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Abstract. A hyperspectral image can be represented as a set of ma-
terials called endmembers, where each pixel corresponds to a mixture
of several of these materials. More precisely pixels are described by the
quantity of each material, this quantity is often called abundance and is
positive and of sum equal to one. This leads to the characterization of
a hyperspectral image as a set of points in a probability simplex. The
geometry of the simplex has been particularly studied in the theory of
quantum information, giving rise to different notions of distances and
interesting preorders. In this paper, we present total orders based on
theory of the ordering on the simplex. Thanks to this theory, we can
give a physical interpretation of our orders.

Keywords: Hyperspectral image, mathematical morphology, learning
an order, quantum information

1 Introduction

Hyperspectral images, which represent a natural extension of conventional op-
tical images, can reconstruct the spectral profiles through the acquisition of
hundreds of narrow spectral bands, generally covering the entire optical spectral
range. Thus, at each pixel, there is a vector which corresponds to the spectrum
of reflected light. For a long time the processes associated with this type of im-
ages were limited to treatments where each pixel was considered just as a vector
independently of its location on the image domain. Subsequently techniques to
account for spatial information were developed [10] [12]. Between these tech-
niques, mathematical morphology has been also used [13][19]. Adding spatial
information in the treatment of hyperspectral images greatly improve tasks such
as classification.

Mathematical morphology is a non-linear methodology for image process-
ing based on a pair of adjoint and dual operators, dilation and erosion, used to
compute sup/inf-convolutions in local neighborhoods. Therefore the extension of
morphological operators to multivariate images, and in particular to hyperspec-
tral images, requires the introduction of appropriate vector ordering strategies.
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Lots of research done has aimed at developing orders in multivariate images.
First, we found techniques based on marginal order [15]: one applies a morpho-
logical operator at each channel of the hyperspectral image (or each eigenimage
after PCA)[12], without taking care of the vector nature of spectral informa-
tion. Then there are other approaches based on learning a vector order using
classification techniques [17] or nonparametric statistical tools [18]. Supervised
learning an order [17] involves to introduce a prior spectral background and fore-
ground. This happens if, for example, one knows that the vegetation areas are
the object of interest, and does not care of image structures from other materials:
then prior vegetation spectra would be the foreground, and the spectra of other
materials the background. But, sometimes, this prior configuration is unknown.
There might be two possible solutions. One approach proposed in [18] consists
in computing an order based on the “distance to central value”, obtained by the
statistical depth function. Another solution builds an order based on distances
to pure materials on the image [2]: more a spectrum is a mixture of materials
less its position in the order is. In hyperspectral image processing, these pure
materials are called endmembers. The goal of this paper is to investigate order
techniques in a physical representation similar to the one proposed in [2]. From
a geometric viewpoint, the space where the spectral values are represented is not
an Euclidean space, but a simplex, which is also useful to manipulate discrete
probability distributions. In our case, we will consider several alternatives, which
can be related to notions as majorization, stochastic dominance, distances and
divergence between probability distributions, etc.

2 Hyperspectral image linear model

From a mathematical viewpoint, a hyperspectral image is considered as a func-
tion f defined as

f :

{

E → R
D

x 7→ vi

where D is the number of spectral bands and E is the image domain (support
space of pixels. This multivariate image can be also seen as set of D grey-scale
images which correspond to the spectral bands, i.e., f(x) = (f1(x), · · · , fD(x)),
fj : E → R.

Unmixing on hyperspectral images. Spectral unmixing [6–8] is an ill-
posed inverse problem. The idea is to find both the physical pure materials, also
known as endmembers, present in the scene and their corresponding abundances.
By abundance we mean the quantity of each material at each pixel. However,
in hyperspectral imaging, because of the low resolution of these images, a pixel
may correspond to a large surface, where several different physical materials are
present: these materials can be mixed and may affect the unmixing algorithms. A
model often used by its simplicity is the linear one. In this model, ground is con-
sidered flat such that when the sun’s rays reach the study area, they are directly
reflected to the sensor. It receives, from a convex area, a linear combination of
all the materials present in the area. A strong and extreme assumption which is
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often made is that one can find the endmembers from the hyperspectral image
itself, because they are already present in the image, or because the geometric
problem is not very complex.

Working on this paradigm, many different algorithms have been proposed
to compute the endmembers [8]. We have used in our examples N-FINDR [21].
Once the endmembers are obtained, the corresponding abundance should be
computed at each pixel, which consequently yields an abundance image for each
endmember, i.e., αr(x) : E → R+, 1 ≤ r ≤ R, where R ∈ N is the number of
endmembers. We have used a fully constrained least squared on each pixel [8],
where one imposes that each pixel is a linear nonnegative and convex combina-
tion of endmembers. We just discuss below the geometric interpretation of such
constrained regression.

Due to the fact that in general the number of endmembers is significatively
lower than the number of spectral bands, i.e., R ≪ D, working on the abundance
maps {αj(x)}1≤j≤R instead the original spectral bands {fj(x)}1≤j≤D is a way
to counterpart the curse of dimensionality [4], which designates the phenomena
that occur when data are studied in a large dimensionality space. In summary,
thanks to unmixing techniques, the hyperspectral image is embedded into a lower
dimension space.

(a) (b)

Fig. 1. (a) Representation of a hyperspectral image, (b) Zoom in the linear mixing
model. Figures borrowed from [14].

Geometrical viewpoint of unmixing. Let us consider in Fig. 1(a) the
typical diagram to illustrate spectral unmixing. To fix the ideas, we can consider
that the image is composed of water, soil, and vegetation. Finding the endmem-
bers on this image is therefore a way to find the spectra of these three pure
materials. Under the linear model, each pixel of the image can be written as a
positive combination of the different endmembers m1, m2 and m3, see Figure
1(b), with a1, a2 and a3 being the abundances. Thus, if we consider the spectrum
at a pixel as the vector vi ∈ R

D, then, it can be written as

vi =

R
∑

r=1

ar,imr + ni, (1)
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where {mr}
R
r=1 represent the set of R endmembers, ar,i the abundance at vector

i of each endmember r, and ni an additive noise. This last term can be neglected.
Let us consider a geometric interpretation of the representation by endmem-

bers [11]. Spectra correspond to a set of points vi ∈ R
D, 1 ≤ i ≤| E |. Since

each vi represents a physical spectrum, the vi are nonnegative data, thus every
point lies in the positive orthant PD of RD. Therefore the endmembers should
be also nonnegative vectors. The endmembers basis Φ = {mr}1≤r≤R, mr ∈ R

D

generates a simplicial cone ΓΦ containing the data and which lies in PD:

ΓΦ = {v : v =
R
∑

r=1

armr, ar ≥ 0}. (2)

Hence, the extraction of endmembers can be seen as finding the simplicial cone
containing the data. In general, for a given set of vectors there are many possible
simplicial cones containing the vectors. A way to reduce the number of possible
representations consist in restrict the nonnegative coefficients ar to be a convex
combination such that

∑R

r=1 ar = 1. By using this additional constrain, it is
guaranteed to work on a (R− 1)-simplex. We remind that the unit n-simplex is
the subset of Rn+1 given by

∆n = {(s1, · · · , sn+1)
t ∈ R

n+1 :

n+1
∑

k=1

sk = 1 and sk ≥ 0}. (3)

where the n + 1 vertices of a regular tetrahedron. In our case, the vertices are
the endmembers {mr}1≤r≤R, but we can work geometrically on the canoni-
cal simplex ∆R−1. In summary, the abundances (a1,i, · · · , aR,i)

t are just the
barycentric coordinates of vector i in the ∆R−1. In the case of the hyperspec-
tral model studied in Fig. 1 with just 3 endmembers, its abundances lie in the
triangle represented in Fig. 2(a).

3 Ordering on the simplex of endmembers

Let us consider that the hyperspectral image of spectral pixels vi ∈ R
D is repre-

sented by their abundances, together with the set of endmembers {mr}1≤r≤R.
Let us consider that we have two spectral vectors vi and vj whose coordinates in
the simplex are (a1,i, · · · , aR,i)

t and (a1,j , · · · , aR,j)
t. We address in this section

the question of how can we order this pair of vectors.

3.1 Lexicographic abundance order

An easy way to define a total order between vi and vj is based on a lexico-
graphic order of their barycentric coordinates. To avoid an arbitrary order be-
tween the endmembers, we propose to order them according to their norm ‖mr‖,
i.e., mr � ms ⇔ ‖mr‖ ≤ ‖ms‖. Then a permutation τ according to this order
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(a)

(b) (c)

(d) (e)

Fig. 2. (a) Simplex representation of an hyperspectral image with three endmembers.
(b) First iso-order lines for ≤lex. (c) First iso-order lines for ≤maj. (d) Iso-order lines

for ≤d
L2

. (e) Iso-order lines for ≤dM
.

of endmembers is applied on the abundance coordinates, so vi and vj are rep-
resented by (aτ−1(1),i, . . . , aτ−1(R),i)

t and (aτ−1(1),j , . . . , aτ−1(R),j)
t. Finally, we

define the lexicographic abundance order ≤lex as

vi ≤lex vj ⇔



















aτ−1(1),i < aτ−1(1),j or
aτ−1(1),i = aτ−1(1),j and aτ−1(2),i < aτ−1(2),j or
...
aτ−1(1),i = aτ−1(1),j and . . . and aτ−1(R),i ≤ aτ−1(R),j

(4)

Fig. 2(b) gives an example of first iso-order lines, where the soil is the
dominant material (i.e., largest endmember in the sense of its norm). By first
iso-order lines we mean those which correspond to the first condition in (4):
aτ−1(1),i ≤ aτ−1(1),j .

We note that this order has two important weaknesses. First, all the infor-
mation of the hyperspectral images is not taking into account, since the first
coordinate dominates all the others. Second, we need to order the materials.
Nevertheless it is easy to use and to apply.

3.2 Foreground abundance order: use of majorization

We consider now a partial ordering based on the position of vectors in the simplex
with respect to the so-called foreground. More precisely the foreground here
corresponds to the set of endmembers.

The proposed approach is based on the notion of majorization [9], which
is a technique for ordering vectors of same sum. Let us consider two vectors
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c = (c1, . . . , cn) ∈ R
n and d = (d1, . . . , dn) ∈ R

n, then we say that C weakly
majorizes D, written c ≻w d, if and only if

{

∑k

i=1 c
↓
i ≥

∑k

i=1 d
↓
i , ∀k ∈ [1, n]

∑n

i=1 ci =
∑n

i=1 di
(5)

where c↓i and d↓i represent respectively the coordinates of C and D sorted in
descending order. Majorization is not a partial order, since c ≻ d and d ≻ c do
not imply c = d, it only implies that the components of each vector are equal,
but not necessarily in the same order.

We propose a majorization-like partial order adapted to the abundances.
Similarly to the majorization, a permutation τi of the coordinates of the vectors
vi in the simplex is applied such that they are sorted in descending order. The
majorization-like order ≤maj is given defined as

vi ≤maj vj ⇔























aτ−1

i
(1),i < aτ−1

j
(1),j or

a
τ
−1

i (1),i = a
τ
−1

j (1),j and a
τ
−1

i (2),i < a
τ
−1

j (2),j or

...
aτ−1

i
(1),i = aτ−1

j
(1),j and . . . and aτ−1

i
(R),i ≤ aτ−1

j
(R),j

(6)

See in Fig. 2(c), the corresponding first iso-order lines. An important ad-
vantage of this order is the fact that there is no need for an order between
the different materials. However, as one may notice, it is not possible to find a
order-related metric that would follow the geometry of the simplex.

Partial order based on distances to reference vectors is classical in color mor-
phology [1]. The partial order ≤maj is also related to the approach of hyper-

spectral order proposed in [2]. The fundamental difference is that the present
order is based on abundances (barycentric coordinates in the R − 1-simplex)
whereas in [2], the partial order is based on distances in R

D between vi and each
endmember mr (we note that computing distances in a high dimensional space
is a tricky issue).

3.3 Foreground abundance order: use of stochastic dominance

The stochastic dominance is a partial ordering between probability distribu-
tions [16]. The term is used in decision theory to say if a distribution can
be considered “superior” to another one. We first introduce the second order
stochastic dominance [16]. Let us consider two random variables X and Y of re-
spective cumulative distribution FX and FY , then we say that X is second-order
stochastically dominant over Y if and only if

∫ c

−∞

FX(w)dw ≤

∫ c

−∞

FY (w)dw , ∀c ∈ R (7)

In our case, the abundance coordinates (a1,i, . . . , aR,i)
t of each vector vi can be

seen as a discrete probability distribution, since the sum of the coordinates is
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equal to one. However, to be able to calculate the cumulative distribution of the
vector, we need an order between the coordinates. We use the order of the end-
members and the corresponding permutation τ introduced for the lexicographic
abundance order. So vi is represented by (aτ−1(1),i, . . . , aτ−1(R),i)

t, then we cal-
culate the discrete cumulative distribution from vi, noted by (b1,i, . . . , bR,i)

t:

(a1,i, . . . , aR,i)
t 7→ (b1,i, . . . , bR,i)

t, where bj,i =

j
∑

k=1

aτ−1(k),i.

Stochastic dominance gives rise to a partial order, which induces a supremum
∨dom between vectors vi and vj whose barycentric coordinates are (aτ(1),∨, . . . , aτ(R),∨)

t

such that
(a1,∨, . . . , aR,∨)

t → v1 ∨dom v2,

where

a1,∨ = b1,i ∨ b1,j,

a2,∨ = b2,i ∨ b2,j − b1,i ∨ b1,j,

· · ·

aR,∨ = bR,i ∨ bR,j − bR−1,i ∨ bR−1,j.

Supremum ∨dom introduces “false abundances”, in the sense that they are not
present in the original set of vectors, however, the corresponding spectra are
obtained from the endmembers and therefore the spectra are physically plausible.
The infimum is obtained dually.

3.4 Background abundance order: use of distance/divergence

Previous orders focuss mainly on the relationship between the vectors in the
simplex and its vertices, which correspond in a certain way to the foreground of
the hyperspectral image (the pure pixels).

We propose now to think in a dual paradigm. Basically, the idea is to have
an order given by how far the vectors are from the background. The background
correspond to the situation where the material are totally mixed: the vector
which has the same quantity of materials or in geometric terms, the center of
the simplex c ∈ R

R, i.e., in barycentric coordinates c = (1/R, . . . , 1/R)t. Then,
the partial order between two vectors vi and vj will depend on the distance
between c and each vector. We adopted the convention that further a point is
from the center c, higher its position in the order is. Given a distance d(·, ·), we
have the corresponding background partial order ≤d

L2
:

vi ≤d vj ⇔ d
(

c, (a1,i, . . . , aR,i)
t
)

≤ d
(

c, (a1,j , . . . , aR,j)
t
)

. (8)

In case of equality, we just use the lexicographic abundance order to have a total
order, similarly to [1]. We have considered several distance metrics, for instance
the L1 and L2 Minkowski norm (see in Fig. 2(d) the iso-order lines for ≤d

L2
. We
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have also considered the interest of the Mahalanobis distance dM (·, ·), i.e., given
two random vectors c and d following the same distribution with covariance
matrix Σ, it is given by

dM (c,d) =
√

(c− d)tΣ−1(c − d).

In our case, we have defined Σ as the empirical covariance matrix from the
endmembers {mr}1≤r≤R. We represented the first iso-order lines for ≤dM

in
Fig. 2(e). As one may notice, Mahalanobis distance involves elliptical lines whose
directions of principal axes e1 and e2 are the two eigenvectors of Σ. Hence the
geometry is deformed according to the correlations between the endmembers.

However, neither the Lp metric nor the Mahalanobis distance do not follow
the intrinsic geometry of the simplex. For this purpose, we have studied the
interest of the Kullback-Leibler divergence and its generalization, the Rényi di-
vergence [3, 5]. Given two discrete probability measures P and Q, their similarity
can be computed by the (non-symmetric) Kullback-Leibler divergence defined
as

DKL(P‖Q) =
∑

i

P (i) log
P (i)

Q(i)
. (9)

Rényi divergence of order q, q > 0 of a distribution P from a distribution Q is
given

Dq(P‖Q) =
1

q − 1
log

∑

i

P (i)qQ(i)1−q. (10)

Parameter q allows the introduction to a new family of divergences, for instance
Dq→1(P‖Q) = DKL(P‖Q). The corresponding partial order is obtained as:

vi ≤Dq
vj ⇔ Dq

(

c, (a1,i, . . . , aR,i)
t
)

≤ Dq

(

c, (a1,j , . . . , aR,j)
t
)

. (11)

Fig. 3 illustrates the iso-order lines in the simplex for different values of q. We
can notice in particular that the case q = 1/2 follows rather well the geometry
of the simplex. Finally, we note that Rényi divergence and majorization are
related [20].

4 Application to hyperspectral image processing

Given a hyperspectral image f , represented by its endmembers and the abun-
dance maps:

f(x) =

R
∑

r=1

αr(x)mr,

the previous partial orders can be used to compute supremum and infimum
needed for dilation and erosion of the abundance images. That is the vector
order on the simplex is used on multivariate image {αr(x)}1≤r≤R, to compute
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Fig. 3. Iso-order lines for partial order ≤Dq based on for Rényi divergence of parameter
q.

for instance the operator φ : E ×∆R−1 → E ×∆R−1. By abuse of notation, we
write φ(αr) the r-abundance map obtained by operator φ. Then, the processed
hyperspectral image by operator φ, noted φ(f) is obtained as

φ(f)(x) =

R
∑

r=1

φ(αr)(x)mr .

Fig. 4 gives a comparative example of the opening γB(f) of a hyperspectral
image f using various of the discussed orders.

To judge the effectiveness of a particular morphological operator is not easy.
It depends mainly on the application. We have decided to evaluate the alternative
orders for hyperspectral images in the context of image regularization and its
interest to improve spectral classification. Basically, we compare the result of the
supervised spectral classification obtained on the original hyperspectral image
or the hyperspectral image filtered by a sequential filter according to one of the
presented orders in the simplex.

This empirical study has been made on two images conventionally used in
hyperspectral image processing domain: i) the Pavia image, which represents the
campus of Pavia university (urban scene), of size 610× 340 pixels and D = 103
spectral bands; ii) the Indian Pines image, test site in North-western Indiana
composed for two thirds of agriculture, and one-third of forest, of 145 × 145
pixels and D = 224 spectral bands. We fixed the number of endmembers: R = 9
for Pavia image and R = 10 for the Indian Pines image. The endmembers are
computed using N-FINDR [21] and the abondances by fully-constrained linear
regression. Finally, for the different orders, a sequential filter γBϕBγB(f) is com-
puted, where the structuring element B is a square size 3. The supervised clas-
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sification is done using the least square SVM [22] algorithm with a RBF kernel
as learning technique. Result of classification for both images are summarized in
Tables 1 and 2.

Order Overall Accuracy Kappa statistic

with RBF kernel with RBF kernel

without morpho. processing 60 0.57
lexicographic abundance order 61 0.59
majorization-like order 60 0.57
stochastic dominance-like order 71 0.69

Background order L1 66 0.64

Background order L2 61 0.59
Background order L∞ 58 0.55
Background order Mahalanobis distance, 64 0.62
Background order Rényi divergence q = 0.2, 68 0.66
Background order Rényi divergence q = 1, 69 0.67
Background order Rényi divergence q∗ = 4.65, 74 0.72

Table 1. Comparison of result of classification on the Indian Pine hyperspectral image.

Order Overall Accuracy Kappa statistic

with RBF kernel with RBF kernel

without morpho. processing 88 0.87
lexicographic abundance order 87 0.86
majorization like-order 88 0.86
stochastic dominance like-order 90 0.89

Background order L1 84 0.82

Background order L2 85 0.83
Background order L∞ 87 0.85
Background order Mahalanobis distance, 88 0.86
Background order Rényi divergence q = 0.2, 85 0.83
Background order Rényi divergence q = 1, 81 0.79
Background order Rényi divergence q∗ = 1.74, 93 0.92

Table 2. Comparison of result of classification on the Pavia hyperspectral image.

We do not claim that this is the best way to improve spectral classification,
however this study highlights the impact of the order used in the morphological
operators, which involves in certain case on the choice of the metric. We observe
that, by optimizing the parameter q of Rényi divergence, noted q∗, it is possible
to significantly improve the classification score.

5 Conclusions

We have proposed different kinds of partial orders based on the an endmember
representation of the hyperspectral images. They are just useful to compute
morphological operators for images represented by the linear mixing model. From
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(a) (b) (c)

(d) (e) (f)

Fig. 4. (a) False RGB color image (using three spectral bands) of a hyperspectral image
Indian Pines f , (b) opening γB(f) using lexicographic abundance order, (c) opening
γB(f) using majorization-like order, (d) opening γB(f) using stochastic dominance-like
order, (e) opening γB(f) using Mahalanobis distance-based order, (f) opening γB(f)
using L1-based order, (g) opening γB(f) using Rényi divergence-based order, q = 1.

a mathematical morphology viewpoint, orders considered here can be used for
other data lying in the simplex. This is the case for instance of images where at
each pixel a discrete probability distribution is given.

In the experimental section, we have illustrate the potential interest of cor-
responding morphological operators for a spatial regularization before the clas-
sification. However, any image processing task tackled with morphological oper-
ators (scale-space decomposition, image enhancement, etc.) can be extended to
hyperspectral images using the present framework.
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20. van Erven, T. & Harremoës, P. (2010) Rényi divergence and majorization. In Proc
of the IEEE International Symposium on Information Theory (ISIT’10).

21. Winter, M.E. (1999). N-FINDR: an algorithm for fast autonomous spectral end-
member determination in hyperspectral data. In Proc. of SPIE Image Spectrometry
V, SPIE Vol. 3753, 266–277.

22. Camps-Valls, G., & Bruzzone, L. (2005). Kernel-based methods for hyperspectral
image classification. Geoscience and Remote Sensing, IEEE Transactions on, 43(6),
1351-1362.


