identification of only those solutions that belong to the (mathematically not prescribed) set

1 x n d
Ω is guaranteed by introducing the property in ( 8) as a hard constraint in the GA: only those candidates that satisfy such property are retained in the genetic evolution, whereas the others are discarded.

Application Results

Figure 2 top left shows the empirical CDF ( )

1 , 1 1 ˆx F d n x
(dot-dashed lines) built using a vector 1 

) ( ) 1 , 1 1 x F x n KS d α and ( ) ( ) 1 , 1 1 x F x n KS d α
obtained with α = 0.01 (resp., confidence 1 -α = 0.99) (solid lines). In addition, the figure reports the extreme upper and lower CDFs, ( )

1 1 x F x and
( )

1 1 x F x
, bounding the distributional p-box of x 1 (i.e., ( )

1 1 x F x = ( ) { } 1 1 max x PB x and
( )

1 1 x F x = ( ) { } 1 1 min x PB x , ℜ ∈ ∀ 1 x
), before (dashed lines) and after (dotted lines) the improvement of the input parameters uncertainty model. It can be see that the area contained between the bounding upper and lower CDFs ( )

1 1 x F x and
( )

1 1
x F x is significantly reduced; in particular, it is 0.2407 and 0.1860 before and after the update of the input uncertainty models, respectively, which means a reduction by 22.73% in the epistemic uncertainty of x 1 .

In order to validate the results obtained, a new empirical CDF ( )

1 , 2 1 ˆx F d n x
is built using a new vector 2 and the CDFs belonging the 'updated' distributional p-box of x 1 , ( )

1 , 1 1 x PB d n x = ( ) { } 1 1 1 1 1 : 1 x n x x x d x F Ω θ θ ∈ .
In more detail, two GA searches are carried out within the updated space 1 3

x n d Ω to calculate the maximum and minimum p-values, respectively, resulting from these KS statistical tests: [START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF] the corresponding values turn out to be 0.9837 (i.e., larger than the test significance level α = 0.01) and 3•10 -4 (i.e., lower than the test significance level α = 0.01) respectively. Taking as reference the smallest p-value within the reduced epistemic space (i.e., the value for which the null-hypothesis is the weakest), the reduced uncertainty model x (correspondingly, the p-values of the related KS statistical tests will be smaller than α = 0.01). A possible explanation for this lack of model validation is as follows. It can be observed that the two sets of data provided by the challengers, x is 'poorer' of evidence). Finally, in order to have a very rough measure of the discrepancy between the two p-boxes, we compute the percentage fraction of the area of the 'improved' p-box of x 1 that does not overlap with the KS bounds of the validation data set Then, the uncertainty models of parameters p 1 , p 2 , p 4 and p 5 are further improved by using all the n d3 = n d1 + n d2 = 50 data available, ( )

1 1 x F x
, bounding the distributional p-box of x 1 (i.e., ( )

1 1 x F x = ( ) { } 1 1 max x PB x and
( )

1 1 x F x = ( ) { } 1 1 min x PB x , ℜ ∈ ∀ 1 x
), before (dashed lines) and after (dotted lines) the parameters update. In this case, the area included between the bounding CDFs is 0.1409, which means a reduction of 41.46% in the epistemic uncertainty of x 1 relative to the initial condition and a reduction of 24.25% relative to the results obtained using n d = n d1 = 25 data: thus, with respect to an increase of 100% in the size of the data set (i.e., from n d1 = 25 to n d3 = 50), we obtain a relative improvement in the uncertainty model (i.e., a reduction in its epistemic uncertainty) of only 24.25%.

Finally, only for illustration purposes Figure 3 ∆ with no restrictions (Table 1), now it is not possible to have, e.g., low values of m and low values of µ 4 at the same time. Notice that these empirical maps have been generated by GAs and they contain approximately 500000 points. In order to avoid that the patterns observed are the result of the manner GA searches for the optimum (and not of the true dependency among variables), the following strategies have been implemented:

(i) GA is repeated several times (say, ten times) with different random seeds and different settings of the GA operations (e.g., different crossover points and mutation rates), and an approximate feasible region is found and recorded for each repetition (as the number of repetitions of GA is increased, the approximate feasible regions approach the true feasible regions); (ii) the capability of GA of thoroughly exploring the entire search space (technically speaking, of maintaining a high "genetic diversity" in the population of candidate solutions) is guaranteed by a proper setting of its parameters, mainly based on the experience of the authors in the use of GAs [START_REF] Zio | Selecting features for nuclear transients classification by means of genetic algorithms[END_REF][START_REF] Zio | Optimal power system generation scheduling by multi-objective genetic algorithms with preferences[END_REF] : for example, high population sizes (i.e., N pop = 200) and high mutation rates (i.e., p mut = 0.025) are employed; (iii) since in the present subproblem A the main purpose of the GA search is that of finding many feasible solutions instead of a single global optimum, the GA evolution is stopped only when a certain (large) number of generations (e.g., N gen = 500) is achieved. Finally, the validity of these GA-based maps has been further checked by generating about 500000 samples belonging to

1 3 x n d
Ω by a standard sampling method: as verified by the authors, but not shown here for brevity, the resulting pattern of dependence is almost identical to the one produced by GAs. ( )

1 x x F 1
, bounding the distributional p-box of x 1 (i.e., ( ) 

1 x x F 1 = ( ) { } 1 x x PB max 1 and ( ) 1 x x F 1 = ( ) { } 1 x x PB min 1 , ℜ ∈ ∀ 1 x ),

B. Subproblem (B): Sensitivity Analysis

Sensitivity analysis is the general term for a systematic study of how the inputs to a model influence the results of the model. Sensitivity analyses are conducted for two fundamental reasons: (i) to focus future empirical studies so that effort might be expended to improve estimates of inputs that would lead to the most improvement in the estimates of the outputs, and (ii) to generally understand how the conclusions and inferences drawn from an assessment depend on its inputs (and on the basis of the results, possibly simplify or even remove from the model those inputs that turn out to be less influential) [START_REF] Ferson | Sensitivity analysis using probability bounding[END_REF] .

In this light, two different types of analysis are here performed: in the first (namely, 'factor prioritization' analysis), the objective is to identify those parameters p whose epistemic uncertainty contributes more to the 'amount' of epistemic uncertainty contained in some output quantities of interest: in other words, we try to rank the category (II) and (III) input parameters according to degree of reduction in the output epistemic uncertainty which one could hope to obtain by refining their uncertainty models (i.e., by reducing the epistemic uncertainty associated to them) (Section III.B.1). In the second (namely, 'factor fixing' analysis), determination has to be made as to whether these output quantities of interest are sufficiently insensitive to any given parameter such that that parameter can be assumed to take on a fixed constant value without incurring in significant errors: in other words, we aim at finding those parameters that minimally affect the outputs (Section III.B.2). In all the analyses, the first five parameters {p i : i = 1, 2, …, 5} are modeled according to the results from task (A. 

Ω = ∏ = 4 1 x 1 3 j x x n j d Ω Ω .

Sensitivity Analysis in a 'Factor Prioritization' Setting

In Section III.B.1.1, the general approach adopted to rank category (II) and (III) parameters according to their contribution to output epistemic uncertainty is illustrated in detail; in Section III.B.1.2, the results of the application of the method to the tasks of Subproblem (B) are reported.

1.1

The Proposed Approach The use of sensitivity analysis to learn where focusing future empirical efforts would be most productive requires estimating the value of additional (hypothetical) empirical information. Of course, the value of information not yet observed cannot be measured, but it can perhaps be predicted. One strategy to this end is to assess how much less epistemic uncertainty the model outputs of interest would have if extra knowledge about an input were available. This might be done by comparing the epistemic uncertainty before and after 'pinching' an input, i.e. replacing it with a value without (or with less) eistemic uncertainty. Of course, one does not generally know the correct value with certainty, so this replacement must be conjectural in nature. To pinch a parameter/coefficient means to hypothetically reduce its uncertainty for the purpose of the thought-experiment. The experiment asks what would happen if there were less epistemic uncertainty about this number. Quantifying this effect assesses the contribution by the input epistemic uncertainty to the overall epistemic uncertainty in the output of interest. The estimate of the value of information for an epistemically-uncertain parameter/coefficient will depend on (i) how much epistemic uncertainty is present in the parameter, and (ii) how it affects the epistemic uncertainty in the final result [START_REF] Ferson | Sensitivity analysis using probability bounding[END_REF] .

In more detail, let U p (Q) be an indicator of the 'amount' of epistemic uncertainty contained in a generic quantity Q of interest to the analysis. The subscript 'p' suggests that indicator U p (Q) is computed over all the input parameters p (and over the space of variation Ω all of all the corresponding epistemically-uncertain internal coefficients θ all ). We want to assess the effect that a refinement of the uncertainty model of the generic input p i (i.e., a reduction in its epistemic uncertainty) has on the amount of epistemic uncertainty U p (Q) of Q. For the sake of notation generality, let φ i ∈ i Ω be the epistemically-uncertain 'factor' in the uncertainty model of parameter p i : thus, if p i is a category (II) parameter (e.g., p 2 or p 12 ), then simply φ i = p i ; instead, if p i is a category (III) parameter (e.g., p 1 , p 4 or p 5 ), then φ i represents the vector θ i of the epistemically-uncertain coefficients of the corresponding aleatory probability distribution ( ) i i p p q i θ , i.e., φ i = θ i . For example, for category (III) parameter p 1 we have

φ 1 = θ 1 = [m, s 2 ]
. In order to address the issue above, a novel sensitivity index is introduced in analogy with variance-based Sobol indices [START_REF] Saltelli | Global sensitivity analysis, The Primer[END_REF][START_REF] Borgonovo | Moment independent and variance-based sensitivity analysis with correlations: An application to the stability of a chemical reactor[END_REF][START_REF] Marrel | Calculations of Sobol indices for the Gaussian process metamodel[END_REF][START_REF] Sobol | Sensitivity analysis for nonlinear mathematical model[END_REF][START_REF] Volkova | Global sensitivity analysis for a numerical model of radionuclide migration from the RRC "Kurchatov Institute" redwaste disposal site[END_REF] , which generalizes the approach presented in Ref. 14. Imagine that we fix φ i at a particular value are allowed to range in their corresponding space of variation all i -Ω ). We would imagine that having frozen one potential source of epistemic uncertainty (φ i ), the resulting indicator U p (Q|φ i = φ i * ) will be lower than the corresponding total (or unconditional) one U p (Q). One could therefore conceive of using U p (Q|φ i = φ i * ) as a measure of the relative importance of p i , reasoning that the smaller U p (Q|φ i = φ i * ), the greater the influence of p i . However, notice that this approach makes the sensitivity measure dependent on the position of the point φ i * for each input factor, which is impractical. Thus, we take the average of the measure

φ i * ∈ i Ω . Let U p (Q|φ i = φ i * )
U p (Q|φ i = φ i *
) over all the possible points φ i * ∈ i Ω , which removes the dependence on φ i * . The resulting indicator is then written synthetically as E φi [U p (Q|φ i )] and represents the expected amount of epistemic uncertainty contained in output Q when the epistemically-uncertain coefficient/parameter φ i is fixed to a constant value (i.e., when the amount of its epistemic uncertainty is reduced to zero). Obviously, the lower the value of E φi [U p (Q|φ i )], the more important the corresponding parameter p i : in other words, the most important parameter is that parameter which on average, once fixed, causes the greatest reduction in the epistemic uncertainty of Q (as highlighted above, the consideration of "average sensitivities" is due to the fact that U p (Q|φ i = φ i * ) is in general strongly dependent on the position of the point φ i * : this suggests the necessity to calculate the average of the measure U p (Q|φ i = φ i * ) over many possible points φ i * ∈ i Ω in order to obtain robust and reliable sensitivity rankings). Finally, the sensitivity

S i (U p (Q))
of the epistemic uncertainty of the output Q to the epistemic uncertainty of parameter p i can be synthesized with an expression like

( ) ( ) ( ) [ ] ( ) Q U Q U E Q U S i i i p p φ p φ - = 1 . ( 10 
)
Index S i (U p (Q)) ( 10) is an estimate of the value of additional empirical information about the input p i in terms of the fractional reduction in epistemic uncertainty that might be achieved in Q when the input parameter is replaced by a better estimate obtained from future empirical study. This 'pinching' procedure can be applied to each input quantity in turn and the results used to rank the inputs in terms of their sensitivities. In principle, one could also pinch multiple inputs simultaneously to study interactions: however, this aspect is not considered in the present paper. It is worth noting that S i (U p (Q)) (10) 

[ ] θ θ θ - - -= i i all i
range within the corresponding space of variation all i -Ω ; (iii) this sensitivity index is "model free" because its computation is independent from assumptions about the model form, such as linearity, additivity and so on [START_REF] Saltelli | Making best use of model evaluations to compute sensitivity indices[END_REF] . Finally, note that index S i (U p (Q)) ( 10) is nicely scaled between 0 and 1; however, unlike the factorizations used by variance-based sensitivity analyses, these reductions will not generally add up to 1 for all the input variables. Other approaches to sensitivity analysis in the presence of mixed aleatory and epistemic uncertainties can be found in Refs. 52-54.

In this paper, the sensitivity index S i (U p (Q)) (10) related to the generic parameter p i is straightforwardly estimated as follows:

1) letting all the epistemically-uncertain parameters/coefficients θ all range within the entire space of variation Ω all , propagate the mixed aleatory and epistemic uncertainty from the inputs p to the output of interest Q and evaluate the resulting (total, unconditional) amount of epistemic uncertainty U p (Q) in Q (notice that technical details about the uncertainty propagation phase are not given here in order to not interrupt the flow of the presentation concerning sensitivity analysis: the reader is referred to the following Section III.C);

2) select (deterministically or stochastically) N e values φ i k , k = 1, 2, …, N e , of the epistemically-uncertain 'factor' φ i under analysis within its space of variation Ω i (as already mentioned, if p i is a category (II) parameter, then simply φ i = p i ; instead, if p i is a category (III) parameter, then φ i represents the vector θ i of the epistemically-uncertain parameters of the corresponding aleatory probability distribution ( )

i i p p q i θ ,
i.e., φ i = θ i : for example, for category (III) parameter p 1 we have

φ 1 = θ 1 = [m, s 2 ]
). These N e realizations of epistemic uncertainty φ i k , k = 1, 2, …, N e , should be chosen in such a way to evenly cover the corresponding uncertainty space Ω i : in this paper, a grid of equally spaced points is adopted to this aim;

3) fixing the value of φ i to φ i k , k = 1, 2, …, N e , and letting all the other epistemically-uncertain parameters/coefficients all i -θ vary within all i -Ω , propagate the mixed aleatory and epistemic uncertainty from the inputs p to the output of interest Q and evaluate the resulting (conditional) amount of epistemic

uncertainty U p (Q|φ i = φ i k ) in Q. Notice that in the computation of U p (Q|φ i = φ i k ) for category (III)
parameters, we condition the event to multi-dimensional realizations of the epistemic space. For example, for p 1 we fix both the mean m and the variance s 2 , i.e., φ 1 = φ 1 k = [m k , s 2,k ]; for parameter p 4 we fix the mean µ 4 , the standard deviation σ 4 and the correlation coefficient ρ, i.e., , bounding the distributional p-box ( )

φ 4 = φ 4 k = [µ 4 k , σ 4 k , ρ k ]; 4) estimate the sensitivity index S i (U p (Q)) (10) as ( ) ( ) ( ) ( ) 
∑ = = - ≈ e N k k i i e i Q U Q U N Q U S
j x x PB j = ( ) { } j j j j x x x j x x F Ω θ θ ∈ : of x j : ( ) ( ) [ ] ( ) [ ] ( ) ( ) ∫ - - - = = 1 0 1 1 dr r F r F x A x U j j x x j j p p , j = 1, 2, …, 5 (11) 
where [ ] ( )

r F j x 1 -
and [ ] ( )

r F j x 1 -
are the inverse of ( )

j x x F j and ( ) j x x F j
, respectively, at cumulative probability level r. Obviously, the larger the area A p (x j ) (i.e., the larger the separation between the bounding CDFs), the larger the imprecision, i.e., the epistemic uncertainty, in the definition of a precise probability model for variable x j . Notice that the CDFs ( ) j x x F j and ( )

j x x F j
are formally defined as:

( ) ( ) { } j j j x j x j x j x j x x F x F θ Ω θ ∈ = max and ( ) ( ) { } ℜ ∈ ∀ = ∈ j x j x j x x x F x F j j j x j x j , min θ Ω θ , j = 1, 2, …, 5. (12) 
In subproblems (B.2) and (B.3) the output quantities of interest Q are represented by the following quantites:

( ) [ ] d p p , 1 w E J = (13) ( ) [ ] 0 , 1 2 < - = d p w P J , (14) 
where

( ) ( ) ( ) d p h x d p , max max , 8 1 8 1 = = = ≤ ≤ ≤ ≤ o o o o f g w ( 15 
)
is the so-called worst-case requirement metric. Notice that ( ) ( )

J 1 = E p [w(p, d)] (13)
1 1 1 1 J J J L J U - = = p p (16) ( ) ( ) 2 2 2 2 J J J L J U - = = p p . ( 17 
)
Again, the larger the intervals, the larger the uncertainty in the definition of a precise value for the erformance metrics J 1 (13) and J 2 (14).

A final consideration is in order with respect to the computational cost associated to the evaluation of the (10). For each input parameter of interest p i , i = 1, 2, …, § Notice that the choice of intervals to represent the epistemic uncertainty in J 1 and J 2 is a "natural" consequence of the hybrid representation of uncertainty adopted in the present paper (i.e., probabilistic/aleatory and intervalbased/epistemic). In such a framework, the worst-case requirement metric w(p, d) is represented by a distributional p-box, i.e., an ensemble of probability distributions (as its inputs p). Thus, a value of the mean and of the failure probability can be computed for each element of the p-box: such ensemble of values identifies the corresponding intervals for J 1 and J 2 .

sensitivity indices S i (U p (Q)), Q = x j , J 1 , J 2 , i = 1, 2, …, 21
21, a number N e (e.g., N e ≈ 10-20 in this paper) of realizations φ i k of the corresponding epistemically-uncertain 'factor' φ i have to be selected. Then, for each realization φ i k , k = 1, 2, …, N e , the quantitative indicator U p (Q|φ i = φ i k )

has to be calculated. The evaluation of indicator U p (Q|φ i = φ i k ) implies: (i) the propagation of mixed aleatory and epistemic uncertainty from the input parameters p to the output Q of interest through the corresponding mathematical model (i.e., h j (p j ) in ( 2)-( 6) for the evaluation of U p (x j ) and g = f(x = h(p), d) in ( 1), for the computation of the worst-case requirement metric w(x = h(p), d) and correspondingly of U p (J 1 ) and U p (J 2 )); (ii) the identification of the extreme bounds of Q (i.e., ( )

j x x F j and ( ) j x x F j
, 1 J and 1 J , 2 J and 2 J , respectively), which requires the solution of several optimization problems (see Section III.C for further details about the uncertainty propagation process). The execution of steps (i) and (ii) above entails the repeated evaluation of the output Q (i.e., of the corresponding mathematical model) for every possible solution proposed by the optimization algorithm during the search. As a consequence, the total number of system model evaluations can easily reach tens/hundreds millions for each realization φ i k of each input parameter p i analyzed, which makes the proposed approach impractical also in the presence of mathematical system models that take even only few minutes to run. For example, in this case the evaluation of ( ) In the present paper, we address this computational burden by replacing the original model ( ) ( ) ANNs are computing devices inspired by the function of the nerve cells in the brain [START_REF] Bishop | Neural Networks for pattern recognition[END_REF][START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF][START_REF] Deng | Structural reliability analysis for implicit performance function using radial basis functions[END_REF][START_REF] Hurtado | Filtered importance sampling with support vector margin: a powerful method for structural reliability analysis[END_REF][START_REF] Cardoso | Structural reliability analysis using Monte Carlo simulation and neural networks[END_REF][START_REF] Cheng | A new artificial neural network-based response surface method for structural reliability analysis[END_REF] . They are composed of many parallel computing units (called neurons or nodes) arranged in different layers and interconnected by weighed connections (called synapses). Each of these computing units performs a few simple operations and communicates the results to its neighbouring units. From a mathematical viewpoint, ANNs consist of a set of nonlinear (e.g., sigmoidal) basis functions with adaptable parameters that are adjusted by a process of training (on many different input/output data examples), i.e., an iterative process of regression error minimization [START_REF] Rumelhart | Learning internal representations by error back-propagation[END_REF] . ANNs have been demonstrated to be universal approximants of continuous nonlinear functions (under mild mathematical conditions) [START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF] , i.e., in principle, an ANN model with a properly selected architecture can be a consistent estimator of any continuous nonlinear function. Further details about ANN regression models are not reported here for brevity;

d p, w = o o g 8 1 max ≤ ≤ = ( ) ( ) d p h x , max 8 1 = ≤ ≤ o o f ( 1 
d p h x f g , = = ( 
the interested reader may refer to the cited references and the copious literature in the field.

Notice that the recommendation of using ANN regression models is mainly based on (i) theoretical considerations about the (mathematically) demonstrated capability of ANN regression models of being universal approximants of continuous nonlinear functions [START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF] and (ii) the experience of the authors' in the use of ANN regression models for propagating the uncertainties through mathematical model codes simulating safety systems 56- 60 . Since no further comparisons with other types of regression models have been performed by the authors yet, no additional proofs of the superiority of ANNs with respect to other regression models can be provided at present, in general terms. . Finally, the adjustable internal parameters of the ANN regression model are calibrated to fit the generated data: in particular, the common error back-propagation algorithm is implemented to train the ANN [START_REF] Rumelhart | Learning internal representations by error back-propagation[END_REF] . Note that a single ANN can be trained to estimate all the eight outputs of the model here of interest.

Application Results

First

In the present case study, the number of inputs to the ANN regression model is equal to n int = 5 (i.e., the number of intermediate variables x = {x j : j = 1, 2, …, n int = 5} ( 2)-( 6)), whereas the number of outputs is equal to n out = 8 (i.e., the number of requirement metrics of interest g = {g l : l = 1, 2, …, n out = 8} (1), as reported in Section II). With respect to that, it is worth pointing out that although the quantity of interest in the present study is the (scalar) worstcase requirement metric ( )

d p, w = o o g 8 1 max ≤ ≤ = ( ) ( ) d p h x , max 8 1 = ≤ ≤ o o f
(1), we choose to reproduce by ANN the relationship between x and the (eight-dimensional) vector g = ( ) ( )

d p h x f , =
: this is due to the fact that (i) the components of g are continuous functions of the inputs x that prescribe them [START_REF] Crespo | The NASA Langley Multidisciplinary Uncertainty Quantification Challenge[END_REF] (with benefits for the ANN approximation), and (ii) the behavior of ( ) The large value of the coefficient of determination R 2 , i.e., 0.9944, and the small value of 0.1468 for the RMSE produced lead us to assert that the accuracy of the ANN model can be considered satisfactory for the needs of capturing the global behavior of the highly nonlinear and non-monotonic function ( ) ( )

d
d p h x , = w = o o g 8 1 max ≤ ≤ = ( ) ( ) d p h x , max 8 1 = ≤ ≤ o o f
and, thus, of estimating the corresponding sensitivity indices. This is also pictorially confirmed by a visual inspection of the ANN approximation capabilities. Figure 4, left and right, shows in logarithmic scale the behavior of ( ) ( )

d p h x , = w
as a function of x 1 , when x 2 , x 3 , x 4 and x 5 are set to 0.6250, 0.4000, 0.7450 and 0.5000, respectively (solid line), and the corresponding ANN fitting (dashed line); instead, Figure 4 right shows ( ) ( )

d p h x , = w
as a function of x 3 , when x 1 , x 2 , x 4 and x 5 are fixed to 0.4500, 0.6250, 0.7450 and 0.2, respectively (solid line), together with the corresponding ANN approximation (dashed line). In both cases, the ANN estimates are in satisfactory agreement with the real trend of ( ) ( )

d p h x , = w
. Notice that the evaluation of ( )

d p, w = o o g 8 1 max ≤ ≤ = ( ) ( ) d p h x , max 8 1 = ≤ ≤ o o f
(1) for, e.g., N a = 10000 values p s , s = 1, 2, …, N a , of the inputs p takes only 1.25s, i.e., 1700 times less than the original model. The trained ANN regression model is then used for computing the sensitivity index 

S i (U p (Q)) (10), i = 1, 2, …, 21, for Q = x j , J 1 , J 2 .
∑ = = ⋅ e N k k i i e Q U N 1 1
φ φ p are also reported for each parameter p i . Notice that the coefficient of correlation ρ between parameters p 4 and p 5 is not explicitly listed in Table 3 as a 'stand-alone' coefficient, since it is considered part of the corresponding uncertainty models of p 4 and p 5 , i.e., θ 4 = [µ 4 , σ 4 , ρ] and θ 5 = [µ 5 , σ 5 , ρ].

Sensitivity to epistemic uncertainty (factor prioritization setting)

Sensitivity 10), i = 1, 2, …, 21, for Q = x j , J 1 , J 2 , together with the corresponding parameters ranking R i (Q) (in parentheses); the accumulated ranking R acc,i = R i (J 1 ) + R i (J 2 ) is also reported

It can be seen that the parameters whose epistemic uncertainty contributes more to the epistemic uncertainty 'contained' in the p-boxes of the corresponding intermediate output variables x j , j = 1, 2, …, 4, are p 1 , p 6 , p 12 and p 16 , respectively (highlighted in bold in Table 3): in detail, refining the uncertainty models of p 1 , p 6 , p 12 and p 16 according to the particular strategy proposed (i.e., reducing their epistemic uncertainty from a set to a point) would lead to an expected reduction in the epistemic uncertainty of x 1 , x 2 , x 3 and x 4 of 50.71%, 61.08%, 92.77% and 71.78%, respectively. This information is of paramount importance for the experts in the disciplines modeled by the relations x = h(p) (2)-( 6), because in the light of the results obtained they can focus their efforts primarily on increasing the state-of-knowledge on the identified important parameters and the related physical phenomena. For illustration purposes, Figure 5 left analyzes the different effect that an improvement in the uncertainty models of parameters p 1 (rank R 1 (x 1 ) = 1) and p 2 (rank R 4 (x 1 ) = 4) has on the p-box of x 1 . The upper and lower CDFs, ( ) ( )

1 1 x F x
1 1
x F x (i.e., the epistemic uncertainty in x 1 ) is reduced by 56.77% in the first case, whereas a reduction of only 6% is obtained in the second case. In addition, Figure 5 to p 12 * = 0 (dashed lines), 0. ∆ ) in order to obtain robust and reliable sensitivity rankings.

The four parameters that influence most the uncertainty of J 1 (i.e., the expected value

( ) [ ] d p, p w E of ( ) d p, w )
are p 21 , p 5 , p 12 and p 1 (highlighted in bold in Table 3), in decreasing order of ranking: actually, refining the corresponding uncertainty models according to the particular strategy proposed (i.e., reducing their epistemic uncertainty from a set to a point) leads to an expected reduction of about 85.66%, 77.21%, 42.37% and 40.09% in the width of the interval of J 1 (i.e., in its epistemic uncertainy); some parameters (e.g., p 4 , p 2 and p 16 ) have a non negligible influence on J 1 (in fact, the corresponding indices S i (L p (J 1 )), i = 2, 4, 16, range from 0.0125 to 0.1775), whereas some others (in particular, p 13 , p 14 and p 15 ) have almost no effect on the uncertainty of J 1 (in fact, the corresponding indices S i (L p (J 1 )), i = 13, 14, 15, are around 10 -7 ). Instead, the four parameters that influence most the uncertainty of J 2 (i.e., the system failure probability J 2 = P[ ( ) d p,w > 0]) are p 12 , p 1 , p 5 and p 4 (highlighted in bold in Table 3), in decreasing order of ranking: actually, reducing the corresponding epistemic uncertainty from a set to a point leads to an expected reduction of about 68%, 20%, 4.4% and 4.2%, respectively, in the width of the interval of J 2 (i.e., in its epistemic uncertainy); again, some parameters (e.g., p 16 , p 6 and p 21 ) seem to have a non negligible influence on J 2 (in fact, the corresponding indices S i (L p (J 2 )) range from 0.0100 to 0.0174), whereas some others (in particular, again p 13 , p 14 and p 15 ) have almost no effect on the uncertainty of J 2 (in fact, the corresponding indices S i (L p (J 2 )) are lower than or equal to 10 -5 ). As expected, all the parameters that are relevant in the analysis of the integrated system (i.e., relevant for J 1 and J 2 ), are also relevant in the analysis of the individual disciplines modeled by the relations x = h(p) (2)-( 6). On the contrary, some parameters that are very relevant in the models x = h(p) (2)-( 6) may not be so important in the analysis of the integrated system (see, e.g., p 6 , p 7 , p 10 , p 16 , p 17 and p 18 ).

Given these considerations, in order to identify the set of the four parameters that contribute more to the epistemic uncertainty in both J 1 and J 2 (see subproblem (C.3)), a joint, accumulated ranking is here introduced: in particular, the accumulated ranking R acc,i of parameter p i is obtained as the sum of R i (J 1 ) (i.e., the ranking based on indicator J 1 ) and R i (J 2 ) (i.e., the ranking based on indicator J 2 ); the corresponding values are reported in Table 3. The analysis shows that the most relevant parameters are p 12 , p 5 , p 1 and p 21 that are ranked

R acc,12 = R 12 (J 1 ) + R 12 (J 2 ) = 3+1 = 4, R acc,5 = R 5 (J 1 ) + R 5 (J 2 ) = 3+2 = 5, R acc,1 = R 1 (J 1 ) + R 1 (J 2 ) = 4+2 = 6 and R acc,21 = R 21 (J 1 ) + R 21 (J 2 ) = 1+7 = 8,
respectively (see Table 3). With respect to that, notice that the probability distribution of parameter p 4 (which has a non negligible influence on both J 1 and J 2 , as highlighted above) 'shares' an epistemically-uncertain coefficient (i.e., the Pearson correlation factor ρ) with the uncertainty model of parameter p 5 . Thus, an improvement in the uncertainty model of p 5 (i.e., a reduction in the epistemic uncertainty of ρ) will 'indirectly' lead also to a reduction in the epistemic uncertainty of the uncertainty model of (the relatively important) parameter p 4 (with further beneficial effect on the refinement of the ranges of indicators J 1 and J 2 ).

In conclusion, we expect that a reduction in the epistemic uncertainty of parameters p 1 , p 5 , p 12 and p 21 will lead to a consistent reduction in the uncertainty of both J 1 and J 2 . , bounding the distributional p-box ( )

3

x x PB [START_REF]Risk-Informed Decision Making Handbook[END_REF] of x 3 , obtained by propagating the original uncertainty models of all the corresponding input parameters (solid lines) and those produced by fixing parameter p 12 (rank 1) to p 12 * = 0 (dashed lines), 0.5 (dot-dashed lines) and 1 (dotted lines)

Sensitivity Analysis in a 'factor fixing' setting

In Section III.B.2.1, the general approach adopted to identify those parameter that can be fixed to a constant value without significantly affecting the outputs of interest is illustrated in detail; in Section III.B.2.2, the results of the application of the method to the tasks of Subproblem (B) are reported.

2.1

The Proposed Approach In this case, we aim at finding those parameters that minimally affect the outputs when they are fixed to a given constant value. In particular, the objective is to determine whether the quantities Q of interest analyzed in the previous Section III.B.1, i.e., Q = x j (subproblem (B.1)), J 1 (subproblem (B.2)) and J 2 (subproblem (B.3)), are sufficiently insensitive to the uncertainty in any given parameter such that that parameter can be assumed to take on a fixed constant value without incurring in significant 'error' [START_REF] Crespo | The NASA Langley Multidisciplinary Uncertainty Quantification Challenge[END_REF] . In this context, we define the 'error' as the mismatch between the results obtained using the original uncertainty models and those produced by a configuration where one of the parameters p i , i = 1, 2, …, 21, is fixed to the constant p i *.

In more detail, in subproblem (B.1) we quantify the 'error' as the relative 'lack of overlapping' between the distributional p-box of x j obtained using the original uncertainty models, 

[ ] ( ) [ ] ( ) { } [ ] ( ) [ ] ( ) { } ( ) ∫ - - - - - = 1 0 * 1 1 * 1 1 , , max , min * dr p r F r F p r F r F A i x x i x x over x p j j j j j i p , (18) 
where ( )

j x x F j and
( )

* i j x p x F j (resp., ( ) j x x F j and
( )

* i j x p x F j
) are the extreme bounding upper (resp., lower) CDFs computed as 

( ) { } j j j j j x j x x x x j x x F Ω θ θ Ω θ ∈ ∈ : max and 
( ) { } j j j j j x j x x x i x j x p x F Ω θ θ Ω θ ∈ ∈ : , max * (resp., ( ) { } j j j j j x j x x x x j x x F Ω θ θ Ω θ
where

j x
A p [START_REF] Crespo | The NASA Langley Multidisciplinary Uncertainty Quantification Challenge[END_REF] and } at the denominator of (19), in order to

keep j i x p * ε ≤ 1. Obviously, if j i x p *
ε is close to zero, then parameter p i can be set to the constant value p i * without significantly affecting the shape of the p-box of x j .

Instead, in subproblems (B.2) and (B.3) we quantify the mismatch between the intervals ] , [

1 1 J J , ] , [ 2 2 J J
(obtained by propagating the original uncertainty models)

* 1 i i p J p J , ) and )] ( ), ( [ * 1 
* 2 i i p J p J ] ( ), ( [ * 2 
(obtained by setting p i = p i *) as the maximum between the relative absolute errors produced in the estimation of the corresponding upper and lower bounds. In more detail, the relative absolute errors generated in the estimation of 1 J , 1 J , 2 J and 2 J are computed as

1 * J p i ε = 1 1 * 1 ) ( J J p J i - , 1 * J p i ε = 1 1 * 1 ) ( J J p J i - , 2 * J p i ε = 2 2 * 2 ) ( J J p J i - and 2 * J p i ε = 2 2 * 2 ) ( J J p J i - , (20) 
where 1 J , 1 J , 2 J and 2 J are different from zero. Then, we take the maximal values among { 1

* J p i ε , 1 * J p i ε } and { 2 * J p i ε , 2 * J p i ε } as 'conservative representatives' of the errors 1 * J p i ε and 2 * J p i ε produced in the estimation of indicators J 1 and J 2 , i.e., = 1 * J p i ε max{ 1 * J p i ε , 1 * J p i ε } and = 2 * J p i ε max{ 2 * J p i ε , 2 * J p i ε }, respectively. (21) 
Notice that defining the errors conservatively as in (21) allows treating those cases where the upper and lower bounds of J 1 and J 2 differ by several orders of magnitude (as in the present case study). For example, letting 1

J = 0.01, 1 J = 15, ) ( * 1 i p J = 0.02 and ) ( * 1 i p J = 15.
1, the computation of a 'length of overlap' (similarly to (18) and American Institute of Aeronautics and Astronautics 36 (19) for the p-box) would be meaningless, since this length would be always 'dominated' by the large value of the upper bound 1 J . In fact, the original length of the interval of J 1 is (15 -0.01) = 14.99, whereas the 'length of overlapping' is (15 -0.02) = 14.98: thus, the corresponding relative error (when computed as the fractional 'lack of overlapping') would be 1 -14.98/14.99 = 6.67•10 -4 = 0.67%. However, such a low mismatch is unrealistic: in fact, while the relative error produced in the estimation of 1 J is actually very low, i.e., (15.1 -15)/15 = 6.67•10 -4 = 0.67%, the one generated in the estimation of 1 J is instead very large, i.e., (0.02 -0.01)/0.01 = 1.00 = 100% (notice that this problem is not present in the analysis of the p-boxes, since in the present case the values of the intermediate variables x j are of the same order of magnitude). Again, if ε are close to zero, then parameter p i can be set to the constant value p i * without significantly affecting the intervals of metrics J 1 (13) and J 2 (14).

Finally, in order to identify those parameters that in general minimally affect the output quantity Q = x j , J 1 , J 2 of interest, we exhaustively explore the entire range of variation of all the parameters p i to find the corresponding (constant) values p i * that give rise to the maximal mismatch (i.e., maximal error)

Q p i ε = { } Q p p i i * * max ε between the output quantities Q = x j , J 1 , J 2 , of interest, i.e.: j i x p ε = { } j i i x p p * * max ε , 1 J p i ε = { } 1 * * max J p p i i ε and 2 J p i ε = { } 2 * * max J p p i i ε . (22)
If such maximal error is sufficiently small (e.g., lower than 1% in the present paper), then there exists no realization within the entire domain of parameter p i that affects appreciably the output Q: in other words, the uncertainty of parameter p i can be considered not important in the analysis of Q and p i can thus be fixed to a constant value in the corresponding mathematical model of Q.

Application Results

A greedy search strategy is applied to tackle the problem. For each input parameter {p i : i = 1, 2, …, 21} a series of N p* equally spaced values * ,k i p , k = 1, 2, …, N p* , is selected deterministically within the corresponding ranges of variation and the associated maximal 'errors' are evaluated as

Q p i ε = { } Q p p * k i * k i ε , , max , Q = x j , J 1 , J 2 (notice that N p* = 2000
for p 4 and p 5 , whereas N p* = 100 for all the other parameters ranging within [0, 1]). The values of 

Q p i ε = { } Q p p * k i * k i ε , , max , Q = x j , J 1 , J 2 , i = 1,
Q p i i p ε * = { } Q p p i i ε max arg
) are reported in parentheses only for these non influential parameters.

Sensitivity in a factor fixing setting Maximal errors, ). This outcome is in agreement with the relatively low importance of these parameters in 'building' the epistemic uncertainty of J 1 (see Table 3): in facts, the corresponding sensitivity rankings R i (J 1 ) vary from 9 (for p 6 ) to 17 (for p 13 ). Instead, the other parameters (with particular reference to p 1 , p 2 , p 4 , p 5 , p 11 , p 12 , p 16 and p 21 ) have at least a portion of their domain of variation whose contribution to the uncertainty of J 1 is non negligible: actually, the maximal errors 1 J p i ε produced range from 4.02% (for p 16 ) to 100% (for p 1 ). With respect to that, by way of example Figure 7 right

Q p i ε = { } Q p p * i * i ε max ( ( ) Q p * i i ε p = { } Q p p i i ε max arg ) Param. Cat. Q = x j Q = J 1 Q = J 2 p 1 III
shows the upper and lower bounds of J 1 obtained by propagating the original uncertainty model (solid lines) and those produced by fixing p 4 to different values within its range of variation (circles): it is evident that these bounds tend to overlap only when p 4 ∈ [6.61, 6.63] and p 4 ≈ 8.8, whereas they differ significantly when p 4 lies far from these values (actually, 1 4 J p ε = 9.62%). Again, these outcomes are coherent with the results of the sensitivity analysis of the previous Section that highlighted the importance of such parameters in the determination of the uncertainty of J 1 . Finally, concerning the remaining parameters (i.e., p 7 , p 17 and p 18 ), the following consideration is in order.

Although they are not so relevant in building the epistemic uncertainty of J 1 (actually, their rank R i (J 1 ) is 8, 11 and 10, respectively), according to the present analysis they cannot be completely neglected in the system model: actually, the corresponding maximal errors 1 J p i ε produced are 1.57%, 1.58% and 3.21%, respectively.

Discussions about indicator J 2 are similar and not reported here for brevity (see 

C. Subproblem (C): Uncertainty Propagation

This subproblem aims at finding the range of the metrics J 1 (13) and J 2 ( 14) that result from propagating both the original uncertainty model and an improved one (provided by the challengers). In Section III.C.1, the general approach adopted to propagate the input uncertainties onto the system performance metrics J 1 (13) and J 2 ( 14) is illustrated in detail; in Section III.C.2, the results of the application of the method to the tasks of Subproblem (C) are reported.

The Proposed Approach

The objective is to obtain 

the interval ] , [ Q Q for the metrics of interest Q = J 1 = E p [
{ } ( ) [ ] { } d p p Ω θ Ω θ , min min 1 1 w E J J Q all all all all ∈ ∈ = = = , { } ( ) [ ] { } d p p Ω θ Ω θ , max max 1 1 w E J J Q all all all all ∈ ∈ = = = , ( 23 
) { } ( ) [ ] { } 0 , min min 2 2 > = = = ∈ ∈ d p Ω θ Ω θ w P J J Q all all all all , { } ( ) [ ] { } 0 , max max 2 2 > = = = ∈ ∈ d p Ω θ Ω θ w P J J Q all all all all . ( 24 
)
It is worth remembering that θ all is the vector containing: (i) all the epistemically-uncertain category (II) parameters and (ii) all the epistemically-uncertain internal coefficients of the probability distributions ( ) i i p p q i θ of the inputs p i , i = 1, 2, …, 21; also, Ω all is the corresponding space of variation.

In this paper, problems ( 23) and ( 24) are tackled by embedding the Monte Carlo Simulation (MCS) technique for uncertainty propagation within a Genetic Algorithms (GAs) search for the extreme values Q and Q . In more detail, for obtaining Q (resp., Q ), the following conceptual steps have to be performed:

1) the GA conducts its search using a population of candidate solutions {θ all,c : c = 1, 2, …, N pop } 'sampled' within the corresponding space of variation Ω all ;

2) for each candidate solution θ all,c , the (aleatory) uncertainty in the input parameters p is propagated to the output metric Q of interest by MCS. [START_REF] Kalos | Monte Carlo methods. Volume I: Basics[END_REF][START_REF] Zio | The Monte Carlo Simulation Method for System Reliability and Risk Analysis[END_REF] In more detail: a. N a realizations { 3) on the basis of the estimates of Q(θ all,c ) computed at step (2.b) above, the GA 'intelligently' drives the population of possible solutions {θ all,c : c = 1, 2, …, N pop } towards the (near) optimal region of the search space Ω all ; at the end of the search,

Q (resp., Q ) ≈ ( ) { } c all N c Q pop , ,..., 2 , 1 min θ = (resp., ( ) { } c all N c Q pop , ,..., 2 , 1 max θ = ).
Finally, notice that the sequence of steps (1)-( 3) above have to be done once for each extreme bound of interest 1 J , 1 J , 2 J and 2 J .

Application Results

Two different analyses are performed. In the first (subproblems (C.1) and (C.2)), the space of variation Ω all in (23) and ( 24) is the original one, i.e., that based on Table 1 and on the answer given to subproblem (A. As in Section III.B, the original system model ( )

d p, w = o o g 8 1 max ≤ ≤ = ( ) ( ) d p h x , max 8 1 = ≤ ≤ o o f
(1) is replaced by an ANN regression model to reduce the computational burden associated to the solution of ( 23) and (24). Notice that N a 

Ω and all

red Ω are reported in Table 5; the relative reduction in the length of these intervals due the improvement of the uncertainty models of the selected parameters p 1 , p 5 , p 12 and p 21 is shown in parentheses. It can be seen that the width of the intervals [ 1 J , 1 J ] ANN and [ 2 J , 2 J ] ANN has been reduced by 90.92% and 74.20%, respectively, after the refinement of the uncertainty models of parameters p 1 , p 5 , p 12 and p 21 selected according to our sensitivity analysis (Section III.B.1). In order to validate a posteriori the results obtained using the ANN meta-model, the optimal solutions θ all thereby found are sent in input to the real system model and the corresponding intervals [ 1 J , 1 J ] and [ 2 J , 2 J ] are re-calculated (highlighted in bold in Table 5). It can be seen that the results are in satisfactory agreement, confirming the effectiveness of ANNs in mapping complicated nonlinear and non-monotonic functions.

Also, it can be further verified that the width of the intervals [ 

J ] cons = [ 1 J -2 1 J σ , 1 J + 2 1 J σ ] and [ 2 J , 2 J ] cons = [ 2 J -2 2 J σ , 2 J + 2 2 J σ ],
J ] cons = [ 1 J -2 1 J σ , 1 J + 2 1 J σ ] and [ 2 J , 2 J ] cons = [ 2 J -2 2 J σ , 2 J + 2 2 J σ ] of
Notice that in our approach, solutions to ( 25) and ( 26) are obtained in the same GA optimization searches carried out to identify the extreme bounds of the ranges [ 1 J , 1 J ] and [ 2 J , 2 J ] (see the previous Section III.C. correspond to extreme 'worst-case' scenarios (i.e., to parameters settings that produce higher -i.e., more risky -values of metrics J 1 and J 2 ).

Application Results

As before, the solutions are searched for in two different spaces of variation, i.e., the original one ) is used, then the parameters ranked as 'less relevant' in Table 2 come to play a non negligible role in 'building up' the epistemic uncertainty of J 1 and J 2 . For example, moving from all n d 3 Ω (Figure 9) to all red Ω (Figure 10) one can observe a significant modification in the CDF of x 2 that leads to the maximum value of J 2 (dotted lines in are analyzed with the objective of identifying those realizations of x leading to J 2 > 0; then, among all these failure configurations we identify few representative realizations that typify different possible failure scenarios (in terms of relationship between x and g). In more detail, we proceed as follows:

i. we group those configurations of x that lead to the violation of the same requirements (i.e., that lead to the same failure scenarios): for example, those patterns x t that lead to the violation of requirement g 4 alone are separated from those that cause the violation of requirements g 4 and g 6 together, and so on. By so doing, in the present case we identify NS = 63 different failure scenarios S i , i = 1, 2, …, NS = 63;

ii. for each failure scenario S i , i = 1, 2, …, NS = 63, we characterize the corresponding relations between x and g in order to identify all the combinations of intermediate variable values that lead to a given failure scenario.

In order to do that automatically and to capture the complicated dependences between the variables x j , j = 1, 2, …, 5, we perform k-means clustering on the configurations x t belonging to a given scenario S i . Without going into technical details, k-means clustering is a partitioning method that separates a set of data x t into into k mutually exclusive clusters; the partitions are such that the objects within each cluster are as close to each other as possible, and as far from objects in other clusters as possible (the classical Euclidean distance can be used to measure such distance). Each cluster in the partition is defined by its member objects and by its centroid, or center: the centroid for each cluster is the point to which the sum of distances from all objects in that cluster is minimized. An iterative algorithm is employed that minimizes the sum of distances from each object to its cluster centroid, over all clusters; this algorithm moves objects between clusters until the sum cannot be decreased further. The result is a set of clusters that are as compact and wellseparated as possible [START_REF] Seber | Multivariate Observations[END_REF] . With respect to that, notice that in the present case for each scenario S i many different clusters (and the corresponding centroids) may be identified, each one corresponding to one representative, archetypical combination of x j -values that leads to the failure scenario S i considered.

Table 7 reports a selection of 8 (out of 63) representative failure scenarios: three of them (indices 1-3) lead to the violation of only one requirement (g 4 , g 6 and g 8 ), four of them (indices 4-7) to the violation of two constraints at the same time (g 4 , g 7 ; g 3 , g 4 ; g 5 , g 8 and g 1 , g 4 ) and one (index 8) to the violation of three constraints at the same time (g 2 , g 4 , g 6 ). This set has been selected because it represents a 'minimal' list of scenarios that contains examples of violations of all the requirements of interest (for example, we have not found any scenario where requirements g 1 , g 2 , g 3 or g 7 are violated alone; also, we have not found any scenario where requirement g 2 is violated in a group of less than three requirements): more complex scenarios involving the violation of 4, 5, …, 8 constraints at the same time can be obtained as intersections/unions of those reported in Table 7. The centroids of the corresponding clusters are also reported in the Table . Based on the values of these centroids, qualitative descriptions of the relationships between the intermediate variables x j is given in parentheses: letters 'L', 'H' and 'A' mean that in order to generate the scenario of interest, the variable need to take low, high or any value within its range of variation. Notice that (i) obviously, the fact that a variable may take any value within its range suggests that it is not important in the definition of the scenario of interest; (ii) when a variable is not important, the k-means algorithm locates the corresponding coordinate of the centroid in the middle point of the range of variation of the variable. 

IV. Conclusion

In this work, we have considered the model of a twin-jet aircraft including twenty-one inputs and eight outputs (affected by mixed aleatory and epistemic uncertainties that are represented by probability distributions and intervals, respectively). Within this context, we have addressed and solved the following issues:

A. on the basis of a finite number of empirical realizations of one of the model outputs, the uncertainty models of five input parameters have been improved (i.e., the epistemic uncertainty in the corresponding internal coefficients/parameters has been reduced). In particular, Genetic Algorithms have been efficiently devised to identify some of the possible combinations of the epistemically-uncertain input parameters/coefficients leading to a distributional p-box for the output that is coherent with the available data (i.e., with the corresponding empirical CDF and the related Kolmogorov-Smirnov confidence bounds). A reduction of about 40% in the epistemic uncertainty has been obtained by means of 50 data;

B. sensitivity analysis has been carried out to study systematically how the inputs to the model influence the outputs. In particular, two tasks have been performed. In the first (namely, 'factor prioritization'), we

S 2 = 1 Ω = space of variation of θ all d 1 x = vector of real random realizations of variable x 1

 2111 = mathematical model of the system n inp = number of model input parameters p i = i-th input parameter (i = 1, 2, …, n inp ) p = vector of system model input parameters (p = {p i : i = 1, 2, …, n inp }) d = vector of system design variables n out = number of model output parametersn int = number of model intermediate variables h j (•) = j-th intermediate mathematical model (j = 1, 2, …, n int ) p j = vector of input parameters to the j-th intermediate mathematical model h j (•) (j = 1, 2, …, n int ) x j = h j (p j ) = j-th model intermediate variable (j = 1, 2, …, n int ) x =vector of model intermediate variables g o= o-th model output parameter (o-th system requirement metric), g o = ( ) 1, 2, …, n out = 8) g = f(x, d) = vector of model output parameters (vector of system requirement metrics) θ i = internal coefficients of the probability distribution of the i-th input parameter n p,i = number of internal coefficients of the probability distribution of the i-th input parameter θ i,l = l-th internal coefficient of the probability distribution of the i-th input parameter (l = 1, 2, …, n p,i , i = 1, 2, …, n inp ) Density Function (PDF) of the i-th input parameter Distribution Function (CDF) of the i-th input parameterl θi ∆ , = interval of variation of θ i,l (l = 1, 2, …, n p,i , i = 1, 2, …, n inp ) variation of θ i (l = 1, 2, …, n p,i , i = 1, 2, …, n inp ) variation of θ i (case of epistemic independence) E[•] = expected value V[•] = variance P[•] = probability m = mean of the Beta distribution of p 1 s 2 = variance of the Beta distribution of p 1 N(•,•) = Normal distribution µ i = mean of the i-th Normal distribution σ i variance of the i-th Normal distribution U[0, 1) = uniform distribution on [0, 1) a i =location parameter of the i-th Beta distribution b i = scale parameter of the i-th Beta distribution j x θ = vector of the epistemically-uncertain parameters/coefficients of the inputs to h j (•) all the epistemically-uncertain parameters/coefficients contained in the entire system model S all of x 1 built on n d realizations ( confidence 100(1 -α)% D(α, n d ) = one-sample Kolmogorov-Smirnov critical statistic for intrinsic hypotheses for confidence level 100•(1 -α)% and sample size n d by means of n d empirical data Q = generic output quantity of interest U p (Q) = amount of epistemic uncertainty contained in Q φ i = generic epistemically-uncertain 'factor' in the uncertainty model of p i φ i * = generic constant value to which φ i can be fixed φ i k = k-th value to which φ i can be fixed (during computation of global sensitivity index)(k = 1, 2, …, N e ) U p (Q|φ i = φ i * ) = amount of epistemic uncertainty in Q when φ i = φ i E φi [U p (Q|φ i )]= expected amount of epistemic uncertainty in Q when φ i is fixed to a constant S i (Q) = sensitivity (index) of (the epistemic uncertainty in) Q to (the epistemic uncertainty in) p i A p (x j ) = area contained in the distributional p-box of x j CDF bounding the distributional p-box of x j

1 J

 1 p-box of x j obtained keeping p i = p i * CDF bounding the distributional p-box of x j obtained keeping p i = p i * CDF bounding the distributional p-box of x j obtained keeping p i = p i * overlap between the p-box of x j built using the original uncertainty models of p and the one built keeping p i = p i * ) lack of overlap between the p-box of x j built using the original uncertainty models of p and the one built keeping p i = p i * ] ANN = range of J 1 obtained by replacing the original system model by an ANN model [ 2 J , 2 J ] ANN = range of J 2 obtained by replacing the original system model by an ANN model of J 1 obtained setting p i = p i of J 2 obtained setting p i = p i * = number of constant values p i * selected in the sensitivity analysis * ,k i p = k-th value of p i * (k = 1, 2, …, N p* ) Ω 1,red

  11, which includes twenty-one inputs and eight outputs. The inputs are uncertain and classified into three categories: (I) purely aleatory parameters modeled as random variables with fixed functional forms and known coefficients; (II) purely epistemic parameters modeled as fixed but unknown constants that lie within given intervals (contrary to Bayesianbased approaches such intervals are not probabilistic, i.e., they do not define a uniform probability density function); (III) mixed aleatory and epistemic parameters modeled as distributional probability boxes (p-boxes), i.e., as random variables with fixed functional form but epistemically-uncertain (non probabilistic interval) coefficients. Within this context, we tackle the following issues raised by the NASA Langley Multidisciplinary Uncertainty Quantification Challenge (MUQC) 11 : (A) improvement of the input uncertainty models (i.e., reduction of the corresponding epistemic uncertainties) based on experimental data; (B) sensitivity analysis to rank the importance of the inputs in contributing to output uncertainties; (C) propagation of the input uncertainties to the outputs; (D) extreme case

21 a∆ 21 b∆Table 1 .

 21211 = [0.421, 1.000], b 21 ∈ = [7.772, 29.621] Uncertain input parameters 11 . E[•] = expected value, V[•] = variance, m = mean of the Beta distribution of p 1 , s 2 = variance of the Beta distribution of p 1 , N(•,•) = Normal distribution, µ i = mean of the ith Normal distribution, σ i 2 = variance of the i-th Normal distribution, U[0, 1) = uniform distribution on [0, 1), a i = location parameter of the i-th Beta distribution, b i = scale parameter of the i-th Beta distribution

  and lower bounds, respectively, to the empirical CDF

1 dx

 1 of n d = n d1 = 25 real observations of x 1 (provided by the challengers) and the corresponding KS bounds

(

  

1 dx

 1 of n d = n d2 = 25 real observations of x 1 , extracted from the pool of n d3 = 50 data; then, KS statistical tests are performed between

Ω 1 dx 1 dx

 11 would not be validated. With respect to that, for illustration purposes Figure2bottom shows: (i) the KS bounds ( α = 0.01 (resp., confidence 1 -α = 0.99) and the data 1 employed to improve the uncertainty model (solid lines); (ii) the extreme upper and lower CDFs of the p-box of x 1 after the improvement of the input parameters uncertainty model (dotted lines); (iii) the KS bounds ( using α = 0.01 and the vector 2 of validation data (dashed lines). It can be seen that for x 1 ranging within [0.1, 0.3], a consistent part of the 'improved' p-box of x 1 (dotted lines) 'lies outside' the KS bounds of the validation data set (dashed lines): in other words, some CDFs of x 1 are not bounded everywhere by the (1 -α)•100% = 99% confidence limits associated to the validation dataset 2 1 d

1 dx

 1 to improve the uncertainty model) is mostly concentrated within [0, 0.1] and [0.3, 0.4], whereas a large part of the second dataset 2 (used to validate the model) is located in the range [0.05, 0.2]. Thus, it is not unexpected that a model calibrated by data lying mostly in [0, 0.1] ∪ [0.3, 0.4] fails to "describe the uncertainty" in data mostly concentrated in [0.05, 0.2] (correspondingly, as expected and highlighted above, the maximal discrepancy between the 'improved' p-box of x 1 and the KS bounds of the validation data set 2 1 d x is observed for x 1 ∈ [0.1, 0.3] where the calibration dataset 1 1 d

2 1 dx

 21 : this fraction turns out to be only 7.29%.

  As before, Figure 2 top right shows the CDF α = 0.01 (solid lines) and the extreme upper and lower CDFs,

1 d

 1 depicts two exemplary scatterplots representing the 'empirical maps' of the two-dimensional projections on the plans m-µ 4 (left) and m-µ 5 (right) of the improved (i.e., reduced) joint eight-dimensional space of variation 1 3 x n d Ω of the epistemically-uncertain coefficients/parameters 1 x θ = [θ 1 , p 2 , θ 4 , θ 5 ] = [m, s 2 , p 2 , µ 4 , σ 4 2 , µ 5 , σ 5 2 , ρ], obtained after the update carried out by means of the data set 3 n d3 = 50). It is worth noting the epistemic dependence between the estimates of the epistemically-uncertain coefficients that is generated by the update of the corresponding uncertainty models by means of the same data set: differently from the initial condition where coefficients m and µ 4 were allowed to range within the corresponding intervals m ∆ and 4 µ

  uncertainty model of x 1 and KS confidence bounds of the validation dataset

Figure 2 1 ˆ 1 x of n d real observations of x 1 d

 2111 Figure 2. Empirical CDF

1 x 1 dxFigure 3 . 1 d

 1131 Figure 3. Scatterplots represenenting 'empirical maps' of the two-dimensional projections on the plans mµ 4 (left) and m-µ 5 (right) of the improved (i.e., reduced) joint eight-dimensional space of variation 1 3 x n d Ω of the

  be the resulting amount of epistemic uncertainty in Q, taken over all parameters p and keeping the epistemically-uncertain 'element' φ i fixed at φ i * (instead, all the other epistemically-uncertain coefficients

  above, the computation of U p (Q) depends on the nature of Q. In subproblem (B.1) the task is to identify those input parameters p = {p i : i = 1, 2, …, 21} that lead to the greater refinement in the distributional p-box of the corresponding intermediate (output) variables {x j = h j (p j ): j = 1, 2, …, 5} (2)-(6): thus, in this case the output quantity Q of interest is the intermediate variable x j itself, j = 1, 2, …, 5. We propose to define the amount of epistemic uncertainty U p (Q) = U p (x j ) in x j as the area A p (x j )(11) included between the extreme upper and lower CDFs,

  ) for N a = 10000 values p s , s = 1, 2, …, N a , of the inputs p takes 2125s = 35.4 min.

  1) by a fast-running, surrogate regression model (also called meta-model): since calculations with the surrogate model can be performed quickly (e.g., in fractions of seconds), the problem of long simulation times is circumvented. The regression model is constructed on the basis of a finite (and possibly reduced) set D tr of N tr data representing examples of the input/output nonlinear relationships underlying the original system model. The generation of this data set D tr entails running the original system mathematical model possibly reduced) number of times N tr for specified values {x t : t = 1, 2, …, N tr } of the input variables x = {x j : j = 1, 2, …, n int = 5} and collecting the corresponding values {g t : t = 1, 2, …, N tr } of the outputs g = {g o : o = 1, 2, …, n out = 8} of interest; then, statistical techniques (for example, regression error minimization procedures) are employed for calibrating/adapting the internal parameters/coefficients of the regression model in order to fit the input/output data D tr = {(x t , g t ): t = 1, 2, …, N tr } generated in the previous step and to capture the underlying (possibly nonlinear and non-monotonic) relationship. Once built, the meta-model can be used for performing, in an acceptable computational time, the numerous repeated evaluations of the system worst-case requirement metric ( ) needed for an accurate estimation of the sensitivity indices above. ** In this work, a three-layered feed-forward Artificial Neural Network (ANN) regression model is considered.

as a function of x 1 (with x 2 , x 3 ,

 123 Figure 4. Worst-case requirement metric ( ) ( ) d , p h x w = as a function of x 1 (with x 2 , x 3 , x 4 and x 5 set to 0.6250, 0.4000, 0.7450 and 0.5000, respectively) (left) and of x 3 (with x 1 , x 2 , x 4 and x 5 fixed to 0.4500, 0.6250, 0.7450 and 0.2, respectively) (right) (solid lines), together with the corresponding ANN approximations (dashed lines)

of x 1

 1 obtained by propagating the original uncertainty models of p 1 and p 2 are shown as solid lines, whereas those produced by fixing θ 1 = [m, s 2 ] = [0.63, 0.0207] and p 2 = 1.00 are shown as dashed and dot-dashed lines, respectively. The area A p (x 1 ) contained between

of x 3 ,

 3 right shows the extreme upper and lower CDFs, obtained by propagating the original uncertainty models of all the corresponding input parameters (solid lines) and those produced by fixing parameter p 12 (rank R 12 (x 3 ) = 1)

2 0

 2 of x 1 : sensitivity to epistemic uncertainty of p 1 and p of x 3 : sensitivity to epistemic uncertainty of p 12

Figure 5 .of x 1 obtained by propagating the original uncertainty models of p 1 (rank 1 ) and p 2 (

 5112 Figure 5. Left: extreme upper and lower CDFs,

  produced by setting p i = p i *, p-boxes is calculated as

  , the fractional error (i.e., mismatch or 'lack of overlapping')

  the original uncertainty models and by setting p i = p i *, respectively. Notice that when the parameter p i under consideration (i.e., the one that is fixed to the constant value p i *) is of category (I) or (III), then the term

Figure 7

 7 left shows the upper and lower bounds of J 1 obtained by propagating the original uncertainty model (solid lines) and those produced by fixing p 20 to different values within its range of variation (circles): it is evident that these bounds tend to overlap for all the possible values of p 20 .

Figure 6 .Figure 7 .

 67 Figure 6. Left: upper and lower CDFs of x 3 obtained by propagating the original uncertainty model (solid lines) and by fixing p 13 to 0 (dashed lines) and to 1 (dot-dashed lines); right: upper and lower CDFs of x 2 obtained by propagating the original uncertainty model (solid lines) and by fixing p 8 to 0.5 (dashed lines) and to 1 (dot-dashed lines)

Figure 8 .

 8 Figure 8. Left: upper and lower bounds of J 2 obtained by propagating the original uncertainty model (solid lines) and by fixing p 15 to different values within its range of variation (circles); right: upper and lower bounds of J 1 obtained by propagating the original uncertainty model (solid lines) and by fixing p 21 to different values within its range of variation (circles)

  w(p, d)] (13) and Q = J 2 = P[w(p, d) > 0] (14) that result from propagating the mixed aleatory and epistemic uncertainty affecting the input parameters p. As already mentioned in the previous Section III.B, this amounts in general to solving the following optimization problems:

p

  : i a = 1, 2, …, N a } of the input parameters p are randomly sampled from the corresponding probability distributions ( ) value Q(θ all,c ) of the output metric Q of interest is estimated. In particular, if Q = J 1 , then Q(θ all,c ) ≈ if Q = J 2 , then Q(θ all,c ) ≈

ΩΩ 3 Ω

 3 3): then, all Ω III.A). In the second (subproblems (C.3) and (C.4)), parameters p 1 , p 5 , p 12 and p 21 are selected by the authors on the basis of the sensitivity rankings obtained in subproblems (B.2) and (B.3) (see Section III.B) and improved uncertainty models Ω 1,red , Ω 5,red , Ω 12,red and Ω 21,red , respectively, are provided for them by the challengers: then, in this case all Ω is the new, reduced joint space of variation of the epistemically-uncertain parameters/coefficients of category (II) and (III) inputs p 1 , p 2 , p 4 and p 5 to intermediate variable x 1 : in particular, 1 x red Ω is given by the intersection between space improved in Section III.A by means of n d3 = 50 dataand the further improved ranges Ω 1,red and Ω 5,red of p 1 and p 5 provided by the challengers). As highlighted in Section III.A, the identification of those solutions that belong to set all n d is guaranteed by introducing the property in (8) as a hard constraint in the GA: only those candidates that satisfy such property are retained in the genetic evolution, whereas the others are discarded.

Figure 9 . 5 Figure 10 . 5 3 Ω

 951053 Figure 9. CDFs of x 1 (top left), x 2 (top right), x 3 (middle left), x 4 (middle right) and x 5 (bottom) producing the extreme values 1 J (solid lines), 1 J (dashed lines), 2 J (dot-dashed lines) and 2 J (dotted lines) for J 1 and J 2 for the original ( all n d 3 Ω ) model

Figures 9 and 10 , 2 J and 2 J 3 Ω

 10223 top right). Also, it is worth noting the change in the CDF of x 4 leading to the maximum value of J 1 (dashed lines in Figures 9 and 10, middle right); this is due, e.g., to the significant difference in the (optimal) values that the epistemically-uncertain parameters/coefficients of p 16 , p 18 and p 20 (ranked 7, 11 and 10 in Table3) assume when the improved model ( all red Ω ) is adopted instead of the original one ( alln d 3 Ω ).The different characteristics of the CDFs reported in Figures 9 and 10 allow exploring different parts of the space of variation of the intermediate variables x j , j = 1, 2, …, 5, and consequently allow probing different areas of the system failure domain. To this aim, all the N a = 80000 samples randomly generated in the uncertainty propagation phase of Section 4.C are taken into account (i.e., all the 8•10000 samples produced to estimate 1 J , 1 J , using both the original -all n d -and the reduced -all red Ω -uncertainty model); moreover, additional N = 20000 patterns deterministically selected previously to train and test the ANN (see Section VI.B) are added to provide a better covering of the intermediate variable space. Thus, a total of N tot = N a + N = 100000 points

  , …, N train )

	train D	=	( {	x	t	,	g	t	) ,	t	=	, 1	, 2	...,	N	train	}	= training set of an Artificial Neural Network
	n h										= number of hidden layers in an ANN
	N val val D	=	( {	x	t	= size of the validation set of an ANN ) } val t N t ..., , 2 , 1 , , = g = validation set of an ANN
	N test test D	=	( {	x	t		= size of the test set of an ANN ) } test t N t ..., , 2 , 1 , , = g = test set of an ANN
	R 2										= coefficient of determination
	p i *										= generic constant value to which p i can be fixed

these intervals can be reduced (see parameters p 1 , p 4 , p 5 , p 7 , p 8 , p 10 , p 13 , p 14 , p 15 , p 17 , p 18 , p 20 and p 21 in Table

  

		p p q i	i	i θ (resp., CDF	( ) i i p p F i θ ) but epistemically-uncertain
	coefficients θ i . In this case, coefficients θ i are assumed to lie in bounded intervals	i θ ∆ = { l θi ∆ , : l = 1, 2, …, n p,i , i = 1,
	2, …, 21}, where	l ∆ , is the range of the l-th internal coefficient of the aleatory probability distribution of the i-th θi
	parameter: again,			

i-th parameter and n p,i is the total number of internal coefficients of p i : this probability model is irreducible (see parameters p 3 , p 9 , p 11 and p 19 in Table 1); (II) purely epistemically-uncertain parameters modeled as fixed but unknown constants that lie within given intervals i p ∆ : these intervals are reducible as new information (e.g., data) about the corresponding parameter is gathered (see parameters p 2 , p 6 , p 12 and p 16 in Table 1); (III) mixed aleatory and epistemic parameters modeled as distributional probability boxes (p-boxes), i.e., as random variables with probability distributions of fixed functional form ( )

Figure 1. Four exemplary CDFs (dashed lines) belonging to the distributional p-box PB p1 (p 1 ) of parameter p 1 (see Table 1); the extreme upper and lower CDFs,
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p bounding the corresponding distributional p-box are also shown as solid lines III. Approaches and Solutions to the NASA Langley Multidisciplinary Uncertainty Quantification Challenge (MUQC) Problems

  

	In the following, the approaches used to tackle the NASA Langley Multidisciplinary Uncertainty Quantification
	Challenge (MUQC) Problems are presented together with the corresponding results obtained: in particular, Sections
	III.A, III.B, III.C and III.D deals with Subproblems A (namely, Uncertainty characterization), B (namely, Sensitivity
	Analysis), C (namely, Uncertainty propagation) and D (namely, Extreme case analysis).

  2 , θ 4 , θ 5 ] = [m, s 2 , p 2 , µ 4 , σ 4 2 , µ 5 , σ 5 2 , ρ] ∈ , whereas the remaining sixteen parameters {p i : i = 6, 7, …, 21} are modeled according to Table 1 (Section II.B): the entire space of variation of all the epistemically-uncertain parameters/coefficients θ all is then all

	Ω	1 x n d	3
			3) (Section III.A.2), i.e., 1 x θ = [θ 1 ,

p

  has the advantage of being a global sensitivity index because: (i) the effect of the entire space of variation Ω i of the epistemically-uncertain parameter/coefficient φ i whose epistemic uncertainty importance is evaluated, is considered; (ii) the importance of this input parameter/coefficient is evaluated with all other input parameters varying as well: actually, for each fixed constant value of φ i the computation of U p (Q|φ i ) is carried out by letting all the other epistemically-uncertain parameters/coefficients

  , we train a 8-output ANN regression model using a set

														train D	=	( {	x	t	,	g	t	) ,	t	=	, 1	, 2	...,	N	train	}
																			train D	=	( {	x	t	,	g	t	) ,	t	=	, 1	, 2	...,	N	train	}	of input/output data
	examples of size N train = 30000. A Latin Hypercube Sample (LHS) of the inputs is drawn to give the vectors x t =
	{x 1,t , x 2,t , …, x j,t , …,	t x , = t n int x , 5 }, t = 1, 2, …., N train . 61 Then, the original model (1) is evaluated on the input vectors
	x t , t = 1, 2, …, N train , to obtain the corresponding output vectors g t = f(x t , d) = {g 1,t , g 2,t , ..., g l,t , ...,	t g , = t n out g , 8 }, t = 1,
	w	p,	d	=	o max 8 1 ≤ ≤	g	o	=	max 8 1 ≤ ≤ o	o	(	x	=	( ) p h ,	d	)		

** Notice that on the contrary the computation of sensitivity indices S i (A(x j )) does not require the evaluation of ( )

f

: thus, no regression model-based approximation is employed in this case.

Optimal configuration selected: n int = 5, n h = 27, n out = 8

  For a realistic measure of the ANN model accuracy, the widely adopted coefficient of determination R 2 and the RMSE are computed for each output {g l : l = 1, 2, …, n out = 8} on a new data set = 10000, not used during training[START_REF] Marrel | Calculations of Sobol indices for the Gaussian process metamodel[END_REF] . Table2reports the values of the coefficient of determination R 2 and of the RMSE associated to the final estimates of the worst-case requirement metric ( )

	A validation data set of size N d ( ) { } 10000 ..., , 2 , 1 , , = = = val t t val N t D g x (different from the training set D ( ) { t t test t D , 1 , , = = g x p, w ( ) ( ) d p h x , max 8 1 = ≤ ≤ o o f d p, w N train N val N test R 2 (test) RMSE (test) 30000 10000 10000 0.9944 0.1468 of interest, computed on the test set D Artificial Neural Network (ANN) -( ) Artificial Neural Network (ANN)	..., = , 2	} g max test N o 8 1 ≤ ≤	also o =

p, w (involving a 'max' operator) may be too abrupt for a satisfactory fitting by ANNs. The number of nodes n h in the hidden layer has been set equal to 27 by trial and error. train ) is used to monitor the accuracy of the ANN model during the training procedure: in practice, the Root Mean Squared Error (RMSE) is computed on D val (over all the outputs) at different phases of the training procedure. At the beginning, the RMSE computed on the validation set D val typically decreases together with the RMSE computed on the training set D train ; then, when the ANN regression model starts overfitting the data, the RMSE calculated on the validation set D val starts increasing: this is the time to stop the training algorithm. The time needed to train the ANN is approximately 20s on a Intel(R) Core(TM) i5-3380M CPU@2.90GHz. test test of size N test = 10000 by the ANN model with n h = 27 hidden neurons, built on a data set D train of size N train = 30000. For completeness, the values of R 2 and of the RMSE associated to the estimates of each output {g l : l = 1, 2, …, n out = 8} are also reported.

-g o , o = 1, 2, …, 8 Optimal configuration selected: n int = 5, n h = 27, n out = 8

  

	g o	R 2 (test)	RMSE (test)
	g 1	0.9994	0.1368
	g 2	0.9895	0.1633
	g 3	0.9976	0.1232
	g 4	0.9945	0.1479
	g 5	0.9987	0.1498
	g 6	0.9937	0.1311
	g 7	0.9821	0.1703
	g 8	0.9952	0.1488

Table 2 . Coefficient of determination R 2 and RMSE associated to the ANN (test) estimates of the worst- case requirement metric ( )

 2 

	w	p,	d	=	8 max o 1 ≤ ≤	g	o	=	f max o 8 o 1 ≤ ≤	(	x	=	( ) , p h	d	)	.

The same quantities are reported also for the eight output g o , o = 1, 2, …, 8, separately

  

Table 3 . Values of the sensitivity indices S i (U p (Q)) (

 3 

	Parameter Category	Intermediate variable	N e	S i (A p (x j ))	S i (L p (J 1 ))	S i (L p (J 2 ))	Accumulated ranking, R acc,i
	p 1	III	x 1	16	0.5071 (1)	0.4009 (4)	0.1978 (2)	6
	p 2	II	x 1	10	0.0156 (4)	0.0499 (6)	6.70•10 -3 (9)	15
	p 3	I	x 1	/	/	/	/	/
	p 4	III	x 1	64	0.0706 (3)	0.1775 (5)	0.0421 (4)	9
	p 5	III	x 1	64	0.3085 (2)	0.7727 (2)	0.0436 (3)	5
	p 6	II	x 2	10	0.6108 (1)	3.40•10 -3 (9)	0.0152 (6)	15
	p 7	III	x 2	16	0.4773 (2)	6.30•10 -3 (8)	9.60•10 -3 (8)	16
	p 8	III	x 2	16	0.1677 (4)	1.27•10 -4 (13)	6.94•10 -4 (13)	26
	p 9	I	x 2	/	/	/	/	/
	p 10	III	x 2	16	0.2232 (3)	1.49•10 -5 (14)	1.77•10 -4 (14)	28
	p 11	I	x 3	/	/	/	/	/
	p 12	II	x 3	10	0.9277 (1)	0.4237 (3)	0.6852 (1)	4
	p 13	III	x 3	16 1.20•10 -4 (2-3) 2.06•10 -7 (17)	1.22•10 -15 (17)	34
	p 14	III	x 3	16	0 (4)	5.26•10 -7 (15)	1.29•10 -5 (16)	31
	p 15	III	x 3	16 1.20•10 -4 (2-3) 3.47•10 -7 (16)	2.28•10 -5 (15)	31
	p 16	II	x 4	10	0.7178 (1)	0.0125 (7)	0.0174 (5)	12
	p 17	III	x 4	16	0.1522 (3)	2.20•10 -3 (11)	5.40•10 -3 (10)	21
	p 18	III	x 4	16	0.2425 (2)	2.40•10 -3 (10)	2.80•10 -3 (11)	21
	p 19	I	x 4	/	/	/	/	/
	p 20	III	x 4	16	0.0803 (4)	5.64•10 -4 (12)	1.00•10 -3 (12)	24
	p 21	III	x 5	/	/	0.8566 (1)	9.90•10 -3 (7)	8

index, S i (U p (Q)) (ranking, R i (Q))

  5 (dot-dashed lines) and 1 (dotted lines). It is evident that 'pinching' p 12 to different values within its range of variation produces extremely different results: for example, when p 12 = 0, the p-box of x 3 almost collapses into a single CDF (actually, the area A p (x 3 ) contained is 2.1•10 -7 ); on the contrary, when p 12 = 1, the area A p (x 3 ) contained is around 0.13. This exemplary situation demonstrates that the sensitivity indicator U

p (Q|φ i = φ i * ) (A p (x 3 |p 12 = p 12 *), in this case) is in general strongly dependent on the position of the point φ i * (= p 12 *) and confirms the necessity to calculate the average of the measure U p (Q|φ i = φ i * ) (= A p (x 3 |p 12 = p 12 *)) over many possible points φ i * ∈ i Ω (p 12 * ∈ 12 p

  2, …, 21, are reported in Table 4. For illustration purposes, those maximal errors Q

	corresponding non influential parameters. Also, the fixed constant values	( ) Q p i p ε i *	that produce such maximal errors
	Q p i ε (i.e., ( )		
			p i ε that are lower
	than or equal to the (arbitrarily chosen) threshold of 1% (i.e., Q p i ε < 1%) are indicated in bold to highlight the

Table 4 . Maximal errors Q p i

 4 

			100%		100%	100%
	p 2	II	5.87%		7.95%	3.27%
	p 3	I	5.38%		1.02%	0.31% (0.60)
	p 4	III	24.33%		9.62%	13.65%
	p 5	III	36.29%		97.43%	29.16%
	p 6	II	91.99%	0.79% (0.08 or 0.92)	1.81%
	p 7	III	100%		1.57%	2.03%
	p 8	III	34.08%		8.27•10 -2 % (1.00)	0.63% (1.00)
	p 9	I	8.31%		1.36•10 -2 % (1.00)	0.14% ([0.98, 1.00])
	p 10	III	3.55%		3.58•10 -3 % (0.00)	2.86•10 -2 % ([0.00, 0.45])
	p 11	I	16.45%		8.71%	18.85%
	p 12	II	100%		92.07%	73.21%
	p 13	III	0.53% (0.70)		3.58•10 -3 % (0.00)	1.43•10 -2 % ([0.13, 1.00])
	p 14	III	0.53% (0.30)		1.59•10 -2 % (1.00)	7.14•10 -2 % ([0.29, 0.31])
	p 15	III	0.53% (1.00)		5.53•10 -2 % (0.96)	0.84% ([0.99, 1.00])
	p 16	II	88.93%		4.02%	2.17%
	p 17	III	89.11%		1.58%	2.74%
	p 18	III	100%		3.21%	2.41%
	p 19	I	3.20%		4.85•10 -2 % (1.00)	0.11% ([0.99, 1.00])
	p 20	III	28.16%		0.84% (1.00)	0.80% ([0.99, 1.00])
	p 21	III	Not applicable ε = { } Q p p * i i * ε max	, Q =	96.73%	5.33%

x j , J 1 , J 2 , produced by setting p i to a constant value within its range of variation. Errors Q p i ε < 1% are highlighted in bold to indicate those parameters p i that do not significantly affect the output quantity Q of interest. The fixed constant values ( ) Q p * i i ε p that produce such maximal errors Q p i ε (i.e.,

  

	p	* i	( ) Q p i ε	=	p	Q { } p

i i ε max arg ) are reported in parentheses only for the non influential parameters

  From the analysis of the indicator Q = x j , it can be seen that p 13 , p 14 and p 15 are the only parameters that can be set to any constant within their entire ranges of variation [0, 1] with almost no influence on the p-box of the corresponding intermediate variable x 3 : actually, 3 = 13, 14, 15. These results suggest that the uncertainty of p 13 , p 14 and p 15 is not relevant in determining the characteristics of the p-box of x 3 and could thus be neglected. Also notice that this outcome is in agreement with the (very low) importance of these parameters in 'building' the epistemic uncertainty in the p-box of x 3 (see Table3). With respect to that, only for illustration purposes and by way of example Figure6left depicts the upper and lower CDFs of x 3 obtained by propagating the original uncertainty model (solid lines) and those produced by fixing p 13 to 0 (dashed lines) and to 1 (dot-dashed lines): in all cases the CDFs completely overlap. All the other parameters are found to have a non negligible effect on the p-boxes of the corresponding intermediate variables: actually, the maximal errors j This means that there are at least some parts of the domain of variation of such parameters whose contribution to the uncertainty of the corresponding intermediate variables x j is significant. In this respect, for the sake of illustration Figure6right reports the upper and lower CDFs of x 2 obtained by propagating the original uncertainty model (solid lines) and by fixing p 8 to 0.5 (dashed lines) and to 1 (dot-dashed lines): when p 8 = 0.5, the two p-boxes completely overlap, whereas when p 8 = 1 the mismatch between the bounding CDFs is significant.Similar analyses can be carried out with respect to indicators Q = J 1 and J 2 . The parameters that can be set to any constant within their entire ranges of variation [0, 1] with almost no influence on the bounds of J 1 are p 6 , p 8 , p 9 , p 10 , p 13 , p 14 , p 15 , p 19 and p 20 : actually, the corresponding maximal errors[START_REF] Epa | Guidance on the Development, Evaluation, and Application of Environmental Models, Council for Regulatory Environmental Modeling[END_REF] 

	x p i 3.20% (p 19 ) to 100% (p 1 ). J p i ε produced range from 3.58•10 -5 % (for p 13 ) to x p ε produced range from ε = 0.53% << 1%, i i 0.84% (for p 20 ) (i.e., they are far below 1%

  Table 4 for details): notice that the uncertainty of parameters p 3 , p 8 , p 9 , p 10 , p 13 , p 14 , p 15 , p 19 and p 20 seems to have very little or no effect on J 2 (actually, they can be set to any constant within their entire ranges of variation [0, 1] producing errors that do not exceed 0.84%). Figure8depicts only two exemplary (and different) situations with reference to parameters p 15 (left) and p 21 (right). Fixing p 15 within its entire range [0, 1] does not lead to significant variations in the bounds of J 2 (2

	ε	15 J p
	= 0.84%). Instead, p 21 seems to have insignificant effect on J 2 only within [0.00, 0.35], whereas its contribution
	becomes quite relevant, e.g., in [0.40, 0.90] ( 2 21 J p ε = 5.33%).	

Table 5 . Intervals [ 1 J , 1 J ] ANN (23) and [ 2 J , 2 J ] ANN (24) of performance metrics J 1 (13) and J 2 (14) obtained by embedding ANNs regression models and MCS (with N a = 10000 samples) within a GA optimization search; the relative reduction in the length of these intervals due the improvement of the uncertainty models of the selected parameters p 1 , p 5 , p 12 and p 21 is shown in parentheses. The intervals [ 1 J , 1 J ] (23) and [ 2 J , 2 J ] (24) resulting from the a posteriori validation of the optima found on the real system model are also reported

 5 ., by 99.01% and 72.26%, respectively) after the refinement of the uncertainty models of parameters p 1 , p 5 , p 12 and p 21 selected by our sensitivity analysis (Section III.B.1).

	1 J , 1 J ] and [ 2 J , 2 J ] have been significantly reduced

Finally, in order to take into account the statistical variability in the estimates of J 1 and J 2 (obtained by plain random sampling), the upper and lower bounds of the corresponding intervals (see Table

5

) are 'extended' above and below, respectively, of an amount equal to two standard deviations: the 'conservative' estimates thereby obtained (i.e., [ 1 J , 1

Table 6 . Uncertainty Propagation, N a = 10000: 'conservative' estimates Original uncertainty model, all n d 3 Ω (after Section III.A) Improved uncertainty model, all red Ω (after Section III.B) J 1 [ 1 J , 1 J ] cons

 6 

		[0.0108, 15.4437]	[0.0278, 0.1693]
	J 2 [ 2 J , 2 J ] cons	[0.0843, 0.8220]	[0.2304, 0.4497]

respectively) are reported in

Table 6 . Intervals [ 1 J , 1

 6 

performance metrics J 1 (13) and J 2 (14) obtained by 'extending' the upper and lower bounds [ 1 J , 1 J ] and [ 2 J , 2 J ] of J 1 and J 2 (see Table 5) above and below of two standard deviations, respectively A

  consideration is in order with respect to the use of GA for the identification of the extreme values Q and Q of a safety variable Q of interest (i.e., J 1 or J 2 in this case). Although GA is a global optimizer, in some problems (characterized by massive multimodality of the objective function to be optimized), it may converge to local optima.

		θ 1 , all low	=	arg	Ω min θ all all ∈	{ } 1 J	=	arg	Ω min θ all all ∈	{ E	p	( ) ] } d p , w [	,	θ 1 , all up	=	arg	Ω max θ all all ∈	{ } 1 J	=	arg	Ω max θ all all ∈	{ E	p	( ) ] } d p , w [	(25)
	θ	, all 2 low	=	arg	min ∈ Ω θ all all	{ } 2 J	=	arg	min ∈ Ω θ all all	{ P	( ) , d p w [	>	0	] }	,	θ	, all 2 up	=	arg	max ∈ Ω θ all all	{ } 2 J	=	arg	max ∈ Ω θ all all	{ P	( ) , d p w [	>	0	] }	.

In such a case, the lower bound Q would be overestimated, whereas the upper bound Q would be underestimated:

Table 6 . Realizations all

 6 .7720 22.9982 22.9990 12.4134 7.8048 19.0219 19.8172

	all n d 3 Ω and the

Table 7 . Representative failure scenarios obtained by k-means clustering of system failure configurations
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	N. of violated constraints	Scenario Index	Violated constraints	Cluster number	x 1	Intermediate variable values (centroids, representative realizations) x 2 x 3 x 4	x 5
				1	0.2466 (0.05<x 1 <0.34)	0.6310 (A)	0.2904 (L)	0.7422 (A)	0.4072 (A)
		1	g 4	2	0.4300 (0.425<x 1 <0.53)	0.6148 (A)	0.8517 (H)	0.7733 (A)	0.2453 (L)
				3	0.3750 (0.34<x 1 <0.4)	0.6148 (A)	0.8517 (H)	0.7422 (A)	0.4072 (A)
		2	g 6	1	0.0288 (L)	0.6191 (A)	0.8832 (H)	0.7124 (A)	0.5609 (H)
		3	g 8	1	0.0245 (L)	0.6200 (A)	0.4566 (A)	0.8468 (H)	0.5640 (H)
		4	g 4 , g 7	1 2	0.7277 (0.68<x 1 <0.76) 0.7282 (0.68<x 1 <0.76)	0.6191 (A) 0.6185 (A)	0.1203 (L) 0.8114 (A-H) 0.3452 (A) 0.2952 (L) 0.8144 (A-H) 0.3252 (A)
		5	g 1 , g 4	1	0.4157 (0.3985<x 1 <0.42)	0.8281 (H)	1.0166 (H) 0.8183 (A-H)	0.2106 (L)
		6	g 3 , g 4	1	1.0546 (H)	0.5578 (L-A) 0.1503 (L)	0.8975 (H)	0.3499 (A)
		7	g 5 , g 8	1	0.0107 (L)	1.0339 (H)	0.2593 (L)	0.4822 (L)	0.7179 (H)
				1	0.3850 (0.34<x 1 <0.4)	0.6148 (A)	0.2500 (L)	0.5500 (L-A)	0.2987 (A)
		8	g 2 , g 4 , g 6	2	0.4400 (0.425<x 1 <0.53)	0.6431 (A)	0.1911 (L)	0.6112 (L-A)	0.3251 (A)
				3	0.6849 (0.68<x 1 <0.76)	0.6344 (A)	0.9559 (H)	0.7322 (A)	0.3331 (A)
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‡ It is worth mentioning that similar confidence bounds on x 1 could be obtained also by well-known resampling techniques (such as bootstrap) that are commonly used to "build confidence" in statistical estimates and to quantify the effect of sampling uncertainty (in particular, in presence of small-sized datasets). This has been verified by the authors also in the present case, but not shown here for brevity sake.

2, …, N train , and build the data set

in other words, the analyst would underestimate the range of epistemic uncertainty in Q. Such a situation can lead the decision maker to the wrong decision (e.g., to an estimate of the largest failure probability that is much lower than the actual value): this is particularly dangerous in the risk assessments of safety-critical systems, such as the aerospace, nuclear and chemical ones. In this view, the performance of the GA is a key issue to avoid such underestimations. The performance of GA depends largely on its ability to thoroughly explore the search space (i.e., to maintain a sufficient "genetic diversity" in the population of candidate solutions), while attempting to efficiently and intelligently drive the search towards the "interesting region" of the search space, i.e., towards the global optimum. On one hand, a thorough exploration of the search space (i.e., a sufficient "genetic diversity") is guaranteed by the following strategies [START_REF] Zio | Selecting features for nuclear transients classification by means of genetic algorithms[END_REF][START_REF] Zio | Optimal power system generation scheduling by multi-objective genetic algorithms with preferences[END_REF] : (i) GA is repeated several times (say, ten times) with different random seeds (i.e., different random initial populations) and only the best result over all the simulation is retained; (ii) some of the GA parameters are properly set: for example, a relatively high population size (i.e., N pop = 100) is employed.

On the other hand, an efficient identification of the global optimum is favoured (but not guaranteed) by the following techniques [START_REF] Zio | Selecting features for nuclear transients classification by means of genetic algorithms[END_REF][START_REF] Zio | Optimal power system generation scheduling by multi-objective genetic algorithms with preferences[END_REF] : (i) fitness-guided candidate selection procedures are adopted: in other words, the probability that a candidate solution survives during the GA evolution is proportional to its objective function (i.e., to its 'quality' or 'fitness'); (ii) elitism is implemented: at each generation some of the individuals of the current population (e.g., the best 0.1•N pop ) are deterministically selected to be part of the next population, so that the best genetic code is guaranteed to be propagated; (iii) differently from subproblem A, the algorithm stops only if the average relative change in the best fitness function value over a given number of generations (e.g., 50) is less than or equal to a given tolerance (e.g., 10 -6 ).

D. Subproblem (D): Extreme Case Analysis

In Section III.D.1, the general approach adopted to identify the realizations of the epistemically-uncertain parameters/coefficients θ all leading to the extreme bounds of the ranges [ 1 J , 1 J ] and [ 2 J , 2 J ] of J 1 and J 2 is described; in Section IV.D.2, the results of the application of the method to the tasks of Subproblem (D) are reported.

The Proposed Approach

The realizations of the epistemically-uncertain parameters/coeffieints leading to the extreme bounds of the ranges [ 1 have ranked the input parameters according to degree of reduction in the output epistemic uncertainty which one could hope to obtain by refining their uncertainty models. To this aim, a novel global sensitivity index has been introduced, which has led to the identification of four (out of twenty-one) relevant parameters (p 1 , p 5 , p 12 and p 21 ). This information is of paramount importance since it allows the analyst to focus his/her future empirical studies mainly on the refinement of these parameters. In the second analysis (namely, 'factor fixing'), on the contrary we have identified those parameters that minimally affect the outputs, i.e., those that can be assumed to take on a fixed constant value without producing significant errors. The analysis has led to find out at least four (out of twenty-one) parameters (p 13 , p 14 , p 15 and p 19 ) that have practically no influence on the uncertainty of the system failure probability and of the mean of the worst case requirement metric (other four parameters, p 8 , p 9 , p 10 and p 20 could be also considered negligible in the analysis of the integrated system). This information suggests assigning constant values to these inputs from the mathematical system model, which produces a consistent simplification of the analysis.

In all the tasks related to sensitivity analysis, the original mathematical model of the system has been replaced by a fast-running, surrogate regression model based on Artificial Neural Networks (ANNs):

this has allowed to reduce the associated computational time by about three orders of magnitude.

C. uncertainty has been propagated from the inputs to the outputs of the system model in order to identify the extreme bounds (i.e., the range) of two performance metrics of interest (i.e., the expected value of the worst-case requirement metric and the system failure probability). We have employed (i) standard MCS to propagate the aleatory uncertainty described by probability distributions and (ii) GAs to solve the numerous optimization problems related to the propagation of epistemic uncertainty by interval analysis.

The uncertainty propagation phase has been carried out in two different 'system configurations': in the first, the original input uncertainty models were used; in the second, improved (i.e., less uncertain) models were adopted for the four input parameters identified in task (B). The use of the improved models has led to a reduction of 99% and 72% in the length of the intervals of the two metrics, confirming the relevance of the four parameters selected by sensitivity analysis; D. within the uncertainty propagation phase (C), we have also identified the realizations of the epistemically-uncertain coefficients/parameters that yield the extreme bounding values of the two American Institute of Aeronautics and Astronautics 53 performance metrics defined above. This information can be used to typify best-and worst-case scenarios, i.e., to identify which combinations of values of the epistemically-uncertain coefficients/parameters lead to the smallest and largest values, respectively, of the system performance indicators of interest.