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We design new deterministic algorithms, based on Graeffe transforms, to compute
all the roots of a polynomial which splits over a finite field Fq. Our algorithms were
designed to be particularly efficient in the case when the cardinality q − 1 of the
multiplicative group of Fq is smooth. Such fields are often used in practice because
they support fast discrete Fourier transforms. We also present a new nearly optimal
algorithm for computing characteristic polynomials of multiplication endomorphisms
in finite field extensions. This algorithm allows for the efficient computation of Graeffe
transforms of arbitrary orders.

1. Introduction

Let Fq represent the finite field with q= pk elements, where p is a prime number, and k>1.
Throughout this article, such a field is supposed to be described as a quotient of Fp[x] by
a monic irreducible polynomial. Let f ∈Fq[x] represent a separable monic polynomial of
degree d> 1 which splits over Fq, which means that all its irreducible factors have degree
one and multiplicity one. In this article we are interested in computing all the roots of f .

1.1. Motivation

In a previous paper [20], we presented efficient randomized root finding algorithms. Such
algorithms were needed for the efficient interpolation, into the standard monomial basis, of
polynomials that are given through evaluation functions. This latter problem is also known
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under the name sparse interpolation, and root finding often turns out to be a bottleneck,
as indicated in [23]. In fact, in this case, the ground field can be chosen to be Fp with
p=M 2m + 1, and where 2m is taken to be much larger than the number of terms to be
discovered. In order to minimize the size of p, making it fit into a machine register, we
usually take M = O(log p) as small as possible. A typical example is p = 7 · 226+ 1. We
informally refer to such primes as FFT primes.

While working on [20], it turned out that some of the new methods could also be used
for the design of fast deterministic methods for computing all the roots of f . Even though
randomized algorithms are more useful in practice, the existence of efficient deterministic
algorithms remains interesting from a theoretical point of view. The goal of this paper is
to report on our progress on this issue.

1.2. Notations and prerequisites

We will use the same notations as in [20], which we briefly recall now. The multiplicative
group Fq \ {0} of Fq is written Fq

∗. Complexity bounds will frequently be expressed using

the soft-Oh notation: f(n)∈ Õ(g(n)) means that f(n)= g(n) logO(1) g(n). Given x∈R, we
write ⌊x⌋=max {k ∈Z: k6 x} and ⌈x⌉=min {k ∈Z: k>x}. The remainder of a division
of g by f is denoted by g rem f .

We write M(d) for the complexity of multiplication of polynomials of degree <d

over an arbitrary ring. We also write I(n) and Mq(d) for the bit complexities (in the
Turing machine model) of n-bit integer multiplication and multiplication of polynomials
of degrees <d over Fq. We make the customary assumption that M(d) / d, I(n) /n and
Mq(d)/d are increasing functions. Currently best known bounds [10, 21, 22] are M(d) =

O(d log d log log d), I(n) =O(n log n 8log
∗n) and Mq(d) =O

(

d log q log(d log q) 8log
∗ (dlog q)

)

,

where log∗ stands for the iterated logarithm function log∗n=min
{

k∈N: log ...k× logx6 1
}

.
We freely use the following classical facts: ring operations in Fp cost O(I(log p)) and one

division or inversion in Fp costs O(I(log p) log log p) [17, Chapter 11]. The ring operations
in Fq cost at most O(Mp(k)), and inversions take at most O(Mp(k) logk+ I(log p) log log p).
For convenience, mq and dq will respectively denote cost functions for the product and the
inverse in Fq. The gcd of two polynomials of degrees at most d over Fq can be computed
in time O(Mq(d) log d) [17, Algorithm 11.4]. Given polynomials f and g1, ..., gl monic with
deg f = d and deg g1+ ···+ deg gl=O(d), all the remainders f rem gi can be computed in
time O(Mq(d) log l) [17, Chapter 10]. The inverse problem, called Chinese remaindering,
can be solved within a similar cost O(Mq(d) log l+ d dq).

For an integer n, the largest prime dividing n is written S1(n), and the second one S2(n).
Pollard and Strassen have given a deterministic algorithm for factoring p− 1, of bit com-
plexity O

(

M
(

S2(p − 1)1/2
)

I(log p) log p
)

(see for instance [17, Corollary 19.4]). Ignoring

smoothness considerations, the latter result has been improved into O
(

I
(

p1/4 log p
))

in [6],
and further refined to O

(

I
(

p1/4 (log p)/ log log p
√ ))

in [13].
In this article, when needed, we consider that the factorization of q− 1 and a primitive

element of Fq
∗ have been precomputed once, and we discard the necessary underlying costs.

In practice, if the factorization of q−1 is given, then it is straightforward to verify whether
a given element is primitive. For known complexity bounds and historical details on these
tasks, we refer to [2, 33, 44].

1.3. Related work

It is now classical that polynomial factorization over Fq reduces to finding roots over Fp

in deterministic polynomial time, uniformly in d and log q. But it is still unknown whether
root finding can be solved in deterministic polynomial time or not, even under classical
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conjectures in number theory. This problem can nevertheless be solved efficiently by ran-
domized algorithms in average polynomial time. Concerning related results and historical
surveys on this topic, the reader might consult [17, 18, 25, 33].

Seminal algorithms for polynomial factorization over finite fields are classically attrib-
uted to Berlekamp [3, 4], and Cantor and Zassenhaus [11], but central earlier ideas can
be found in works of Gauss, Galois, Arwins, Faddeev and Skopin. Cantor–Zassenhaus’
algorithm is randomized and well suited to compute roots of polynomials of degree d that
split over Fq in average time O(Mq(d) (log q + log d) log d+ d dq). Of course, if q =O(d)
then an exhaustive search can be naively performed in time O(Mq(d) log d) (the factor
logd can be discarded if a primitive element of Fq

∗ is given, by means of [8, Proposition 3]),
so that the cost of root finding simplifies to O(Mq(d) log q log d + d dq). This classical
approach is for instance implemented in the NTL library written by Shoup [45]. However
neither Berlekamp’s nor Cantor–Zassenhaus’ algorithm seems to benefit of particular prime
numbers such as FFT primes. Instead, alternative approaches have been proposed by
Moenck [32], von zur Gathen [16], Mignotte and Schnorr [31], and then by Rónyai [37].
Recent slight improvements of Moenck’s and Mignotte–Schnorr’s algorithms may also be
found in [20].

Deterministic polynomial time root finding has been tackled by several authors. Camion
showed that, for a fixed finite field, one can pre-compute a suitable subset which allows to
factor any polynomial in deterministic polynomial time [9]. Nevertheless the construction of
such a subset is purely theoretical, and it is not clear that there exists an efficient algorithm
to compute it, even for FFT prime fields.

Schoof, Rónyai, Huang, and Źrałek designed different methods for particular types of
input polynomials according to their syntax or to properties of the Galois group of the lifted
input polynomial over Q [24, 37, 38, 40, 46]. Some of their algorithms require the general
Riemann hypothesis (GRH) or the extended Riemann hypothesis (ERH). Sub-exponential
algorithms are also known from the work of Evdokimov [14], which has recently led to new
conjectures in terms of graphs [1]. Other conjectural algorithms can be found in [15, 39].

Another series of articles concern complexity bounds which are uniformly polynomial
in the degree and in S1(q − 1). Such algorithms are practical when q − 1 = p1

m1 ··· prmr is
sufficiently smooth. Assuming a primitive element of Fq

∗ is given, Mignotte and Schnorr [31]
proposed a method based on a cascade of gcds, that needs O(M(d)

∑

i=1
r

mi (log q +
pi log d)) operations in Fq. The computation of a primitive element might of course be
expensive but it can be seen as a pre-computation. In fact, von zur Gathen proved the
deterministic polynomial time equivalence (in terms of S1(p− 1) and input size) between
the computation of primitive elements and polynomial factorization [16].

Rónyai [37] obtained a polynomial complexity bound in S1(p − 1), d and log p by
means of linear algebra techniques, using primitive roots of orders lower than in [16],
but he did not explicit the exponents in the bound. For Fp[x], Shoup [41] reached the
bound p1/2 log2 p Õ(d2) in terms of the number of operations in Fp, and then refined it to
p1/2 log p Õ(d kmin (d, k))+ Õ(d k2) log p for Fq[x], still in terms of operations in Fp [42].

Finally Shoup proved the bound S1(p− 1)1/2 (d log p)O(1) in Fp[x] under ERH [43].

1.4. Our contributions

The main contribution of this article is an efficient deterministic root finding method. The
new algorithm is based on generalized Graeffe transforms and it is particularly efficient for
finite fields Fp such that p is an FFT prime. Roughly speaking, the generalized Graeffe
transform replaces modular exponention as used in Cantor–Zassenhaus’ algorithm, and
gcd computations are changed to multi-point evaluations.
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Thanks to a slight improvement of Shoup’s adaptation of Pollard–Strassen’s algorithm
to find roots deterministically [43], we obtain a new deterministic complexity bound in
terms of S1(p− 1)1/2. In addition, in the smooth case S1(q− 1)=O(log q), the cost of our
deterministic algorithm is softly equivalent to the one of Cantor–Zassenhaus.

The complexity of generalized Graeffe transforms is studied in Section 2. A first
ingredient is the transposed modular composition algorithm of Kedlaya and Umans [27],
also called modular power projections algorithm. The second ingredient is a special variant
for finite fields of Newton–Girard’s formulas for recovering a polynomial from the power
sums of its roots. Such a variant had been previously designed by Bostan, Gonzalez-
Vega, Perdry and Schost [7] in the case of prime finite fields. We extend their results
to finite fields from scratch, using very simple arguments, and independently of the frame-
work designed in [12].

2. Generalized Graeffe transforms over finite fields

Classically, the Graeffe transform of a polynomial g ∈ Fq[x] of degree d is the unique

polynomial h ∈ Fq[x] satisfying h(x2) = g(x) g(−x). If g(x) =
∏

i=1
d (αi − x), then

h(x) =
∏

i=1
d (αi

2− x). This construction can be extended to higher orders as follows: the
generalized Graeffe transform of g of order π, written Gπ(g), is defined as the resultant

Gπ(g)(x)= (−1)πdResz(g(z), zπ−x).

If g =
∏

i=1
d (αi − x), then Gπ(g)(x) =

∏

i=1
d (αi

π − x). Equivalently, Gπ(g) is the
characteristic polynomial of multiplication by xπ in Fq[x]/(g) (up to the sign). In this
section we show how to compute Graeffe transforms efficiently. We start with a particularly
simple and efficient algorithm for the smooth case, repeated from [20].

2.1. Smooth case

For our root finding algorithm, the most important case is when q − 1 is smooth and the
order π of the generalized Graeffe transform divides q− 1.

Proposition 1. Let π1, ..., πm be integers >2, such that χ= π1 ··· πm divides q − 1, and
let ξi be given primitive roots of unity of order πi, for all i ∈ {1, ..., m}. If g is a monic
polynomial in Fq[x] of degree d, then the generalized Graeffe transforms of orders π1,

π1 π2, π1 π2 π3, ..., χ of g can be computed in time O(mMq(µ d)) or σ Õ(d log q log µ), where
µ=max (π1, ..., πm) and σ=π1+ ···+πm.

Proof. Writing g(x) = c
∏

j=1
d (αj − x) in an algebraic closure of Fq, the Graeffe

transform of g of order πi is hi(x) = cπi
∏

j=1
d (αj

πi − x). Consequently this leads to

hi(x
πi) = g(x) g(ξi x) g(ξi

2 x) ··· g
(

ξi
πi−1 x

)

. Using the latter formula, by Lemma 2 below,
the transform can be obtained in time O(Mq(πi d)). Taking the sum over i concludes the
proof. �

Lemma 2. Let g be a polynomial of degree d > 1 in Fq[x], let α ∈ Fq, and let l be an

integer. Then the product Pl(x)= g(x) g(α x) g(α2 x) ··· g(αl−1 x) can be computed in time
O(Mq(l d)).
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Proof. Let h := ⌊l / 2⌋. If l is even, then Pl(x) = Ph(x) Ph(α
h x), otherwise we have

Pl(x) = Ph(x) Ph(α
h x) g(αl−1 x). These formulas lead to an algorithm with the claimed

cost. �

Notice that this lemma generalizes to arbitrary fields.

2.2. General case

In the general case, let g ∈Fq[x] be monic of degree d. Given a polynomial e of degree <d,
we are interested in computing the characteristic polynomial h of the multiplication by e
in R :=Fq[x]/(g). Our strategy essentially follows Le Verrier’s method: we first compute
the traces Tr(ei) of the multiplication by ei in R for all i∈{1, ..., d}, which are also called
the power sums of the roots of the characteristic polynomial h. The generating series
τ (x)=

∑

i>0 Tr(e
i) xi∈Fq[[x]] of these power sums relates to the logarithmic derivative of

the reverse polynomial η=xdh(1/x) of h via a first order differential equation

η ′(x)
η(x)

= τ(x)+O(xd). (1)

This equation can be seen as a compact form of the classical Newton–Girard identities
which relate power sums and symmetric polynomials. After computing τ it thus suffices
to solve this equation in order to deduce h. If p > d, then this method is classical. If
p < d, then h cannot directly be retrieved in this way [35, Fact 2.1]. In the rest of this
section, we will overcome this problem by computing with p-adic integers at a suitable
finite precision κ.

2.3. Power sums

Let Z / pκ Z be the ring of truncated p-adic integers at precision κ. It is convenient to
write GR(pκ, k) for the Galois ring of characteristic pκ and degree k, which is classically
defined as GR(pκ, k)=((Z/pκZ)[z])/(µ), where µ∈ (Z/ pκZ)[z] is a monic polynomial of
degree k and is irreducible modulo p.

Let g represent a given monic polynomial of degree d, let A=GR(pκ, k)[x] /(g). We
write Tr:A→GR(pκ, k) the classical trace function on A. In order to compute the power
sums Tr(e), Tr(e2), ..., Tr(ed), we will use the following proposition, which is essentially
a consequence of a result due to Kedlaya and Umans in [26, 27]:

Proposition 3. Let δ > 0 be a fixed constant. If d1+δ 6 q − 1, then the traces Tr(e),
Tr(e2), ...,Tr(ed) for a given e∈A can be computed in time (d log(qκ))1+δ.

Proof. Let γ(x) = xd g(1 /x) denote the reverse polynomial of g. Since g is monic we
have γ(0) = 1. In the canonical basis made of the classes of 1, x, ..., xd−1 in A, the trace
function can be computed as the first d terms of the generating series

γ ′(x)

γ(x)
=Tr(x)+Tr(x2)x+Tr(x3)x2+ ···+Tr(xd)xd−1+O(xd),

in softly linear time, namely Õ(κ d log q).
The cardinality of A is qκ, and A contains at least q− 1 invertible elements. Then, for

every constant δ > 0 such that d1+δ6 q− 1, Theorem 7.7 of [27, p. 1792] provides us with

an algorithm to compute Tr(e),Tr(e2), ...,Tr(ed) in time d1+δ log1+o(1)(qκ). �

Remark 4. For d close to q the proposition does not apply. A simple solution is to lift the
computations in Fq2. Nevertheless, for finding the roots of g, this case is in fact favorable:
it suffices to evaluate g at all the elements of Fq. Therefore we will not need to work in Fq2.
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2.4. Newton–Girard’s identities

We carry on with the notations of the previous subsection. Let e be a given element in A,
and let τ(x)=

∑

i>0 Tr(e
i)xi∈GR(pκ, k)[[x]] represent the generating series of the power

sums of the roots of the characteristic polynomial h of e. If p> d, then h can be deduced
from Tr(e),Tr(e2), ...,Tr(ed) in softly linear time, using Newton–Girard’s identities (1), as
for instance in [5, Corollary 1]. If k=1, then Theorem 1 of [7] solves the equation modulo p
whenever κ> ⌊log d/ log p⌋+ 1. This subsection is dedicated to the remaining case when
p< d and k is general. Our new alternative proofs are also shorter than in [7].

Lemma 5. Let θ ∈ GR(pκ, k)[x] be of degree 6d satisfying θ(0) = 1, and θ ′(x) / θ(x) =

τ (x)+O(xd). If κ> ⌊log d/ log p⌋, then θ coincides with η modulo p at precision O(xd+1).

Proof. Let ψ = θ/η. Writing ψ as
∑

i>0 ψi x
i, we deduce from ψ ′=O(xd) that i ψi= 0

for all i ∈ {1, ..., d}, whence pκ−valp i divides ψi, where valp i denotes the p-adic valuation
of i. Since κ> ⌊log d/ log p⌋ is equivalent to d< pκ, we have κ−valp i> 0, which concludes
the proof. �

Denote cost of multiplication in GR(pκ, k)[x] of polynomials of degrees <d by Mpκ,k(d).
We have Mpκ,k(d) = O

(

k κ d log p log(k κ d log p) 8log
∗(kκdlog p)

)

= Õ(κ d log q) according
to [22].

Proposition 6. Let e∈A, and let κ= ⌊log d/ log p⌋+1. From Tr(e1), ...,Tr(ed), we can

compute the characteristic polynomial h of e modulo p in time O(Mpκ,k(d))= Õ(d log q).

Proof. We will show how to compute a series θ ∈GR(pκ, k)[[x]] satisfying θ(0) = 1 and
θ ′(x)/θ(x)= τ (x)+O(xd), using Newton’s method. In view of the above lemma, this will
yield η followed by h modulo p.

Suppose that we are given θ such that θ(0) = 1 and θ ′(x)/θ(x) = τ(x) +O(xn−1) for
some integer n> 1. Then we claim that there exists θ̃ ∈GR(pκ, k)[[x]] of valuation in x at
least n and such that

θ̃
′
(x)= τ(x)− θ ′(x)

θ(x)
+O(x2n−1). (2)

Indeed, using that τ − θ ′/θ=O(xn−1) and θ̃=O(xn), this equation is equivalent to

θ̃
′

1+ θ̃
=

(

τ − θ ′

θ

)

(

1− θ̃+ θ̃2+ ···
)

+O(x2n−1)= τ − θ ′

θ
+O(x2n−1),

and therefore equivalent to
((

1+ θ̃
)

θ
)′

(

1+ θ̃
)

θ
=

θ̃
′

1+ θ̃
+
θ ′

θ
= τ(x)+O(x2n−1).

This latter equation admits η / θ − 1 as a solution. Having proved our claim, we can
compute θ̃ as being any integral of τ − θ ′/θ modulo O(x2n), and observe that θ̂=

(

1+ θ̃
)

θ

satisfies θ̂(0)= 1 and θ̂
′
/ θ̂= τ +O(x2n−1).

The cost of one iteration (2) is bounded by O(Mpκ,k(n)). Starting with n=1 and θ=1,

we recursively apply the iteration for n = 1, 2, 4, ..., 2⌈logκ/log2⌉−1, the end result being
a θ∈GR(pκ, k)[[x]] with θ ′/θ= τ +O(xd). It is classical that the cost of the last iteration
dominates the total cost, which is therefore bounded by O(Mpκ,k(d)). �
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2.5. Characteristic polynomials

Now we come back to the original computational problem over Fq.

Theorem 7. Let g ∈ Fq[x] be a monic polynomial of degree d, and let e ∈ Fq[x] be of

degree <d. For every constant δ >0 such that d1+δ6 q−1, the characteristic polynomial h

of the multiplication by e in Fq[x]/(g) can be computed in time (d log q)1+δ.

Proof. We embed Fq[x]/(g) into A=GR(pκ, k)[x]/(g), where GR(pκ, k) is constructed
from (Z/pκZ)[z]/(µ), and µ∈ (Z/pκZ)[z] is the monic defining polynomial of degree k
of Fq over Fp.

Let δ > 0 be such that d1+δ 6 q − 1. Proposition 3 allows us to compute the traces of
the successive powers of e seen in A in time (d log(qκ))1+δ. Then Proposition 6 allows to
deduce h modulo p in softly linear time. �

Remark 8. If the characteristic p is larger than the multiplicities of the roots of h, then
Pan’s algorithm [35] does not involve p-adic arithmetic, but may require higher order
traces.

Corollary 9. Let g be a monic polynomial in Fq[x] of degree d. For every constant δ > 0
such that d1+δ 6 q − 1, the generalized Graeffe transform Gπ(g) can be computed in time

(d log q)1+δ+ Õ(d log q logπ).

Proof. We apply the latter theorem to e(x)=xπ rem g(x), that can be computed in time
O(Mq(d) log π). �

2.6. Tangent Graeffe transforms

Whenever a Graeffe transform preserves the number of distinct simple roots, the so called
tangent Graeffe transform can be used to directly recover the original simple roots from
the simple roots of the transformed polynomial. Our randomized root finding algorithms
from [20] heavily rely on this fact. Unfortunately, we have not found a way to exploit tan-
gent Graeffe transforms in the deterministic setting. For completeness, we will nevertheless
show that the results of this section extend to the tangent case.

Introducing a formal parameter ε with ε2=0, we define the generalized tangent Graeffe
transform of g of order π as being Gπ(g(x + ε)) ∈ (Fq[ε] / (ε

2))[x]. For any ring R,
computations with “tangent numbers” in R[ε] / (ε2) can be done with constant overhead
with respect to computations in R (in the FFT model, the overhead is asymptotically
limited to a factor of two).

In the context of the Graeffe method, the tangent transform is classical (for instance,
see [30, 34] for history, references, and use in numerical algorithms). The generalized
tangent Graeffe transform can also be seen as the tangent characteristic polynomial of xπ

modulo g(x + ε), and this construction is attributed to Kronecker in algebraic geo-
metry [19, 28].

Proposition 1 from Section 2.1 admits a straightforward generalization to tangent
Graeffe transforms with a constant overhead. In order to generalize Proposition 3, we
introduce Aε = GR(pκ, k)[[ε]][x] / (g(x + ε)), where GR(pκ, k) = ((Z / pκ Z)[z]) / (µ),
where µ ∈ (Z / pκ Z)[z] is monic of degree k and irreducible modulo p. Let Trε rep-
resent the trace function in Aε.

Proposition 10. Let δ>0 be a fixed constant. If d1+δ6 q−1, then the traces Trε(e+ε ē),
Trε((e+ ε ē)2), ...,Trε((e+ ε ē)d) modulo ε2, for a given e+ ε ē ∈Aε, can be computed in

time (d log(qκ))1+δ.
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Proof. The value Trε((e+ ε ē)i) equals the trace of (e(x− ε) + ε ē(x− ε))i computed in
GR(pκ, k)[[ε]][x]/(g). Therefore we obtain:

Trε((e(x)+ ε ē(x))i)=Tr((e(x− ε)+ ε ē(x− ε))i)=Tr(ei(x)+ i ε (ē(x)− e′(x)) ei−1(x)).

We therefore use Theorem 7.7 of [27, p. 1792] twice over A = GR(pκ, k)[x] / (g): once
with Tr, and once for Tr ◦ ϕ, where ϕ is the product by ē− e′. �

Theorem 11. Let g ∈ Fq[x] be a monic polynomial of degree d, and let e, ē ∈ Fq[x]

be of degrees <d. For every constant δ > 0 such that d1+δ 6 q − 1, the characteristic

polynomial h(x)+ ε h̄(x) of the multiplication by e(x)+ ε ē(x) in Fq[[ε]][x]/(g(x+ ε)) can

be computed in time (d log q)1+δ.

Proof. We embed Fq[[ε]][x]/(g) into Aε=GR(pκ, k)[[ε]][x]/(g(x+ ε)), where GR(pκ, k)
is constructed from (Z/ pκ Z)[z]/(µ), and µ∈ (Z/ pκ Z)[z] is the monic defining polynomial
of degree k of Fq over Fp.

Let δ > 0 be such that d1+δ 6 q − 1. Proposition 10 allows us to compute the traces
of the successive powers of e+ ε ē seen in Aε in time (d log(qκ))1+δ. Then Proposition 6
allows us to deduce h+ ε h̄ modulo p in softly linear time, mutatis mutandis. �

Corollary 12. Let g be a monic polynomial in Fq[x] of degree d. For every constant

δ > 0 such that d1+δ 6 q − 1, the generalized tangent Graeffe transform Gπ(g(x+ ε)) can

be computed in time (d log q)1+δ+ Õ(d log q log π).

Proof. We apply the latter theorem to e(x) + ε ē(x) = xπ rem g(x + ε), that can be
computed in time O(Mq(d) log π). �

3. Root finding based on Graeffe transforms

Our new root finding algorithm is technically reminiscent of numerical solvers: we make
use of the Graeffe transform instead of the modular exponentiation, and replace gcds by
multi-point evaluations. We begin this section with a first simple version of the algorithm,
and then introduce new ingredients in order to improve it. Throughout this section, the
quantity δ > 0 represents a constant that can be fixed arbitrarily small.

3.1. Simple version of the deterministic algorithm

We assume given integers πi > 2 such that q − 1 = ρ π1 ··· πm. We let χ = π1 ··· πm, and
σ = π1 + ··· + πm as previously. The core algorithm of this section computes a sequence
of Graeffe transforms, and then deduces inductively their roots starting from the last
transform and finishing to the input polynomial.

Algorithm 13.
Input. f ∈ Fq[x] of degree d, monic, separable, which splits over Fq, and such that

f(0)=/ 0; a primitive root ξ of unity of order χ.
Output. e1, ..., es in {0, ..., χ− 1}, such that f divides

∏

i=1
s (xρ− ξei).

1. Compute the Graeffe transform h0 of order ρ of f , and recursively compute hi as
the Graeffe transform of order πi of hi−1, for all 16 i6m− 1.

2. Initialize E with the list [0].
3. For i from m down to 1 do

a. Replace E by the concatenation of [(e+ j χ)/πi|e∈E] for j from 0 to πi−1.
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b. If E has cardinality more than d then remove the elements e from E such
that hi−1(ξ

e)=/ 0, using a multi-point evaluation to compute the hi−1(ξ
e).

4. Return E.

Proposition 14. Algorithm 13 is correct. If d1+δ6 q− 1 then it costs σO(Mq(d) log d)+

(d log2 q)1+δ +O(m d I(log χ) +mmq d log χ) = σ Õ(d log q) + (d log2 q)1+δ + Õ(d log3 q).
Whenever a primitive root of unity of order ρ is given, and µ := max (ρ, π1, ..., πm) =

O(log q), this bound further reduces to Õ(d log3 q).

Proof. We prove the correctness by descending induction on i from m down to 1. At the
end of iteration i of the loop of step 3, we claim that f divides

∏

e∈E
(xρπ1···πi−1 − ξe),

and that the integers e in E are in {0, ..., χ− 1} and are divisible by ρ π1 ··· πi−1. These
properties all hold for i=m+1 when entering step 3. By induction, we may assume that
these properties hold with i+1 when entering the loop at level i. Let e∈E, and let α be
a root of f such that αρπ1···πi= ξe. Since e is divisible by πi, there exists j ∈{0, ..., πi− 1}
such that αρπ1···πi−1= ξ(e+jχ)/πi. This proves the correctness.

From now on we assume that d1+δ 6 q − 1. As to the complexity, we can compute
the χ/πi for i ∈ {1, ..., m} in time O(m I(log χ)) as follows: we first compute π1, π1 π2,
π1 π2 π3, ..., π1 π2 ··· πm−1, and πm, πm−1 πm, πm−2 πm−1 πm, ..., π2 ··· πm−1 πm, and then
deduce each χ/πi by multiplying π1 ···πi−1 and πi+1 ···πm.

Step 1 requires time (d log2 q)1+δ by Corollary 9. In step 3.a, we compute all the e/πi
in time O(d I(log χ)), and then all the ξe/πi and ξχ/πi by means of O(d log χ) operations
in Fq. Deducing all the ξ(e+jχ)/πi takes O(πi d) additional products in Fq. The multi-point
evaluations can be done in time O(πiMq(d) log d).

Finally, when µ = O(log q), the term (d log2 q)1+δ can be replaced by (ρ +

σ) Õ(d log q)= Õ(σd log q+ d log2 q)= Õ(d log3 q) in view of Proposition 1. �

The cost in the latter proposition is asymptotically higher than the one of Mignotte–
Schnorr’s algorithm [20, Section 2], because of the term (d log2 q)1+δ. In the smooth case
when µ=O(log q), the asymptotic complexity bounds become similar.

The rest of this section is devoted to improve Algorithm 13. In order to diminish
the dependence on log q, we stop representing roots by their logarithms as in Mignotte–
Schnorr’s algorithm. Instead we shall compute discrete logarithms only when necessary.
Furthermore, we will show how to decrease the dependence on the πi to πi

√
, by using

the “baby-step giant-step” technique.

3.2. Reverse splitting of Graeffe transforms

Let g be a monic polynomial which splits over Fq. Once the roots a1, ..., al of the Graeffe
transform of order π of g have been recovered, we may decompose g into l factors g1, ..., gl
such that the π-th powers of the roots of gi all coincide to ai, for all i∈{1, ..., l}. In short,
we have Grπ(gi)(x)∽ (x−ai)deg gi. This decomposition may be achieved efficiently via the
following divide and conquer algorithm.

Algorithm 15.
Input. g ∈ Fq[x] of degree d, monic, separable, which splits over Fq, and such that

g(0) =/ 0; the pairwise distinct roots a1, ..., al of the Graeffe transform of a given
order π> 2 of g.

Output. The sequence of the monic gcd(xπ− ai, g(x)) for all i∈{1, ..., l}.
1. If l=1 then return g.
2. Let h := ⌊l/2⌋.
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3. Compute e(x) :=
∏

i=1
h (x− ai).

4. Compute g1(x) := gcd(e(xπ), g(x)) and g2(x) := g(x)/g1(x).
5. Call recursively the algorithm with input g1, a1, ..., ah and g2, ah+1, ..., al, and return

the concatenation of the polynomial sequences returned so.

Proposition 16. Algorithm 15 is correct and costs π Õ(d log q log π) or (d log q)1+δ +
Õ(d logπ log q), for any constant δ > 0.

Proof. If l = 1, then the π-th powers of the roots of g are all equal to a1, whence the
correctness. If l > 1, then the roots of g1 are exactly those of g whose π-th powers are
in the set {a1, ..., ah}. Consequently, the π-th powers of the roots of g2 are all in the set
{ah+1, ..., al}. This completes the proof of the correctness by induction.

Step 3 can be performed in softly linear time by the subproduct tree technique (for the
sake of efficiency the subproduct tree should be shared between all the recursive calls).

On the one hand, computing g1 can be done naively in time O(M(π d)+M(d) log d)=
π Õ(d log q log π). On the other hand, one may proceed as follows: compute r(x) :=

xπ rem g(x) in time Õ(d log π log q), and then use [27, Corollary 7.2, p. 1789] to obtain
e(r(x)) rem g(x) in time (d log q)1+δ.

The sum of the degrees of the input polynomials g at the same depth of the recursive
calls is at most d, and the maximal depth is O(log l)=O(logd). This yields the complexity
bounds of the algorithm. �

3.3. Finding roots of several polynomials in a given set

Let g1, ..., gl be polynomials of respective degrees d1, ..., dl, and let d := d1 + ···+ dl. For
given subset A of Fq of cardinality 6d, we are interested in finding the roots of gi in A for
each i∈{1, ..., l} simultaneously. We do not make additional assumptions, and in particular
the gi are allowed to share common roots. A natural divide and conquer approach applies,
as explained in the following algorithm.

Algorithm 17.
Input. g1, ..., gl ∈ Fq[x] of degrees >1; a subset A of Fq of cardinality at most d :=

Σi=1
l deg gi.

Output. The sequence of the sets of the roots of g1, ..., gl in A.

1. If l=1, then evaluate g1 at all the points of A, and return those which are roots.
2. Let h := ⌊l/2⌋.
3. Compute e1 :=

∏

i=1
h

gi and e2 :=
∏

i=h+1
l

gi.
4. Compute the subset A1 of points of A which are roots of e1.
5. Compute the subset A2 of points of A which are roots of e2.
6. Call recursively the algorithm with input g1, ..., gh, A1 and gh+1, ..., gl, A2, and

return the concatenation of the returned sequences of sets of roots.

Proposition 18. Algorithm 17 is correct and costs O(Mq(d) log d log l)= Õ(d log q).

Proof. For the correctness, it is clear that the roots of g1, ..., gh in A are to be found
in A1 — idem for A2. The recursive calls are legitimate since the cardinality of A1 (resp.
of A2) cannot exceed deg g1 (resp. deg g2).

Steps 1 to 5 take O(Mq(d) log d). The sum of the degrees of the input polynomials at
the same depth of the recursive calls is at most d, and the maximal depth is O(log l). This
yields the complexity bound, thanks to the super-additivity of Mq. �

Notice that this lemma generalizes to arbitrary fields.
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3.4. Simultaneous baby-step giant-step root finding

Instead of using multi-point evaluations in step 3.b of Algorithm 13, we may split the
separable part of hi−1 thanks to Algorithm 15. We will detail later how this situation
further reduces to computing all the roots of several polynomials of degree sum at most d,
and having roots of order dividing π. To perform efficient root finding in this case, we
adapt Pollard–Strassen’s aforementioned strategy for integer factoring as follows.

Algorithm 19.
Input. g1, ..., gl∈Fq[x] of degrees >1, monic, separable, which split over Fq, and such

that gj(0) =/ 0 holds for all j ∈ {1, ..., l}; a multiple π of the orders of the roots of
all the gj; a primitive root ξ of unity of order π.

Output. The sets Lj of the ξ-logarithms of the roots of gj for all j ∈{1, ..., l}.

1. Let d :=
∑

j=1
l deg gj, let s :=

⌊

π d
√

⌋

, and t := ⌈π/s⌉.
2. Compute h(x) :=

∏

j=0
s−1 (ξjx− 1).

3. For all j ∈{1, ..., l} and all i∈ {0, ..., t− 1}, compute rj,i(x) := h(x) rem gj(ξsix).
4. For all j ∈{1, ..., l}, compute the set Ij of indices i∈{0, ..., t− 1} such that rj ,i(x)

has a proper gcd ej,i(x) with gj(ξsix).
5. For all j ∈ {1, ..., l} and all i ∈ Ij, compute all the ξ-logarithms Ej ,i of the roots

of ej ,i in A= {1, ξ , ξ2, ..., ξs−1} by calling Algorithm 17 ⌈s/d⌉ times on subsets of
A of cardinalities at most d.

6. Return the sets Lj :=
⋃

i∈Ij
(s i+Ej,i), for all j ∈ {1, ..., l}.

Proposition 20. Algorithm 19 is correct and costs Õ
(

π d
√

log q
)

+ Õ(d log q).

Proof. Of course, the returned values in Lj are ξ-logarithms of roots of gj. Conversely,
let ξu be a root of gj with 06u6π− 1. There exists a unique i in {0, ..., t− 1} such that
i s6 u< (i+1) s, since s t> π. Then ξu−is is a common root of gj(ξsi x) and h(x). This
proves the correctness.

By Lemma 2, step 2 executes in time O(Mq(s))= Õ
(

π d
√

log q
)

. Since d t= s+O(d),
step 3 costs

O(Mq(s) log(s)+Mq(d) log d)= Õ
(

π d
√

log q
)

+ Õ(d log q).

Using the super-additivity of Mq, step 4 needs O(t Mq(d) log d) = Õ
(

π d
√

log q
)

+

Õ(d log q). Since the sum of the degrees of all the polynomials ej ,i is at most d, Proposi-
tion 18 implies a cost Õ(s log q+ d log q) for step 5. �

If l = 1, then Algorithm 19 slightly improves Shoup’s variant of Pollard–Strassen’s
algorithm described in [43], which takes s= π

√
independently of d; taking s= π d

√
turns

out to be a better trade-off between the baby steps and the giant steps. We also notice
that this trade-off might be further improved by introducing logarithm factors in s.

3.5. Fast discrete logarithm in smooth finite fields

Let us recall that the term Õ(d log3 q) in the complexity of Algoritm 13 is due to computing
roots from their logarithms. In the next subsection we will proceed differently and will
compute logarithms only when needed. This is why we now address the discrete logarithm
problem. Let us recall that the seminal discrete logarithm method in the smooth case of Fp

∗

goes back to [36] and performs S1(p− 1)
√

O(log p) operations in Fp, making use intern-
ally of Shanks’ baby-step giant-step paradigm. We recall this algorithm for completeness,
adapting it to our context of Turing machines.
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Algorithm 21.
Input. A primitive root ξ ∈Fq

∗ of order π> 2 of unity; a in the multiplicative subgroup
generated by ξ.

Output. The ξ-logarithm of a in {0, ..., π− 1}.
1. Let s := ⌊ π

√ ⌋ and t := ⌈π/s⌉.
2. Compute 1, ξ , ξ2, ..., ξs−1.
3. Compute a, a ξ−s, a ξ−2s, ..., a ξ−(t−1)s.
4. Sort the array made of the pairs (i, ξi) for i ∈ {0, ..., s − 1} and (j , a ξ−js) for
j ∈{0, ..., t− 1}, accordingly to the lexicographic order of the second entries of the
pairs seen as k-tuples in {0, ..., p− 1}k.

5. Find the first two consecutive pairs (e1, ξe1) and (e2, a ξ
−e2s) whose second entries

coincide.
6. Return e1+ s e2 remπ.

Proposition 22. Algorithm 21 is correct and requires a running time π
√

Õ(log q) +
π

√
log πO(log q).

Proof. Since s t > π, the discrete logarithm e = logξ a can be uniquely written as
e= e2 s+ e1 with 06 e1<s and 06 e2< t. This proves the correctness.

Steps 2 and 3 perform O( π
√

) products in Fq and one inversion. Using the merge-sort
algorithm, step 4 costs O( π

√
log q logπ). �

The following divide and conquer approach allows us to compute logarithms for com-
posite orders χ=π1 ··· πm. Independently from the previous algorithm, it leads to a good
complexity bound in terms of σ = π1 + ···+ πm. This approach might already be known,
but we could not find a reference to it in the literature.

Algorithm 23.
Input. ξ ∈Fq

∗ of order χ=π1 ··· πm, with given πi> 2; a in the multiplicative subgroup
generated by ξ.

Output. The ξ-logarithm of a in {0, ..., χ− 1}.
1. If m=1, then find and return e∈{0, ..., π1− 1} such that a= ξe.
2. Let m1 := ⌊m/2⌋, m2 :=m−m1, χ1 := π1 ··· πm1

and χ2 := χ/χ1.
3. Recursively compute e1 := logξχ1 aχ1.
4. Recursively compute e2 := logξχ2(a/ ξe1).
5. Return e1+ χ2 e2.

Proposition 24. Algorithm 23 is correct and executes in time O(σ mq + dq log χ +
mq logχ log log χ+ I(log χ) log log χ) = σ Õ(log q) + Õ(log q log χ). By using Algorithm 21

in step 1, the cost becomes µ
√

Õ(log2 q), where µ :=max (π1, ..., πm).

Proof. We prove the correctness by induction. The case m=1 is clear. Assume m>2. In
step 3, we have e1∈ {0, ..., χ2− 1}. By definition of e1, we have (a/ ξe1)χ1= aχ1/ ξχ1e1=1
in step 4, whence a/ ξe1 indeed lies in the multiplicative subgroup of order χ1 generated
by ξχ2. By definition of e2, we have a/ ξe1=(ξχ2)e2, whence a= ξe1+χ2e2, which completes
the induction.

As to the complexity bound, let T (χ) denote the cost of the algorithm. We share the
subproduct tree built from π1, ..., πm, in time O(I(log χ) logm), between the recursive calls.
Using binary powering in steps 3 and 4, we obtain the recursion relation

T (χ) 6 O(mq log χ+ dq)+ T (χ1)+T (χ2).
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which leads to the bound T (χ)6Σi=1
m T (πi)+O(m dq+mq logχ logm).

Using a naive exhaustive search in step 1 yields T (πi)=πimq, whence T (χ)=O(σ mq+
m dq +mq logχ logm+ I(log χ) logm). The first bound thus follows using m=O(log χ).
The second bound follows from Proposition 22 that gives T (πi)= πi

√
log πi Õ(log q). �

Remark 25. As a byproduct of the complexity analysis, we remark that, given a primitive
root of unity ξ of order χ=π1 ··· πm, where the πi are given integers >2, one may compute
primitive roots of unity ξi for all orders πi in time Õ(log q log χ).

3.6. Squarefree part

Over any field K the separable factorization of a univariate polynomial g of degree d can
computed by means of O(M(d) log d) operations in K [29]. If K is the finite field Fq then
it is possible to deduce the squarefree factorization of g with O(d) additional extractions
of p-th roots [29, Section 4]. This result is also left as an exercise in [17, Chapter 14,
Exercise 14.30]. In the special case when k=1 and p > d, no root extraction is necessary
and the squarefree part of g is obtained as g /gcd(g, g ′). In the next subsection we will
need the following bound, taking the number of simple and multiple roots into account.

Proposition 26. Let g ∈Fq[x] be of degree d. In an algebraic closure of Fq, let δ1 be the
number of simple roots of g, let δ>2 be the number of its multiple roots, and let ∆>2=d−δ1
be the number of multiple roots counted with multiplicities. Then the squarefree factoriza-

tion and the squarefree part of f may be computed in time Õ(d log q)+∆>2 Õ(log2 q).

Proof. Let (g1, q1, ν1), ..., (gl, ql, νl) in (Fq[x] \ Fq) × {1, p, p2, ..., } × N represent the
separable factorization of g [29, Introduction], so that we have g(x)= g1(x

q1)ν1 ··· gl(xql)νl.
Since Fq is perfect, the factors gi(xqi) with qi = νi = 1 contain all the simple roots of g.
Letting h1 =

∏

qi=νi=1 gi and h>2 = g / h1, we have deg h1 = δ1 and deg h>2 = ∆>2.

Following [29, Section 4], the actual number of p-th root extractions is O(∆>2). Each
such extraction amounts to O(log q) products in Fq. In this way we obtain the squarefree
factorization of g. �

3.7. Improved root finding algorithm

We are now ready to combine all the previous algorithms of this section in order to improve
Algorithm 13. Recall that we are given integers πi>2 such that q−1= ρ π1 ··· πm, and that
we let χ=π1 ··· πm. The following algorithm is parametrized by subroutines used internally.
We distinguish three cases of use, leading to complexity bounds in terms of σ, of µ, and
in the smooth case of S1(q− 1)=O(1).

Algorithm 27.
Input. f ∈ Fq[x], monic, separable, which splits over Fq, of degree d < q, such that

f(0)=/ 0; a primitive root ζ of Fq
∗.

Output. The roots of Grρ(f).

1. Compute h0 as the Graeffe transform of f of order ρ. Compute h̃0 as the squarefree
part of h0. Recursively compute hi as the Graeffe transform of order πi of h̃i−1,
and h̃i as the squarefree part of hi, for all i from 1 to m− 1.

2. Initialize Z with {1}, and compute ξ= ζρ.
3. For i from m down to 1 do

a. Use Algorithm 15 with input h̃i−1 and Z = {a1, ..., al}, and let g1, ..., gl be
the polynomials obtained in return.
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b. Initialize W0 with the roots of all the gj of degree 1, for j ∈ {1, ..., l}.
c. For all j ∈ {1, ..., l} such that deg gj > 2, compute the ξ-logarithm ej of aj

with Algorithm 23 (resp. with Algorithms 23 and 21).
d. Use Algorithm 17 (resp. Algorithm 19) to compute the sets of roots Wj of

gj
(

ξej/πi x
)

for all j ∈{1, ..., l} such that deg gj> 2.

e. Z :=W0∪
⋃

j

(

ξej/πiWj

)

.

4. Return Z.

Proposition 28. Algorithm 27 is correct and costs (σ + ρ) Õ(d log q log (µ ρ)) +

Õ(d log2 q). In addition, for any fixed δ > 0, the cost is also bounded by σ Õ(d log q) +
(d log2 q)1+δ or Õ( µ

√
d log2 q) + (d log2 q)1+δ, whenever d1+δ 6 q − 1 and where

µ=max (π1, ..., πm).

Proof. Let introduce hm := Grπm

(

h̃m−1

)

, which does not need to be computed. When
entering the loop in step 3, the set Z contains the single root of hm. We prove by descending
induction on i from m down to 1 that Z contains the roots of hi when entering step i

of the loop. Assuming this hypothesis holds for i 6 m, conditions of Algorithm 15 are
met, and finding the roots of h̃i−1 reduces to finding the roots of g1, ..., gl. The gj of
degree 1 contribute to roots of h̃i−1 in a straightforward manner. For the other gj, of

degree at least 2, it turns out that the roots of gj
(

ξej/πi x
)

have order dividing πi, and

thus Algorithms 17 or 19 produce the remaining roots of h̃i−1. This shows the correctness.

First all, the primitive roots of unity of orders πi and ρ needed during the execution of
the algorithm can be obtained in time Õ(log2 q) by Remark 25. The Graeffe transforms in
step 1 may execute in time (σ+ ρ) Õ(d log q log (µρ)) by Proposition 1.

Let di := deg hi, let δ1,i be the number of simple roots of hi, let δ>2,i be the number
of multiple roots of hi, and let ∆>2,i = di − δ1,i be the number of multiple roots of hi
counted with multiplicities. By Proposition 26, computing the squarefree part h̃i of hi takes
time Õ(d log q) + ∆>2,i Õ(log2 q). From deg h̃i = δ1,i + δ>2,i and deg h̃i−1 = di, we obtain

deg h̃i−1−deg h̃i=di− δ1,i− δ>2,i=∆>2,i− δ>2,i. Summing these equalities over i leads to
deg h̃0−deg h̃m=

∑

i=1
m ∆>2,i−

∑

i=1
m

δ>2,i. Using∆>2,i>2 δ>2,i, deg h̃0=d, and deg h̃m=1,
we deduce that

∑

i=1
m

δ>2,i6 d− 1, and then that
∑

i=1
m ∆>2,i6 2 (d− 1). Consequently,

the total cost for computing all the squarefree parts drops to Õ(d log2 q).

Step 3.a may take πi Õ(d log q log πi) by Proposition 16, which yields a total cost
σ Õ(d log q log µ). In step 3.c, Algorithm 23 is called O(δ>2,i) times. Consequently, the
total cost of this step is σ d Õ(log q)+d Õ(log2 q) by Proposition 24. If we use Algorithm 17
in step 3.d, then the cost is ⌈πi / d⌉ Õ(d log q) = πi Õ

(

logO(1) d log q
)

+ Õ(d log q) by

Proposition 18. The sum of these costs is bounded by σ Õ(d log q). So far, this establishes
the first complexity bound.

From now on assume that d1+δ6 q − 1. The cost for the Graeffe transforms in step 1
may drop into (d log2 q)1+δ by Corollary 9. Step 3.a may run in time (d log q)1+δ +

Õ(d logπi log q) by Proposition 16. The total cost of this step thus amounts to (d log2 q)1+δ.
Putting these bounds together yields the second complexity.

For the third complexity bound, we use Algorithm 23 combined with Algorithm 21
in step 3.c, so that Proposition 24 ensures a time µ

√
d Õ(log2 q). In addition we

use Algorithm 19 in step 3.d, and Proposition 20 gives a total cost Õ( µd
√

log2 q) +
Õ(d log2 q). �
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Recall that S1(q − 1) represents the largest prime number in the irreducible factoriz-
ation of q − 1. If S1(q − 1) =O(log q) and if σ + ρ= O(log q), then the first complexity
bound of Proposition 28 rewrites into Õ(d log2 q), which is thus softly equivalent to the
average cost of Cantor–Zassenhaus’ algorithm. We are now able to state the main result
of this section.

Theorem 29. Given a constant δ > 0, the irreducible factorization of q − 1, a primitive
element of Fq

∗, and f ∈Fq[x] of degree d, monic, separable, which splits over Fq, the roots

of f can be computed in time Õ
(

S1(q− 1)
√

d log2 q
)

+(d log2 q)1+δ.

Proof. Without loss of generality we can assume that f(0)=/ 0 and that d6 q−1. If d1+δ>

q − 1, then it suffices to evaluate f at all the elements of Fq
∗ in time Õ(d+ q) =O(d1+δ).

Consequently, for when d1+δ6 q− 1, we appeal to the preceding proposition. �

Let us finally mention that, in general, the present method improves [16, Theorem 4.1]
(see complexity details at the end of the proof). Nevertheless, if k=1, and if S1(p− 1) is
close to p, then Theorem 29 does not improve [42, Theorem 4.1(2)].
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