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PRIMES BETWEEN », +1 AND .}, -1

By
A VENUGOPALAN

§ 1. Introduction

We prove the following four theorems. We begin with
some notation. Let P, = 2, Py = 3,93 = 5, ... be the

sequence of all prime numbers. Let Q dbe the product of the

fizst o prime pumbers. Let Q, = Qpi“l fori=1,2,3,..,0.

n
LetK = n. Let J stand for 3 8 Qi -bQ

i=1
Theorem 1
We have,
p,—1 p,—1 g . |
3 .. 3 T x =x+ - +f(x)+f(«)
a =1 8 =1 0<bgKK X X
i ]
o m
where f (x) = 3 X
| +1<m<KQ (mQ =1
+ > TS B

2
p,rlsm<p, | ~1,(mQ =1

and ¢ denotes the omission of some in‘egers m.,

Theorem 2
p1 -1 pn —1 J2

3 R p 8 =2x +2¢(x)
'i ok an =4 0gbgkK

®* The Author is currently a Visiting Member at the Tata
Institute of Fundamental Research, Bombay.
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where ¢ (x) = Z' ﬂcm2

n+l\lj\<m<KQ (w,Q) =1
+ > ‘{“"
o _ 2 _
p.tl<m<p, -1,(mQ) =1
and ¢ denotes the omission of some integers m.
Theorem 3

Let (a' v s @ ) be the unique solutlon of _

—-2= 2& Q wod Q, with
i=1!

0<a|<pi“l!(l=112’“'.n)-
Then
p, -1 pgo—1 -1
i 2 pn ]
b b 3 3 b
51=l azal an--l 0<bgK

31#a1 a’;éaz_an#an

m
= 2 X
(m(m+2),Q) =1
wlere the sum on the rig ht sums over the relevant range for m,

Theorem 4
We haye,
J2 2
3 .. 3§ I K 3 x"
B, a b (m (m+2), Q) =

The sum over ni on the right bring over the same tet of integers
as in Theorem 3.

Remark 1
Note that 1'1 = 0and that L a.‘].l < P, - 1
(1=2,3,..,0)
Remark 2

In the firsi two theorems ¢the m’sthat satisfy
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n n+l

p,tl<m< p‘2 —1 are precisely all the primes in this

n+1
_interval, In the next two theorems they are all the twin primes
ia this interval.

§ 2 Proof

The proofs of theorems 1 and 2 follow from the following
two remarks.
First given any Integer c there is a unique solution of

3 a, Qi = ¢ (mod Q) subject to 0 < 8, <P -1

(i=1, 2, ..., n). Out of these solutions (¢, Q) = 1 is
satisfied if and only 1f 1 < 8, < pi —1 (=123, ..,1).

The proof of theorems 3 and 4 follow from the following

remark.
Subject to 1< 8, <p - 1 for all i we have already secured

(m, Q) = 1. Ifinadditlon m + 2 is to be coprime 0 Q we
should have _
(= alQ‘— Za’iQi.Q) = 1, {. e a, - a’i # 0 for each i.

§ 3. Further Remarks

We can fiod by the method above conditlons to ensure
(m (m+2) (m+6), Q) = 1and so on. Next one can easily get

a formula for the n';h prime from Theorem 2. It s :
0= 2

Py=1 Py
: 1o 2
Py =% = "log( 2
a1=1 a2=1
n
2 /
~(za. Q. - bQ)? - i)
2 e 1 1 e

1 b=1

%Mj



What we have done ¢orresponds nearlv to the Ecates hanesé
sieve. It will be interesting to modify our investigations in
a way which correspoad to Brun’s sieve.

Ackunowledgement

Iam thaokful to Professor K Ramachasdra for
encouragement.

Reference

1) K. Ramachaodra, Viggo Brun (13——10—1885~ to
15—8—1978), The Mathematics Student, Vol. 49,
No. 1 (1981) p 87—95

Manuscript completed on 22 September 1981.

School of Mathematics

Fata Institute of Fundamental Research
Homi Bhabha Road,

Bombay 400 005, INDIA.



