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Abstract. The stochastic watershed is a probabilistic segmentation ap-
proach which estimates the probability density of contours of the image
from a given gradient. In complex images, the stochastic watershed can
enhance insignificant contours. To partially address this drawback, we
introduce here a fully unsupervised multi-scale approach including bag-
ging. Re-sampling and bagging is a classical stochastic approach to im-
prove the estimation. We have assessed the performance, and compared
to other version of stochastic watershed, using the Berkeley segmentation
database.

Keywords: unsupervised image segmentation ; stochastic watershed;
Berkeley segmentation database

1 Introduction

The goal of image segmentation is to find a simplified representation such that
each pixel of the image belongs to a connected class, thus a partition of the
image into disjoint classes is obtained. One can also talk of region detection. We
would like to emphasize from the beginning the difference between this type of
technique and edge detection. Indeed the contours obtained by edge detection
are often disconnected and may not necessarily correspond to closed areas.

In this paper, we introduce a new variant of the stochastic watershed [2] to
detect regions and also to calculate the probability of contours of the edges of
a given image. Inspired by the milestone segmentation paradigm of Arbelaez et
al. [4] and in order to improve the results, we will combine some of their tools,
like the probability boundary gradient or the spectral probability gradient, with
the morphological segmentation obtained by the stochastic watershed. The work
that we present can be applied to both gray-scale and color images. Our main
assumption here is that the approach should be fully unsupervised. In order to
quantitatively evaluate the performance of our contributions, we have used the
benchmark available in the Berkeley Segmentation Database (BSD) [11].

Besides the classical contour detection techniques, such as the Sobel filter,
the Canny edge detector or the use of a morphological gradient, based exclu-
sively on local information, an innovative and powerful solution is the globalized
probability of boundary detector (gPb) [4]. In this case, global information is
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added to the local one thanks to a multi-scale filter and also by means of a no-
tion of texture gradient. However, supervised learning has been used to optimize
gPb which could limit its interest for other type of images than the natural color
images. We note also that in [4] the gPb can be the input for a ultrametric con-
tour map computation, which leads to a hierarchical representation of the image
into closed regions. This approach is somehow equivalent to the use of watershed
transform on a gradient since a hierarchy of segmentation is obtained [13,14].

The interest of the stochastic watershed is to be able to estimate the proba-
bility density of contours of the image from a given gradient [2, 14, 15]. However,
in complex images as the ones of the BSD, the stochastic watershed enhances
insignificant contours. Dealing with this problem has been the object of recent
work, see [5] or [9]. We propose here a multi-scale solution including bagging.
The interest of a pyramidal representation is widely considered in image pro-
cessing, including for instance state-of-the-art techniques such as convolutional
networks [8]. Re-sampling and bagging [7] is a classical stochastic approach to
improve the estimation.

2 Background

2.1 Basics on watershed transform for image segmentation

Mathematical morphology operators are non-linear transforms based on the spa-
tial structure of the image that need a complete lattice structure, i.e. an order-
ing relation between the different values of the image. This is the case of ero-
sion/dilation, opening/closing, etc. but also for the watershed transform (WT)
[6,12,16,13], which is a a well known segmentation technique. Consider that we
are working in a gray scale image, and that all image values are partially or-
dered, so it is possible to represent the image as a topographic relief. WT starts
by flooding from the local minima until each catchment basin is totally flooded.
At this point, a natural barrier between two catchment basins is detected, this
ridge represents the contour between two regions. To segment an image, the WT
is often applied to the gradient of the image, since the barrier between regions will
correspond to local maxima of the gradient. Hence, in watershed segmentation
the choice of the gradient is of great importance: it should represent significant
edges of the image, and minimizes the presence of secondary edges. In the case
of a color image, there are many alternatives to define the topographic relief
function (i.e., the gradient) used for the WT.

Our practical motivation involves to identify a relevant gradient that maxi-
mizes the F-measure on the Berkeley database, being also compatible with wa-
tershed transforms (involving mainly local information). Hence, we have tested
different gradients on the BSD, in particular some morphological color gradients
[1], as well as the probability boundary and the globally probability boundary
[4]. Following our different tests, we favor the probability boundary gradient,
because it produces excellent results, being also unsupervised.



Bagging Stochastic Watershed 3

2.2 Probability boundary gradient (Pb)

Let us recall how the Pb gradient is computed [4]. First, the color image, which
can be seen as a third order tensor, is converted in a fourth order tensor, where
the first three channels correspond to the CIE Lab color space, and a fourth
channel based on texture information is added. Then, on each of the first three
channels, an oriented gradient of histogram G(z,0) is calculated. To calculate
the oriented gradient at angle 6 for each pixel x of the image, a circular disk
is centred at this pixel and split by a diameter at angle 0, see Fig. 1. The his-
tograms of each half-disk are computed, and their difference according to the x?
distance represents the magnitude of the gradient at 6. In the case of the texture
channel, first, a texton is assigned to each pixel, which is a 17 dimensional vector
containing texture descriptor information. The set of vectors in then clustered
using K-means, the result is a gray-scale image of integer value in [1, K]. Second,
an oriented gradient of histogram is computed from this image. The four ori-
ented gradients are linearly combined, i.e., Pb(x,§) = iZf G;(z,0), with i the
number of channels, where G;(z,6) measures the oriented gradient in position
x of channel 7. Finally, the Pb gradient at x is obtained as the maximum for all
orientations: Pb(z) = maxg{Pb(z,0)}.

In [4], it was also considered the so-called globalized probability of boundary
(gPb), which consists in computing the Pb at different scales, then added to-
gether, and finally, an enhancement by combining this gradient with the so-called
spectral gradient.

Fig. 1. Computing oriented gradient of histograms for a given orientation. Figure bor-
rowed from [4].

2.3 From marked watershed to stochastic watershed using graph
model

Stochastic watershed (SW) was pioneered as a MonteCarlo approach based on
simulations [2]. This is also the paradigm used for computing the examples given
in this paper. However, in order to describe the SW, we follow the formulation
introduced in [14], which considers a graph image representation of the WT and
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leads to an explicit computation of the probabilities. A similar paradigm has
been also used in [10] for efficient implementations.

First let us consider the partitions formed by the catchment basins resulting
from the WT. It is possible to work with the graph resulting from this segmenta-
tion called the Region Adjacency Graph (RAG) where each node is a catchment
basin of the image, and where edges are weighted by a dissimilarity between
regions. In particular, the weight of the edge between two nodes is the minimum
level of water A needed so that the two catchment basins are fused. Another
way to see it is to say that the weight between two nodes is the lowest pass
point on the gradient image between adjacent regions. Let us now explain how
to compute a marked watershed from this graph [12,13]. First, thanks to some
prior knowledge, markers are selected and play the role of sources from which
the topographic surface will be flooded. Their flow is such that they create lakes.
Another important point is that these markers represent the only local minimum
of the gradient. Then on this new image we proceed at a WT. As previously, a
region is associated to each local minimum. Another view of this problem is the
RAG point of view. First, the Minimum Spanning Tree (MST) of the RAG is
calculated, then between any two nodes, there exists a unique path on the MST
and the weight of the largest edge along this path is equal to the flooding ultra-
metric distance between these nodes. For example, if one puts three markers on
the RAG then, to have the final partition, we just have to cut the two highest
edges of the MST. This operation will produce a forest where each subtree spans
a region of the domain. We can easily see that if one uses n > 1 markers, we
would cut n — 1 edges in order to produce n trees. However markers must be
chosen accurately, since the final partition depend on it. Since one may not have
a priori information about the marker positions, the rationale behind the SW
is to use randomly placed markers on the MST of the RAG. By using random
markers, it is possible to build a density function of the contours. Let us consider
an example of image with 20 catchment basins whose MST is represented in Fig
2(a). Then if one wants to calculate the probability of the boundary between
the catchment basins corresponding to the nodes e and f, we will write this
probability P(e, f). One has first to cut all the edges above the value of the edge
e— f, so that we get a Minimum Spanning Forest represented on Fig 2(b). Then
let us consider the tree containing node e and the one containing node f that
are respectively represented in purple and blue on Fig 2(b), and denoted by T
and T’ respectively. The edge e — f is cut if and only if during the process where
the markers are placed randomly, there is at least one marker on T, and at least
one marker on 7.

Let us consider the node f, and let us write P(f) the probability that one
marker is placed on f such that )7 .,,P(v) = 1 where V is the set of all the
nodes of the image, and v is a node. Then the probability that one marker is
placed on a tree T is:

P(T)=P(Jv) =D Pw) (1)

veT veT
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(b)

Fig. 2. (a) the Minimum Spanning Tree of on image, (b) the Minimum Spanning Forest
of the same image.

One can express P(e, f) as the probability that there is at least one marker
out of N markers on 7, and one on T, but one can also reformulate it by taking
the opposite event. Then we have P(e, f) is equal to the opposite that there is
no markers on T or on Ty. The probability that out of N markers there is no
markers on a tree T is P(T) = (1 — P(T))". Thus, we have:

Ple,f)=1-(1=PT)" - 1 =PT)" + 1 =P 1)V (2

There are different ways to express the probability that one marker is placed
on a node, a classical one developed in [2] is to consider that the seed are chosen
uniformly, in this case we consider the surfacic stochastic watershed. Since the
probability of the tree will depend mainly on it surface. One can also consider
other criteria, it is proposed for instance in [14] a volumic stochastic watershed,
where the probability of the tree will depend on the surfacex\, where A is the
minimum altitude to flood the nodes of this tree. For other variants, see [15].

We use here a variant of the stochastic watershed, where the probability of
each pixel depends on value of the function to be flood, typically the gradient.
First the gradient is rescaled, such that the sum of all the pixels of the gradient
is equal to one, then the probability of a node is equal to the sum of all the
pixel of the node. This kind of probability map improves the result with respect
to the classical (surface) SW. However this may not be sufficient, that is the
motivation to improve our result thanks to bagging.

3 Bagging Stochastic Watershed

3.1 Bootstrap and Bagging

In digital images, one has to deal with a discrete sampling of an observation
of the real word. Thus image processing techniques are dependent on this sam-
pling. A solution to improve the evaluation of image estimators consists in using
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bootstrap [7]. Bootstrap techniques involves building a new world, the so-called
“Bootstrap world” which is supposed to be an equivalent of the real world. Then,
by generating multiple sampling of this ” Bootstrap world”, one speaks of resam-
pling, a new estimator is obtained by aggregating the results of the estimator on
each of these samples. That is the reason to call the approach bootstrap aggre-
gating or bagging. In our case, the "Bootstrap image” is the original one, and
we have to produce different samples from this image, and the estimator is the
probability density of contours obtained from the SW.

3.2 Bagging Stochastic Watershed (BSW)

We can immediately note that bagging has a cost: a loss of image resolution.
However this is not necessary a drawback in natural images. Indeed, most of
digital cameras produces nowadays color images which are clearly over-resolved
in terms of number of pixels with respect to the optical resolution. For instance,
the typical image size of for a smartphone is 960 x 1280 pixels.

SW combined at different scales has been already the object of previous
research. In [3], it was proposed to improve the result of SW working with seeds
that are not just points, but dilated points, i.e., disk of random diameter, see
also [14] for the corresponding computation. By doing that, we change the scale
of the study.

Moreover if one has a look at Fig. 3(b), it is possible to see that the hu-
man ground truth only focuses on most significant and salient boundaries. This
ground truth represents the average of the boundaries drawn by about 5 sub-
jects. Typically, texture information is ignored. In addition, the selected contours
are not always based on local contrast. Human visual system (HVS) integrates
also some high level semantic information in the selection of boundaries. It is
well known that multi-scale image representation is part of the HVS pipeline and
consequently algorithms based on it are justified. This is the case for instance of
convolutional neural networks.

In the present approach, the multiresolution framework for SW includes also
the notion of bagging, which is also potentially useful in case of “noisy data”. Let
us denote by g the “Bootstrap image gradient” and by Psw (g) the probability
density function (pdf) of contours obtained from a gradient g. The bagging
stochastic watershed (BSW) is computed as follows.

— Multi-scale representation by resampling: Given g, at each iteration
i, the image g is resampled in a squared grid of size fixed : n; x n;. This
resampling is done by selecting 50% of pixels in a n; x n; neighbourhood,
which are used to estimate the mean value. The corresponding downsampled
by averaging gradient is denoted gi“ . The step is applied for S = 4 scales,
such that ny =2 x 2,1y =4 x4, n3 =6 x 6 and ngy = 8 x 8. An example is
illustrated in Fig. 3(d). We denote giw =g.

— Multi-scale SW: For each realization ¢ of resampled gradient, compute the
SW at each scale j: Psw (gi“), see example in Fig. 4.
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Fig. 3. (a) Example of image from the BSD [11], (b) corresponding ground truth [11],
(c) the original Pb gradient, (d) a multi-scale representation based on sampling by
mean value computation.

— Multiple realizations and bagging: Resampling procedure is iterated N
times for each of the S scales. Bagging involves to combine all the pdf of
contours. Note that an upsampling step, here we chose the bilinear interpo-
lation, is required to combine at the original resolution. Thus, the bagging
stochastic watershed is computed as

N 5 1
Pesw(9) ZZ {PSW )} ' (3)

We have empirically fixed the following scale weights: w; = 0.6, wy = 0.2,
ws = 0.1, wy = 0.1. The weights can be chosen according to the pattern
spectrum of the image.

3.3 Improved accuracy of BSW

Before discussing the results, let us prove that by aggregating the different multi-
scale replicates of SW the accuracy of this estimator is theoretically improved.

Let us write B = {b} the set of boundaries b of an image, and P(b) the true
probability boundary of b € B. Let us consider Pgyw (b € B, g) the estimation of
the probability boundary by means of the SW from gradient g, and Pgsw (b €
B, g) the estimation using the BSW. We note by £ = {g*} the set of resampled
gradients where the SW is applied. Then, we have:

Ppsw (b € B,g) =E.[Psw(b € B, g")]. (4)

We define the quadratic error of estimation of the probability boundary on gt
as:

Ep.. = Es[P(b) — Psw(b € B,g")]>. (5)
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Fig. 4. In (a) multiscale stochastic watershed for a given realization i of bagging, in
(b) the result of the bagging stochastic watershed

The expectation of this error on L is given by E Eg[P(b) — Psw (b € B, g")]?,
which can be rewritten as

Ep(P(b)*) — 2E5[P(b)Ec[Psw (b € B, g")]] + Es[Ec[Psw (b € B, g")]°].
Now, by using the fact that E(2?) > (E(z))?, we obtain:
EcEs[P(b) — Psw(b € B, g")|* > Es[P(b) — Prsw (b € B,g)]* = Epgyy - (6)

Therefore, we note that the average error of Pgy is higher than the error of
Ppsw- In conclusion, by aggregating the SW we decrease the error of estimation
of the probability boundaries, but we also decrease the image resolution.

4 Results on BSD

Evaluation of the BSW has been done in the BSD, containing 200 natural im-
ages and their ground truths (with contours manually segmented by 5 differ-
ent subjects. We have compared the results of Pb and gPb from [4], a simple
morphological color gradient (G) [1], the stochastic watershed (SW) [2], the im-
proved stochastic watershed (ISW) as introduced in [5] and the proposed bagging
stochastic watershed (BSW). We have also include a last result which corre-
sponds to a pdf obtained by multiplying the BSW with the spectral probability
gradient proposed also in [4], this combination is named the spectral bagging
stochastic watershed (SBSW).

Since the result of the algorithm is an image of probability of contours, by
selecting different thresholds, one has a totally different set of contours. Similarly
to [4], at each level of the threshold, the F-measure is calculated: F-measure =
(2 x Precision x Recall) /(Precision+Recall), showing a tradeoff between precision
and recall. The main advantage of the F-measure is that, contrary to the ROC
curve, does not depend on the true negatives, which may turn the results to be
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less discriminative. Table 1 summarizes the results for different methods. The
curves of the F-measure are given in Fig. 5. As in [4], two features are computed
from the F-measure: the ODS which is the optimal scale for the entire data set,
and the OIS which is the optimal scale per image. We note the ISW and the
here proposed BSW improves the results produced by the SW, with comparable
performances. However, none of the morphological approaches are better than
the gPb, which we remind is based on a learning procedure.

Thresholding and calculating F-measure of the pdf produce the optimal set
of boundaries, but not the optimal regions. Instead of using a simple threshold
on the pdf, we propose to compute a watershed transform after applying a h-
reconstruction on the pdf. That produces a segmentation into closed regions and
the choice of h is related to the contrast of probability. When this approach is
obtained for different values of h we obtain a hierarchy of segmentations [13],
related also to the so-called ultrametric contour map in [4]. Now, the F-measure
can be computed at each value of the hierarchy h. In addition, we propose to
compute the following contrast feature:

C-measure = (Z h x F-measure(Sy))/ Z h (7)
h h

where S}, is the set of closed contours obtained from the h-reconstruction water-
shed. The C-measure 7 represents the fact that one does not know what is the
optimal value h*, so the C-measure, that we develop is a mean over different val-
ues of h. On Table 1.(b), for each algorithm we have computed the mean of the
C-measures over the 200 images. As one can notice, using this feature, the BSW
and the ISW seem to be the best compromise in terms of contrast/F-measure.

Fig. 6 provides also a comparison for the current image of the pdf of contours
as well as two segmentations from each pdf, obtained by watershed combined
with h-reconstruction (h = 0.1 and h = 0.25).

| [Pb [gPb]G [SW[ISW[BSW|[SBSW]
(a) [ODSJ0.64]0.69 [0.25]0.59[0.66 [0.63 [0.65
OIS [0.66[0.70 [0.26]0.62[0.69 [0.64 [0.67

| |Pb |ng |SW|ISW|BSW|SBSW|
ODS 0.62(0.66 |0.57|0.63 [0.62 |0.63
OIS 0.65(0.70 |0.58|0.67 [0.65 |0.66
mean(C-measure)|0.19]0.071{0.54{0.19 [0.39 |0.01

(b)

Table 1. (a) Comparison of F-measure (obtained by thresholding the pdf) on BSD.
(b) Comparison of C-measure (obtained by hierarchy based on contrast) on BSD.
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Fig. 5. (a) F-measure of different algorithms, source of this plot [17] . (b) F-measure
of algorithms compared on this paper.

5 Conclusion

Stochastic watershed is a probabilistic segmentation approach which can be inte-
grated into a bagging paradigm to improve estimation of probability of contours.
We have in particular considered a multi-scale approach of bagging stochastic
watershed which at this point is fully unsupervised. In order to assess the per-
formance in the BSD, we have used the F-measure and new criterion called the
C-measure.

The combination of multi-scale bagging stochastic watershed with segmenta-
tion learning architectures based for instance in convolutional networks should
be considered in future research.
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