Bagging Stochastic Watershed on Natural Color Image Segmentation - Archive ouverte HAL Access content directly
Conference Papers Year :

Bagging Stochastic Watershed on Natural Color Image Segmentation

Gianni Franchi
Jesus Angulo

Abstract

The stochastic watershed is a probabilistic segmentation ap-proach which estimates the probability density of contours of the image from a given gradient. In complex images, the stochastic watershed can enhance insignificant contours. To partially address this drawback, we introduce here a fully unsupervised multi-scale approach including bag-ging. Re-sampling and bagging is a classical stochastic approach to im-prove the estimation. We have assessed the performance, and compared to other version of stochastic watershed, using the Berkeley segmentation database.
Fichier principal
Vignette du fichier
Bagging_Stochastic_Watershed_FRANCHI_ANGULO_V2.pdf (592.64 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01104256 , version 2 (18-03-2015)

Identifiers

Cite

Gianni Franchi, Jesus Angulo. Bagging Stochastic Watershed on Natural Color Image Segmentation. International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, 2015, Reykjavik, Iceland. pp.422-433, ⟨10.1007/978-3-319-18720-4_36⟩. ⟨hal-01104256⟩
4962 View
206 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More