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Abstract

The outage probability performance of a dual-hop amplify-and-forward selective relaying system

with global relay selection is analyzed for Nakagami-m fading channels in the presence of multiple

interferers at both the relays and the destination. Two different cases are considered. In the first

case, the interferers are assumed to have random number and locations. Outage probability using the

generalized Gamma approximation (GGA) in the form of one-dimensional integral is derived. In the

second case, the interferers are assumed to have fixed numberand locations. Exact outage probability

in the form of one-dimensional integral is derived. For bothcases, closed-form expressions of lower

bounds and asymptotic expressions for high signal-to-interference-plus-noise ratio are also provided.

Simplified closed-form expressions of outage probability for special cases (e.g., dominant interferences,

i.i.d. interferers, Rayleigh distributed signals) are studied. Numerical results are presented to show the

accuracy of our analysis by examining the effects of the number and locations of interferers on the

outage performances of both AF systems with random and fixed interferers.

Index Terms

Amplify-and-forward, interference, outage probability,Poisson point process, relay selection.

I. INTRODUCTION

Wireless relaying can extend the network coverage by using idle nodes as relays in the network.

It can also provide diversity gain by using idle nodes as ”virtual” antennas [1]. Consequently,

a huge amount of works have been conducted on its applicationin future wireless networks.

Among all the relaying strategies, amplify-and-forward (AF) and decode-and-forward (DF) are

perhaps the most widely used ones. In AF relaying, the sourcebroadcasts its information to

the relays in the first phase and then the relays simply amplify the received signals from the

source and forward them to the destination in the second phase, while in DF relaying, the source

broadcasts its information in the first phase but the relays have to decode the received signals

from the source and then re-encode the signals before forwarding them to the destination. Due

to its lower complexity, AF relaying is more attractive for some applications [2]. On the other
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hand, in practical systems, it is often the case that more than one idle nodes are available at the

same time such that multiple relays can be used by the source.If all the idle nodes are used

in wireless relaying, orthogonal channels between relays have to be used in the second relaying

phase such that the relayed signals will not interfere with each other. This will reduce the usage

efficiency of the system resources considerably. To solve this problem, relay selection can be

used by choosing only one node out of all available idle nodesin the second phase [3]. It can

be shown that relay selection can achieve the same diversitygain as the scheme that uses all

available idle nodes, with proper designs [4]. Thus, this paper focuses on relay selection using

AF as an effective technology to achieve reliable communications.

Several researchers have studied the performance of relay selection using AF. In [5], the

optimal relay selection criterion was proposed by selecting the relay with the largest instantaneous

end-to-end or global signal-to-noise ratio (SNR) for forwarding. The performance of this criterion

was analyzed in [6]. In [7], two suboptimal relay selection schemes based on two upper bounds

to the instantaneous global SNR were proposed and analyzed.Reference [8] proposed partial

relay selection scheme where relay selection is based on only the instantaneous SNR of the first

hop. In [3], both the optimal selection scheme and the partial selection scheme were analyzed for

Nakagami-m fading channels. Two new partial relay selection schemes were also proposed in

[3]. However, none of these works considered the interferences from other transmitting sources

in the network. In a multiple-access system or a frequency-reused cell, interferences from other

transmitting sources, such as interferers, may cause performance degradation and therefore,

cannot be ignored. Moreover, the positions of the nodes may not be optimized such that interferers

may be randomly distributed. In this case, the spatially averaged (over the distributions of the

positions) performance metrics may be of more practical usefor system design and optimization

by considering random locations of interferers. Reference[9] provided the closed-form expression

of the outage probability of dual–hop AF relaying in the presence of interference at the destination

over Rayleigh fading channels. Reference [10] analyzed theoutage probability of a dual-hop AF

relaying system where both relay and destination are interfered by a single source in Nakagami-
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m fading channel. However these two works either considered interferers only at the destination

over Rayleigh fading channels or only a signal interferer offixed location.

In this paper, we provide a comprehensive analytical framework to derive the outage probability

performance of an AF relay selection system where the relayssuffer from path loss, independent

but non-identically distributed Nakagami-m fading as well as Nakagami-m interferences. In the

first case, the interferers have random number and locations. This is the case for multiple-

access systems with mobile nodes. In the second case, the interferers have fixed number and

locations. This is the case for fixed-access wireless systems where wireless interconnections are

mainly provided to replace wires with considerably low or little mobility. The optimal criterion

that selects the relay with the largest instantaneous global signal-to-noise-plus-interference ratio

(SINR) is studied. The exact outage probability in terms of either one-dimensional integrals or

closed-form approximations are derived. Also, lower bounds to outage probability are given.

Finally, asymptotic expression of outage probability in Rayleigh fading are studied for large

SINR values. Numerical results are presented to show the accuracy of our analysis and therefore

to examine the effects of interferences on relay selection using AF.

The remainder of this paper is organized as follows. SectionII introduces the system model.

Section III considers the case when the interferers have random number and locations, while

Section IV studies the case when the interferers have fixed number and locations. Numerical

results are presented in Section V, followed by concluding remarks in Section VI.

II. SYSTEM MODEL

Consider a wireless relaying system with one sourceS, one destinationD and multiple relays

J of Rj, j = 1, 2, · · · , J . There is no direct link between the source and the destination, which is

the case when relays are used to extend network coverage and is the focus of this paper. All nodes

have a single antenna and are in half-duplex mode. Assume that there areIsj interferers ofIsji ,

i = 1, 2, · · · , Isj, andIjd interferers ofIjdv , v = 1, 2, · · · , Ijd, that are transmitting at the same

time as the source to thej-th relay and thej-th relay to the destination, causing interferences to
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the j-th relays and the destination, respectively. Assume that the distance between the sourceS

and thej-th relayRj , thej-th relayRj and the destinationD, the i-th interfererIsji and thej-th

relay Rj and thev-th interfererIjdv and the destinationD are lsj, ljd, lij and lvj , respectively.

Also, assume that the path loss betweenS andRj , Rj andD, Isji andRj, Ijdv andD areη(lsj),

η(ljd), η(lij) andη(lvj), respectively. As the singular path loss model leads to impractical power

condition in the network whenl < 1, we assume the non-singular model for the path loss as

η(l) =
1

lβ + 1
(1)

whereβ is the path loss exponent.

In the case when the interferers have random number and locations, we assume the numbers

Isj, Ijd and the distanceslij , lvj are random. We assume a Poisson point process (PPP) with

densityλI for the spatial distribution of the interferers. Then, the probability density function

(PDF) of the number of interferers is given as

Pr {i = I} =
(λIAI)

I

I!
e−λIAI , I = 0, 1, · · · (2)

whereAI is the distribution area of interferers. Also, we assume that the distancel follows

a general distribution with a PDF offl(x) which can be specified for different applications

considered. In the case when the interferers have fixed locations, both the number of interferers

and their locations are fixed such thatIsj, Ijd, lij and lvj are deterministic values.

The received signal from the sourceS to thej-th relayRj is given by

ysj =
√

Ωsjhsjx+
Isj
∑

i=1

√

Ωijhijxij + nsj (3)

and it can be further amplified and forwarded such that the received signal at the destination is

given by

yjd =
√

Ωjdhjd ·Gj · ysj +
Ijd
∑

v=1

√

Ωvjhvjxvj + njd (4)

whereΩsj = KsjPsj|hsj|2η(lsj), Ωjd = KjdPjd|hjd|2η(ljd), Ωij = KijPij |hij|2η(lij) andΩvj =

KvjPvj |hvj |2η(lvj) are the average power of the Nakagami-m fading gain in the channel between
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the sourceS and thej-th relayRj , the j-th relayRj and the destinationD, the i-th interferer

Isji and thej-th relayRj , the v-th interfererIjdv and the destinationD, respectively,Psj, Pjd,

Pij andPvj are the transmitted power ofS, Rj , I
sj
i andIjdv , respectively,Ksj, Kjd, Kij andKvj

are constants that take other power factors, such as antennagains and the average signal power

factors, into account,hsj, hjd, hij andhvj are the fading gains with unit average power between

S andRj, Rj andD, Isji andRj , Ijdv andD, respectively,x, xij and xvj are the transmitted

symbol ofS, Isji andIjdv , respectively,nsj, njd are the additive white Gaussian noise (AWGN)

in the channel betweenS andRj , Rj andD, respectively, andGj is the amplification factor.

In the above, assume enough distances between relays and between source and relays and

between relays and destination such that|hsj|, j = 1, 2, · · · , J , are independent of each other,

|hjd|, j = 1, 2, · · · , J are independent of each other and|hsj| are independent of|hjd|. Similarly,

we assume thatnsj are independent of each other for differentj andnjd are independent of each

other for differentj andnsj are independent ofnjd. Also, assume enough distances between inter-

ferers at the relay and between interferers at the destination such thatIsji , |hij|, i = 1, 2, · · · , Isj,

at Rj are independent of each other, respectively, andIjdv , |hvj |, v = 1, 2, · · · , Ijd, at D are

independent of each other, respectively. We also assume interferers change from broadcasting

phase to relaying phase such that interferences at the destination are independent of those at the

relays. Note also thatIsji , |hij| are independent ofIjdv , |hvj |, respectively, for different values

of j, as it is not possible to have the same interferences in the signals from different relays to

destination. Otherwise, the relays have to transmit their signals at the same time in the same

frequency band and the destination will not be able to tell which signal is from which relay.

Based on discussions above, we assume independent Nakagami-m fading channels such that

the fading powers|hsj|2, |hjd|2, |hij|2, and |hvj |2 are independent Gamma random variables

with shape parametersmsj, mjd, mij , mvj and scale parameters1/msj, 1/mjd, 1/mij, 1/mvj ,

respectively, where the Nakagamim parameters are assumed to be integers. Also, assume

E{|x|2} = 1, E{|xij|2} = 1 andE{|xvj |2} = 1 such that the actual average signal power is

absorbed byΩsj, Ωij andΩvj , respectively. Denoteσ2
sj = E{|nsj|2} as the noise power between
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S andRj andσ2
jd = E{|njd|2} as the noise power betweenRj andD. Let Ysj =

∑Isj

i=1Ωij |hij|2

andYjd =
∑Ijd

v=1 Ωvj |hvj |2. Define the SNR betweenS andRj , Rj andD asγSNR
sj =

E{Ωsj |hsj |
2}

σ2
sj

,

γSNR
jd =

E{Ωjd|hjd|
2}

σ2
jd

, respectively, the interference-to-noise ratio (INR) betweenS andRj , Rj

andD asγINR
sj =

E{Ysj}

σ2
sj

, γINR
jd =

E{Yjd}

σ2
jd

, respectively, and the SINR betweenS andRj , Rj and

D asγSINR
sj =

E{Ωsj |hsj |
2}

σ2
sj+E{Ysj}

, γSINR
jd =

E{Ωjd|hjd|
2}

σ2
jd
+E{Yjd}

, respectively.

Using these assumptions, for variable-gain relaying, the amplification factor is given by

Gj =
1

√

Ωsj |hsj|2 + σ2
sj +

∑Isj

i=1Ωij |hij|2
. (5)

Using (5) in (4), the instantaneous end-to-end SINR of thej-th relaying link can be derived as

Γj =
ΓsjΓjd

Γsj + Γjd + 1
(6)

where

Γsj =
Ωsj|hsj|2
σ2
sj + Ysj

(7)

and

Γjd =
Ωjd|hjd|2
σ2
jd + Yjd

. (8)

In relay selection, the relay with the largest end-to-end instantaneous SINR is selected. Thus,

the outage probability for a threshold ofγth is given by

Po(γth) = Pr{max{Γj} < γth}, j = 1, 2, · · · , J (9)

whereγth = 22R − 1 andR is the transmission rate. In the next sections, this outage probability

is derived in different cases.

III. RANDOM INTERFERERS

We first consider the case when the interferers have random number and locations. In this

case, the randomness comes from the Nakagami-m fading powers, the number of interferersIsj

andIjd as well as the distanceslij and lvj . In the first subsection, the PDFs ofYsj andYjd are

derived using the generalized Gamma approximation (GGA), as their closed-form expressions are
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difficult to obtain, if not impossible. Then, closed-form expressions of the PDF and cumulative

distribution function (CDF) forΓsj andΓjd are derived. In the third subsection, outage probability

is derived when the relay with the largest instantaneous end-to-end SINR is selected. Note that

the analysis of outage probability in this section can also be considered as an exact result when

each relay and the destination have only one fixed interfererfollowing generalized Gamma

distribution.

A. PDF of Ysj and Yjd

Exact closed-form expressions for the PDFs ofYsj andYjd are not available and are difficult to

obtain. As a result, only moment generating functions (MGFs) of Ysj andYjd for independent and

identically distributed (i.i.d.) channels are available in the literature [11], which use either two- or

three-dimensional integrals and thus are very complicatedand not convenient to use. Therefore,

it is nearly impossible to get the closed-form expressions for the PDFs and CDFs ofYsj and

Yjd from these MGFs because the inverse Laplace transform is further needed. Thus, in the

following, we will use GGA by matching the first-order, second-order and third-order moments

of Ysj andYjd to the first-order, second-order and third-order moments ofa generalized Gamma

random variable. To the best of the authors’ knowledge, noneof the works in the literature have

considered using GGA to approximate the distribution of random interferers. Numerical results

in Section V will show that the GGA approximation has a very good match with the simulation

results. AsYsj andYjd have the same distribution but with different parameters, we approximate

the distribution ofYsj first. One can get the approximate PDF ofYsj using GGA as

fYsj
(x; asj, dsj, psj) =

psj a
−dsj
sj xdsj−1e

−

(

x
asj

)psj

Γ
(

dsj
psj

) , x > 0 (10)

whereΓ(·) is the Gamma function,dsj > 0, psj > 0 are shape parameters andasj > 0 is the

scale parameter to be determined [12]. It is shown in Appendix A that one can calculatepsj and
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dsj in (10) by solving the two equations as










B
(

dsj+1

psj
,
dsj+2

psj

)

=
E{Ysj}E{Y 2

sj}

E{Y 3
sj
}

B
(

dsj
psj

,
dsj+3

psj

)

B
(

dsj+1

psj
,
dsj+1

psj

)

=
E{Ysj}2

E{Y 2
sj}

B
(

dsj
psj

,
dsj+2

psj

)
(11)

whereE{Ysj}, E{Y 2
sj} andE{Y 3

sj} can be found in (44), (45) and (46), respectively, and then

one can calculateasj by inserting the solved values ofpsj anddsj into one of the equations in

(47). Also, when all the interferers are i.i.d., with the help of eλ =
∑∞

I=0
λI

I!
, eλ = 1

λ

∑∞
I=1 I

λI

I!

or eλ = 1
λ2

∑∞
I=1 I(I − 1)λ

I

I!
[13], E{Ysj}, E{Y 2

sj} andE{Y 3
sj} can be simplified as



































E{Ysj} = IsjKijPijη1,ij

E{Y 2
sj} = IsjK2

ijP
2
ijη2,ij

mij+1

mij
+ (Isj)2Ki1jPi1jKi2jPi2jη

2
1,ij

E{Y 3
sj} = IsjK3

ijP
3
ij

(mij+1)(mij+2)

m2
ij

η3,ij + (Isj)2K2
i1j
P 2
i1j
Ki2jPi2j

mij+1

mij
η2,ijη1,ij

+(Isj)3Ki1jPi1jKi2jPi2jKi3jPi3jη
3
1,ij .

(12)

The PDF expressionfYjd
(x; ajd, djd, pjd) of Yjd can be obtained using the same method as

above. They are not listed here due to the limited space.

B. PDF and CDF of Γsj and Γjd

DenoteWsj = Ωsj |hsj|2. Since|hsj|2 is a Gamma random variable with shape parametermsj

and scale parameter1/msj, Wsj is also a Gamma random variable with PDF

fWsj
(x) =

(

msj

Ωsj

)msj xmsj−1

Γ(msj)
e
−

msj
Ωsj

x
, x > 0. (13)

Also, denoteZsj = Ysj + σ2
sj, where the PDF ofZsj is determined byfZsj

(x) = fYsj
(x− σ2

sj).

Thus, one hasΓsj =
Wsj

Zsj
and the PDF ofΓsj is given by

fΓsj
(u) =

∫ ∞

−∞

|x| fWsj
(xu) fYsj

(

x− σ2
sj

)

dx. (14)

Using (10) and (13) in (14) and definingpsj = lsj/ksj such thatgcd(lsj, ksj) = 1 wheregcd(·, ·)

is the great common devisor operator [14], one has

fΓsj
(u) =

msj
∑

r1=0

µ1,sj,r1e
−

msjσ
2
sju

Ωsj u−dsj+msj−r1−1G
ksj ,lsj
lsj ,ksj






µ0,sju

−lsj |
I(lsj, 1− dsj − r1)

I(ksj, 0)






,

(15)

DRAFT June 12, 2018



9

whereµ1,sj,r1 =
l
dsj+r1−

1
2

sj σ
2(msj−r1)

sj

(

msj
Ωsj

)

−dsj+msj−r1√
ksjpsjmsj !a

−dsj
sj (2π)−

ksj
2 −

lsj
2 +1

r1!(msj−r1)!Γ(msj )Γ

(

dsj
psj

) , µ0,sj =

k
−ksj
sj l

lsj
sj a

−ksjpsj
sj

(

msj

Ωsj

)−lsj

, I(n, ξ) = (ξ/n, (ξ + 1)/n, · · · , (ξ + n− 1)/n) and Gc,d
a,b(·) denotes

the Meijer’G-function [14] which is available as a built-infunction in many mathematical

software packages, such as MATLAB, MATHEMATICA and MAPLE.

Proof : See Appendix B.

Also, one can get the CDF ofΓsj as

FΓsj
(u) = 1−

msj−1
∑

r2=0

r2
∑

r3=0

µ2,sj,r2,r3e
−

msjσ
2
sju

Ωsj u−dsj+r2−r3G
ksj ,lsj
lsj ,ksj






µ0,sju

−lsj |
I(lsj, 1− dsj − r3)

I(ksj, 0)







(16)

whereµ2,sj,r2,r3 =
l
dsj+r3−

1
2

sj σ
2(r2−r3)
sj

(

msj
Ωsj

)

−dsj+r2−r3√
ksjpsja

−dsj
sj (2π)−

ksj
2 −

lsj
2 +1

r3!(r2−r3)!Γ

(

dsj
psj

) .

Proof : See Appendix C.

The PDF and CDF ofΓsj in (15) and (16) in terms of the Meijer’G-function are computa-

tionally complex. Therefore, we provide the high SINR approximations next that have simpler

forms. Using the following Taylor’s series expansion

ex =

N
∑

n=0

xn

n!
+ o(xN ), as x → 0, (17)

whereo(x) denotes the higher-order term of an arbitrary functiona(x), one can get the PDF

and CDF ofΓsj as (18) and (19), respectively.

fΓsj
(u) =

N1
∑

n1=0

N3
∑

n3=0

msj
∑

r1=0

µ5,sj,r1,n1,n3u
msj+n1+n3−1 + o

[

(u/Ωsj)
N1
]

+ o
[

(σ2
sju/Ωsj)

N3
]

, (18)

whereµ5,sj,r1,n1,n3 =
(−1)n1+n3a

n1+r1
sj m

msj+n1+n3+1

sj Ω
−msj−n1−n3
sj σ

2(msj−r1+n3)

sj Γ

(

dsj+n1+r1
psj

)

n1!n3!Γ(r1+1)Γ(msj−r1+1)Γ

(

dsj
psj

) ,

FΓsj
(u) = 1−

N2
∑

n2=0

N4
∑

n4=0

msj−1
∑

r2=0

r2
∑

r3=0

µ6,sj,r2,r3,n2,n4u
n2+r2+n4 + o

[

(u/Ωsj)
N2
]

+ o
[

(σ2
sju/Ωsj)

N4
]

,

(19)

whereµ6,sj,r2,r3,n2,n4 =
(−1)n2+n4a

n2+r3
sj

σ
2(r2−r3+n4)
sj

(

msj
Ωsj

)n2+r2+n4
Γ

(

dsj+n2+r3
psj

)

n2!n4!r3!(r2−r3)!Γ

(

dsj
psj

) .

Proof : See Appendix D.
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In high SINR conditions whenΩsj → ∞ or σ2
sj → 0 or in the low outage regime whenu → 0,

one can get rid ofo
[

(u/Ωsj)
N1
]

, o
[

(u/Ωsj)
N2
]

, o
[

(σ2
sju/Ωsj)

N3
]

ando
[

(σ2
sju/Ωsj)

N4
]

in (18)

and (19) to obtain corresponding approximations, respectively.

The PDF and CDF expressionsfΓjd
(u) andFΓjd

(u) and their high SINR approximations can

be obtained using the same method as above. They are not listed here to make the paper compact.

C. Outage probability

Using the derived PDF and CDFs ofΓsj andΓjd in the previous subsection, the CDF of the

instantaneous end-to-end SINR in (6) can be derived as [3]

FE
Γj
(x) =

∫ ∞

0

Pr

{

ΓsjΓjd

Γsj + Γjd + 1
≤ x|t

}

fΓsj
(t)dt

= FΓsj
(x) +

∫ ∞

0

FΓjd

(

x2 + x+ xt

t

)

fΓsj
(t+ x)dt.

(20)

One can see that (20) only has one-dimensional integral, which can be calculated numerically

using mathematical software. Also, by using the lower boundas

FΓj
(x) > 1−

[

1− FΓsj
(x)
] [

1− FΓjd
(x)
]

= FLB
Γj

(x), (21)

one can get the lower bound to the CDF as

FLB
Γj

(x) = 1−
msj−1
∑

r2=0

r2
∑

r3=0

mjd−1
∑

r′2=0

r′2
∑

r′3=0

µ2,sj,r2,r3µ2,jd,r′2,r
′

3
e
−

msjσ
2
sjx

Ωsj
−

mjdσ
2
jd

x

Ωjd x−dsj+r2−r3−djd+r′2−r′3

G
ksj ,lsj
lsj ,ksj






µ0,sjx

−lsj |
I(lsj, 1− dsj − r3)

I(ksj, 0)






G

kjd,ljd
ljd,kjd






µ0,jdx

−ljd |
I(ljd, 1− djd − r′3)

I(kjd, 0)






,

(22)

whereµ2,jd,r′2,r
′

3
=

l
djd+r′3−

1
2

jd
σ
2(r′2−r′3)

jd

(

mjd
Ωjd

)

−djd+r′2−r′3√
kjdpjda

−djd
jd

(2π)−
kjd
2 −

ljd
2 +1

r′3!(r
′

2−r′3)!Γ

(

djd
pjd

) andµ0,jd =

k
−kjd
jd l

ljd
jd a

−kjdpjd
jd

(

mjd

Ωjd

)−ljd
.

Also, if one inserts the CDFs of high SINR approximations into (21) and with the help of
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(43), one can get the asymptotic expression of the CDF as

F∞
Γj
(x) = 1−

N2
∑

n2=0

N4
∑

n4=0

msj−1
∑

r2=0

r2
∑

r3=0

N ′

2
∑

n′

2=0

N ′

4
∑

n′

4=0

mjd−1
∑

r′2=0

r′2
∑

r′3=0

xn2+r2+n4+n′

2+r′2+n′

4

(−1)n2+n4+n′

2+n′

4σ
2(r2−r3+n4)
sj σ

2(r′2−r′3+n′

4)
jd

(

msj

Ωsj

)n2+r2+n4
(

mjd

Ωjd

)n′

2+r′2+n′

4

E
(

Y n2+r3
sj

)

E
(

Y
n′

2+r′3
jd

)

n2!n4!r3!(r2 − r3)!n
′
2!n

′
4!r

′
3!(r

′
2 − r′3)!

(23)

whereE
(

Y n2+r3
sj

)

=
a
n2+r3
sj Γ

(

dsj+n2+r3
psj

)

Γ

(

dsj
psj

) , E
(

Y
n′

2+r′3
jd

)

=
a
n′

2+r′3
jd

Γ

(

djd+n′

2+r′3
pjd

)

Γ

(

djd
pjd

) .

Then, the outage probability for AF relay selection is givenby

PΨ
o (γth) =

J
∏

j=1

FΨ
Γj
(γth) (24)

whereΨ in (24) can beE usingFE
Γj
(x) to get the exact outage probability,LB usingFLB

Γj
(x) to

get lower bound and∞ usingF∞
Γj
(γth) to get the asymptotic expression for the outage probability.

Using the simple form in (23), several insights can be obtained. For example, in the low outage

regime whenγth → 0, the above result becomes exact. Also, one can see from (23) that when the

Nakagami-m parameters of the interferencemij or mvj (≫ 1) are large and increase, the outage

probability remains almost unchanged. This is becausemij or mvj only have an influence on

the order of interference power, as can be seen from (44), (45) and (46) in Appendix A, where

thec-th order moment of interference powerE (Ysj) or E (Yjd) remains almost unchanged when

mij or mvj are large. For small values ofmij or mvj (≈ 1), they still have some influence on

the outage probability, asmij+1

mij
in (45) and (mij+1)(mij+2)

m2
ij

in (46) cannot be ignored ifmij ≈ 1

(They approach 1 whenmij → 0). This phenomenon will be shown in Fig. 1 by simulation in

Section V.

Also, one can see from (23) that, when the SINR increases (i.e. Ωsj or Ωjd increase, orσ2
sj or

σ2
jd decrease, orE (Ysj) orE (Yjd) decrease), the outage probability decreases accordingly,which

will be shown in Fig. 3 and Fig. 4 in Section V. Further, for fixed SINR, if one decreases INR (i.e.

decreases the interference powerE (Ysj) or E (Yjd)), the outage probability still decreases. This

is because the order of the interference powerE
(

Y n2+r3
sj

)

or E
(

Y
n′

2+r′3
jd

)

in (23) also affects

the outage probability. The rate of decrease becomes small when the diversity order (determined
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by msj or mjd) is small. Therefore, when the signal experiences Rayleighfading (i.e.msj = 1

or mjd = 1), the outage probability remains almost unchanged if one changes INR but keeps

SINR fixed. These explanations will be verified in Fig. 2 and Fig. 3 in Section V.

Also, since the possible boundary of the interferers and thepass loss between the interferer

and the signal have influence on the order of interference power (referring to (44), (45) and

(46) in Appendix A), changing the possible boundary and the pass loss also changes the outage

probability, even if one keeps the SINR and INR fixed. Similarto before, for the Rayleigh case,

the outage probability changes little if one keeps SINR and INR fixed. These discussions will

be verified in Fig. 5 and Fig. 6 in Section V.

Another insight that can be obtained from (23) is that, whenmsj or mjd increase, the outage

probability decreases, asmsj or mjd are in the upper limits of the summations in (23), which

will also be examined in Fig. 2 - Fig. 6 in Section V.

D. Special cases

For the sake of simplicity, we now focus on the case when the interferences are dominant at

both relay and destination. By settingσ2
sj ≈ 0 andσ2

jd ≈ 0 in (23), one can get the asymptotic

CDF in this case as

F∞
Γj
(x) = 1−

N2
∑

n2=0

msj−1
∑

r2=0

N ′

2
∑

n′

2=0

mjd−1
∑

r′2=0

(−1)n2+n′

2

(

msj

Ωsj

)n2+r2
(

mjd

Ωjd

)n′

2+r′2
E
(

Y n2+r2
sj

)

E
(

Y
n′

2+r′2
jd

)

n2!r2!n′
2!r

′
2!

xn2+r2+n′

2+r′2,

(25)

whereE
(

Y n2+r2
sj

)

=
a
n2+r2
sj Γ

(

dsj+n2+r2
psj

)

Γ

(

dsj
psj

) , E
(

Y
n′

2+r′2
jd

)

=
a
n′

2+r′2
jd

Γ

(

djd+n′

2+r′2
pjd

)

Γ

(

djd
pjd

) .

In another special case when the signal experiences Rayleigh fading channel, by settingmsj =
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1 andmjd = 1, (23) is specialized to

F∞
Γj
(x) = 1−

N2
∑

n2=0

N4
∑

n4=0

N ′

2
∑

n′

2=0

N ′

4
∑

n′

4=0

(−1)n2+n4+n′

2+n′

4Ω−n2−n4
sj Ω

−n′

2−n′

4
jd σ2n4

sj σ
2n′

4
jd E

(

Y n2
sj

)

E
(

Y
n′

2
jd

)

n2!n4!n′
2!n

′
4!

xn2+n4+n′

2+n′

4,

(26)

whereE
(

Y n2
sj

)

=
a
n2
sj Γ

(

dsj+n2
psj

)

Γ

(

dsj
psj

) , E
(

Y
n′

2
jd

)

=
a
n′

2
jd

Γ

(

djd+n′

2
pjd

)

Γ

(

djd
pjd

) .

Then, using (24), the outage probability for the two specialcases above can be obtained.

IV. FIXED INTERFERERS

In this section, we consider the case when the interferers have fixed number and locations.

In this case, the numbers of interferersIsj and Ijd as well as the distanceslij and lvj are

deterministic such that they can be all treated as constants. The only randomness comes from

the Nakagami-m fading. Thus,Γsj is a function of only the random channel gains. Note that

similar derivations have also been conducted for dual-hop AF relaying without relay selection

in the literature [10], [15]–[23]. However, they either consider interferences at only one of

the relay and the destination [15]–[17], [19], [23], only a single interferer [10], for fixed-gain

relaying [18], for performance upper bounds [20], for interference-limited case with identical

Nakagami-m channels [21], or for Rayleigh channels [22]. In the following, we will derive the

exact performance for the case when both the relay and the destination suffer from multiple

non-identically distributed Nakagami-m interferers and we also consider relay selection in our

derivation.

A. PDF and CDF of Γsj and Γjd

Similarly, we derive the PDF and CDF ofΓsj first. SinceYsj =
∑Isj

i=1Ωij |hij |2 and |hij|2 are

independent Gamma random variables, by proper scaling,Ysj is actually a sum of independent

Gamma random variables. A closed-form expression for the PDF of this sum was derived in

[24]. However, this expression uses an infinite series in order to consider the general case of
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arbitrary shape parameters and scale parameters. To avoid this infinite series in our result, we

use the PDF in [25] for the case when the Nakagami-m parameters could be different but are

integers. In this case, the PDF ofYsj is given by [25, eq. (4)]

fYsj
(x) =





Isj
∏

i∗=1

(

−Ωi∗j

mi∗j

)−mi∗j





Isj
∑

i=1

mij
∑

r=1

(−1)rbir
(r − 1)!

xr−1e
−

mij
Ωij

x
, x > 0 (27)

wherebir is a constant given by [25, eq. (5)],Ωi∗j, mi∗j are the same asΩij , mij, respectively

for the samei and j and all other symbols are defined as before. It is derived in Appendix E

that the PDF ofΓsj can be written as

fΓsj
(u) =

Isj
∑

i=1

mij
∑

r=1

msj
∑

f=0

ϕ1,sj,ij,i,r,f
umsj−1e

−
msj
Ωsj

σ2
sju

(
msj

Ωsj
u+

mij

Ωij
)f+r

, (28)

whereϕ1,sj,ij,i,r,f =

[

∏Isj

i∗=1

(

− Ωi∗j

mi∗j

)−mi∗j

]

(−1)rbir

(

msj
Ωsj

)msj

(
msj
f )(σ2

sj)
msj−fΓ(f+r)

Γ(msj)(r−1)!
,

and the CDF ofΓsj can be derived as

FΓsj
(u) = 1−

Isj
∑

i=1

mij
∑

r=1

msj−1
∑

f=0

f
∑

h=0

ϕ2,sj,ij,i,r,f,h
ufe

−
msj
Ωsj

σ2
sju

(
msj

Ωsj
u+

mij

Ωij
)h+r

, (29)

whereϕ2,sj,ij,i,r,f,h =

[

∏Isj

i∗=1

(

− Ωi∗j

mi∗j

)−mi∗j

]

(−1)rbir

(

msj
Ωsj

)f

(fh)(σ2
sj)

f−hΓ(h+r)

(r−1)!f !
.

Using (17) and the following Taylor’s series expansion

(1 + x)−n =
N
∑

i=0

(

−n
i

)

xi + o(xN ), as x → 0, (30)

wheren andN are positive integers, one can get the high SINR approximations for PDF and

CDF of Γsj as (31) and (32), respectively.

fΓsj
(u) =

Isj
∑

i=1

N5
∑

n5=0

N6
∑

n6=0

mij
∑

r=1

msj
∑

f=0

ϕ3,sj,ij,i,r,f,n5,n6u
msj+n5+n6−1 + o

[

(σ2
sju/Ωsj)

N5
]

+ o
[

(uΩij/Ωsj)
N6
]

(31)
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whereϕ3,sj,ij,i,r,f,n5,n6 =
[

∏Isj

i∗=1

(

− Ωi∗j

mi∗j

)−mi∗j

]

(−1)r+n5 bir

(

msj
Ωsj

)msj+n5+n6
(

mij
Ωij

)

−f−r−n6

(
msj
f )(−f−r

n6 )(σ2
sj )

msj−f+n5Γ(f+r)

Γ(msj)(r−1)!n5!
,

FΓsj
(u) = 1−

Isj
∑

i=1

N7
∑

n7=0

N8
∑

n8=0

mij
∑

r=1

msj−1
∑

f=0

f
∑

h=0

ϕ4,sj,ij,i,r,f,h,n7,n8u
f+n7+n8 + o

[

(σ2
sju/Ωsj)

N7
]

+ o
[

(uΩij/Ωsj)
N8
]

,

(32)

whereϕ4,sj,ij,i,r,f,h,n7,n8 =
[

∏Isj

i∗=1

(

− Ωi∗j

mi∗j

)−mi∗j

]

(−1)r+n7 bir

(

msj
Ωsj

)f+n7+n8
(

mij
Ωij

)

−h−r−n8

(fh)(
−h−r
n8 )(σ2

sj)
f−h+n7Γ(h+r)

(r−1)!f !n7!
.

In high SINR conditions,o
[

(σ2
sju/Ωsj)

N5
]

, o
[

(uΩij/Ωsj)
N6
]

, o
[

(σ2
sju/Ωsj)

N7
]

ando
[

(uΩij/Ωsj)
N8
]

in the above equations can be removed to obtain corresponding approximations.

The PDF and CDF expressionsfΓjd
(u) andFΓjd

(u) and their high SINR approximations can

be also obtained using the same methods as above.

B. Outage probability

Using the derived exact PDF and CDFs ofΓsj andΓjd into (20), one can get the CDF of the

instantaneous end-to-end SINR in one-dimensional integral, which can be calculated numerically

using mathematical software.

Then, following the same process as in Section III, one can get the lower bound of the CDF

as (33), when the exact CDFs ofΓsj andΓjd are used,

FΓj
(x) > 1−

Isj
∑

i=1

mij
∑

r=1

msj−1
∑

f=0

f
∑

h=0

Ijd
∑

v=1

mvj
∑

r′=1

mjd−1
∑

f ′=0

f ′

∑

h′=0

ufe
−

msj
Ωsj

σ2
sju

(
msj

Ωsj
u+

mij

Ωij
)h+r

uf ′

e
−

mjd
Ωjd

σ2
jd
u

(
mjd

Ωjd
u+

mvj

Ωvj
)h′+r′

ϕ2,sj,ij,i,r,f,hϕ2,jd,vd,v,r′,f ′,h′ = FLB
Γj

(x),

(33)

whereϕ2,jd,vd,v,r′,f ′,h′ =

[

∏Ijd

v∗=1

(

− Ωv∗j

mv∗j

)−mv∗j

]

(−1)r
′

bvr′

(

mjd
Ωjd

)f ′(
f ′

h′

)

(σ2
jd
)f

′
−h′Γ(h′+r′)

(r′−1)!f ′!
.

Also, using high SINR approximations ofFΓsj
andFΓjd

, one can get the asymptotic expression

June 12, 2018 DRAFT



16

of the CDF as

F∞
Γj
(x) = 1−

Isj
∑

i=1

N7
∑

n7=0

N8
∑

n8=0

mij
∑

r=1

msj−1
∑

f=0

f
∑

h=0

Ijd
∑

v=1

N ′

7
∑

n′

7=0

N ′

8
∑

n′

8=0

mvj
∑

r′=1

mjd−1
∑

f ′=0

f ′

∑

h′=0

uf+n7+n8+f ′+n′

7+n′

8

ϕ4,sj,ij,i,r,f,h,n7,n8ϕ4,jd,vd,v,r′,f ′,h′,n′

7,n
′

8
,

(34)

whereϕ4,jd,vd,v,r′,f ′,h′,n′

7,n
′

8
=

[

∏Ijd

v∗=1

(

− Ωv∗j

mv∗j

)−mv∗j

]

(−1)r
′+n′

7bvr′

(

mjd
Ωjd

)f ′+n′

7+n′

8
(

mvj
Ωvj

)

−h′−r′−n′

8(f ′

h′

)

(

−h′−r′

n′

8

)

(σ2
jd
)f

′
−h′+n′

7Γ(h′+r′)

(r′−1)!f ′!n′

7!
.

Then, using (24), the outage probability can be obtained.

C. When the interferences are dominant

In the case when the interferences are dominant at both relayand destination such thatσ2
sj ≈ 0

andσ2
jd ≈ 0, exact CDF expression (20) can be solved in closed-form as

FΓj
(x) = FΓsj

(x) +
Isj
∑

i=1

mij
∑

r1=1

ϕ7ϕ9(x)−
Isj
∑

i=1

Ijd
∑

v=1

mij
∑

r1=1

mvj
∑

r2=1

mjd−1
∑

f=0

msj−1
∑

j1=0

f
∑

j2=0

ϕ8ϕ10(x) (35)

whereϕ7 =
(

msj

Ωsj

)−r1
[

∏Isj

i∗=1

(

− Ωi∗j

mi∗j

)−mi∗j

]

(−1)r1 bir1Γ(msj+r1)B(1,r1)

Γ(msj )(r1−1)!
,

ϕ8 =
(

msj

Ωsj

)msj

[

∏Isj

i∗=1

(

− Ωi∗j

mi∗j

)−mi∗j

] [

∏Ijd

v∗=1

(

− Ωv∗j

mv∗j

)−mv∗j

]

(

f
j2

)(

msj−1
j1

)

(−1)r1+r2bir1bvr2Γ(msj+r1)Γ(f+r2)Ω
r2
jd

(ΩijΩsj)
msj+r1m

j1+j2+1
jd

Ω
j1+j2+r2+1
vj

(r2−1)!f !Γ(msj )(r1−1)!
B(j1 + j2 + r2 + 1, msj + r1 −

j1 − j2 + f − 1), ϕ9(x) = 2F1

(

1, 1−msj; r1 + 1;− mijΩsj

msjΩijx

)(

mijΩsj

msjΩij
+ x
)−msj−r1+1

xmsj−1,

ϕ10(x) = (x+1)j1+1xj2+msj (mijΩsj+msjΩijx)
−msj−r1(mjdΩvjx+mvjΩjd)

−j1−j2−r2−1
2F1(msj+

r1, j1 + j2 + r2 + 1;msj + r1 + f + r2; 1 −
mjdΩvjmsjΩij(x2+x)

(mijΩsj+msjΩijx)(mvjΩjd+mjdΩvjx)
) and 2F1(·, ·; ·; ·) is

the hypergeometric function.

Proof : See Appendix F.

Note that (35) is a very good closed-form approximation to the exact CDF when INR is large

in the case of fixed interferences.

D. When the interferences are i.i.d.

In this subsection, we focus on the case when all the interferences are i.i.d. One can see that

the PDFfYsj
(x) in (27) is only suitable when the Nakagami-m parameters of interferences are
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different. When all the interferences are i.i.d., (27) simply becomes

fYsj
(x) =

(

mij

Ωij

)Isjmij xIsjmij−1

Γ(Isjmij)
e
−

mij
Ωij

x
, x > 0 (36)

wherebir does not exist any more and all other symbols are defined as before. Using (13), (14),

(21) and (36), the lower bound can be derived as

FΓj
(x) > 1− ϕ12

msj−1
∑

v1=0

mjd−1
∑

v2=0

v1
∑

s1=0

v2
∑

s2=0

ϕ13ϕ14(x) = FLB
Γj

(x) (37)

whereϕ12 =

(

Ωvj
mvj

)

−Ijdmvj
(

Ωij
mij

)

−Isjmij

e
−

mjdσ
2
jd

x

Ωjd
−

msjσ
2
sjx

Ωsj

Γ(Ijdmvj)Γ(Isjmij)
,

ϕ13 =

(

Ωjd
mjd

)

−v2
(

Ωsj
msj

)

−v1
(σ2

jd
)v2−s2 (σ2

sj)
v1−s1Γ(Ijdmvj+s2)Γ(Isjmij+s1)

s1!s2!(v1−s1)!(v2−s2)!
,

ϕ14(x) = xv1+v2

(

mjdx

Ωjd
+

mvj

Ωvj

)−Ijdmvj−s2
(

mij

Ωij
+

msjx

Ωsj

)−Isjmij−s1

.

Similar, the asymptotic outage probability in the low outage regime can be derived as

F∞
Γj
(x) = 1−

msj−1
∑

v1=0

mjd−1
∑

v2=0

v1
∑

s1=0

v2
∑

s2=0

N9
∑

n9=0

N10
∑

n10=0

N11
∑

n11=0

N12
∑

n12=0

ϕ15ϕ16x
n10+n11+n12+n9+v1+v2 , (38)

whereϕ15 =
(−1)n10+n9Γ(Ijdmvj+s2)Γ(Isjmij+s1)

(

−Ijdmvj−s2
n12

)(

−Isjmij−s1
n11

)

n10!n9!s1!s2!(v1−s1)!(v2−s2)!Γ(Ijdmvj)Γ(Isjmij )
,

ϕ16 =
(

Ωij

mij

)n11+s1
(

Ωvj

mvj

)n12+s2

(σ2
jd)

n10−s2+v2(σ2
sj)

n9−s1+v1

(

Ωjd

mjd

)−n10−n12−v2
(

Ωsj

msj

)−n11−n9−v1

.

Then, the lower bound and asymptotic expression for the outage probability can be derived by

using (37) and (38) in (24). Several insights can be obtainedfrom (38) for i.i.d. fixed interferers.

For example, one can see that with the increase of the Nakagami-m parameters of the interference

mij or mvj , the outage probability remains almost the same, which willbe examined in Fig. 7.

Similar to the analysis for random interferers, with the increase of SINR, the outage probability

for fixed interferer decreases accordingly, which will be examined in Fig. 9 and Fig. 10 in Section

V. However, different from random interferers, changing INR will not have a great influence on

the outage probability for fixed interferers if the SINR is fixed. This is because SINR dominates

the outage probability for fixed interferes and changing INRjust change the ratio between

the noise power and the interference power but has negligible influence on the overall outage

probability, which will be shown in Fig. 8 and Fig. 9 in Section V. Another insight that can be
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obtained from (38) is that, with the increase ofmsj or mjd, the outage probability decreases, as

msj or mjd are in the upper limits of the summations in (38), which will be examined in Fig. 8

- Fig. 10 via simulation in Section V.

In the i.i.d. case when the interferences are dominant at both relay and destination, one can

further get the closed-form expression of the CDF as

FΓj
(x) = 1−

msj−1
∑

f1=0

ϕ17x
f1

(

mij

Ωij

+
msjx

Ωsj

)−f1−Isjmij

+ ϕ18ϕ20(x)−
mjd−1
∑

f2=0

f2
∑

s1=0

msj−1
∑

s2=0

ϕ19ϕ21(x)

(39)

whereϕ17 =
Γ(f1+Isjmij)

f1!

(

Ωsj
msj

)f1
(

Ωij
mij

)Isjmij

Γ(Isjmij)

, ϕ18 =
m

−Isjmij
sj

(

Ωij
mij

)

−Isjmij

Ω
Isjmij
sj B(1,Isjmij)

B(Isjmij ,msj)
, ϕ19 =

Γ(f2+Ijdmvj)m
−Ijdmvj
jd

Ω
Ijdmvj
jd

(

Ωvj
mvj

)

−Ijdmvj

m
−Isjmij
sj

(

Ωij
mij

)

−Isjmij

Ω
Isjmij
sj Γ(Isjmij+msj)

Γ(Ijdmvj)Γ(Isjmij)s1!s2!(f2−s1)!Γ(msj−s2)

B(Ijdmvj+s1+s2+1, f2+Isjmij+msj−s1−s2−1), ϕ20(x) = xmsj−1
(

Ωsjmij

msjΩij
+ x
)−Isjmij−msj+1

2F1

(

1, 1−msj ; I
sjmij + 1;− mijΩsj

msjΩijx

)

, ϕ21(x) = (x+1)s2+1xmsj+s1

(

msjΩij

msjΩijx+mijΩsj

)Isjmij+msj

(

mjdΩvj

mjdΩvjx+mvjΩjd

)Ijdmvj+s1+s2+1

2F1(I
sjmij + msj, I

jdmvj + s1 + s2 + 1; f2 + Isjmij + msj +

Ijdmvj ; 1− mjdmsjΩvjΩijx(x+1)

(Ωjdmvjmij+mjdΩvjmijx)(Ωsjmvjmij+Ωijmsjxmvj)
).

Again, (39) is a very good closed-form approximation for theexact CDF when INR is large in

the case of i.i.d fixed interferences. Using (24), the outageprobability is obtained. Simulations

in Fig. 11 in Section V will show that this approximation has avery good match with the exact

outage probability when INR is large or interferences are dominant.

E. When the signal experiences Rayleigh fading

In another special case when the signal experiences Rayleigh fading channel, (39) is further

specialized to

FΓj
(x) = 1− IsjmijΩ

Ijdmvj

jd Ω
Isjmij

sj B(Ijdmvj + 1, Isjmij)

(

Ωvjx

mvj

+ Ωjd

)−Ijdmvj

(

Ωijx

mij

+ Ωsj

)−Isjmij

ϕ22(x) 2F1

(

Ijdmvj + 1, Isjmij + 1; Isjmij + Ijdmvj + 1; 1− ϕ22(x)
)

(40)
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whereϕ22(x) =
ΩijΩvjx(x+1)

(mijΩsj+Ωijx)(mvjΩjd+Ωvjx)
.

In the high SINR condition such thatΩsj → ∞ andΩjd → ∞, using [14, (9.1)] as

lim
ϕ→0

ϕ · 2F1(a+ 1, b+ 1; a+ b+ 1; 1− ϕ) =
Γ(a+ b+ 1)

Γ(a + 1)Γ(b+ 1)
(41)

in (40), one can get the high SINR approximation of (40) as

FΓj
(x) = 1−

(

Ωijx

Ωsjmij

+ 1

)−Isjmij
(

Ωvjx

Ωjdmvj

+ 1

)−Ijdmvj

. (42)

Using (24), the outage probability is obtained. From (42) and (24), one has several insights as

follows: (1) with the increase of the number of interferers at the relayIsj or at the destination

Ijd, the outage probability increases; (2) with the increase ofthe average power of signal at the

relay Ωsj or at the destinationΩjd, the outage probability decreases; (3) with the increase of

the average power of interferers at the relayΩij or at the destinationΩvj , the outage probability

increases.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, numerical examples are presented to show the effects of the number and

locations of interferers by using the outage probability expressions derived in the previous

sections. We assumēγSINR = bsj γ̄
SINR
sj = bjdγ̄

SINR
jd , γ̄INR = csjγ̄

INR
sj = cjdγ̄

INR
jd , β = βij = βvj

and KijPij = KvjPvj = 1. In the examples where the interferers have random number and

locations, we letλ = λIAI and assume that the distanceslij and lvj follow the uniform

distribution asfl(l) = 2l
L2 , 0 < l < L, whereL is the maximum radius of the disc. We assume

λ = λsj = λjd andL = Lsj = Ljd in this case. In the examples where the interferers have fixed

number and locations, the distanceslij , lvj and the number of interferersIsj, Ijd are constant.

Therefore, we assumel = lij = lvj = 2, I = Isj = Ijd = 10 and β = 3. In this case, there

still exists path loss if the distances between nodes are large. The path loss is determined byl

andβ. This influence can be checked by examiningΩij andΩvj , asl andβ can be absorbed by

Ωij andΩvj as part of the average powers of the interference. In the calculations for both cases

above, we assume the number of relaysJ = 2, bsj = csj = cjd = 1 and bjd = 10. Also, let the
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values ofmsj be the same for anyj; mjd be the same for anyj; mij be the same for anyi, j;

mvj be the same for anyv, j. Note that our results are general enough to include other cases

but these settings are used here as examples.

Figs. 1 - 6 show the outage probability vs.γth in the case when the interferers have random

number and locations. The GGA curve is obtained by using (15), (16) and (20) in (24) with

numerical integration, the lower bound curve is obtained byusing (22) in (24) while the asymp-

totic curve is obtained by using (23) in (24). In general, onecan see that the outage probability

decreases when the value ofγth decreases or when the channel condition changes from Rayleigh

fading to general Nakagami-m fading (or with the increase ofm in Nakagami-m fading). The

influence ofmij andmvj is examined in Fig. 1 for̄γSINR = 15 dB, γ̄INR = 0 dB, λ = 50,

β = 3, L = 10, msj = 4 andmjd = 5. One can see that the curves formij = 1 andmvj = 1

have a slightly worse outage probability than the curves formij = 2, mvj = 3 andmij = 6,

mvj = 7 while the curves formij = 2, mvj = 3 andmij = 6, mvj = 7 are nearly the same for

the reasons explained below (23). Fig. 2 shows the result forγ̄SINR = 15 dB, γ̄INR = 0 dB,

λ = 50, β = 3, andL = 10 while Fig. 3 shows the result for the same conditions except that

γ̄INR is increased from0 dB in Fig. 2 to20 dB in Fig. 3. One can see the outage probability

for msj = 2, mjd = 3, msj = 2, mjd = 3 andmsj = 4, mjd = 5, msj = 6, mjd = 7 deteriorate

whenγ̄INR increases and the deteriorate rate formsj = 2, mjd = 3, msj = 2, mjd = 3 is slightly

smaller than that formsj = 4, mjd = 5, msj = 6, mjd = 7. However, the outage probability

remains nearly unchanged for the Rayleigh case in these two figures for the reasons explained

below (23). Fig. 4 shows the same conditions as Fig. 3 exceptγ̄SINR is increased from 15 dB in

Fig. 3 to 20 dB in Fig. 4. One can see that the outage probability decreases with the increase of

γ̄SINR, as expected. Also, comparing Fig. 3 with Fig. 5, one can see that the outage probability

for msj = 2, mjd = 3, msj = 2, mjd = 3 andmsj = 4, mjd = 5, msj = 6, mjd = 7 increases

when the value ofβ changes from 3 in Fig. 3 to 5 in Fig. 5. Comparing Fig. 3 with Fig. 6,

one can see that the outage probability formsj = 2, mjd = 3, msj = 2, mjd = 3 andmsj = 4,

mjd = 5, msj = 6, mjd = 7 increases when the value ofL increases from 10 in Fig. 3 to 20 in

DRAFT June 12, 2018



21

Fig. 6. However, the outage performances for the Rayleigh case in these two cases above keep

almost unchanged for the reasons explained below (23).

In all these cases above, the results based on GGA match very well with the simulation

results, showing the accuracy of the approximation and the usefulness of our results. Also, from

Figs. 2 - 6, one can see that the lower bounds have considerable match with the simulation

while the asymptotic curves match well with the simulation for smallγth. On the other hand,

one can see that the gap between lower bound and simulation decreases when̄γSINR increases,

as expected, when comparing Fig. 4 with other figures above.
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Fig. 1. Outage probability vs.γth for random interferers when̄γSINR = 15 dB, γ̄INR = 0 dB,

λ = 50, L = 10, β = 3, msj = 4 andmjd = 5.

Figs. 7 - 11 show the outage probability vs.γth in the case when the interferers have

fixed number and locations. The exact curve is obtained by using (20) (28) and (29) in (24)

with numerical integration, the lower bound curve is obtained by using (37) in (24) while the

asymptotic curve is obtained by using (37) and (17) in (24). In general, one sees that the

outage probability decreases when the value ofγth decreases or when the Nakagami-m parameter

increases. Also, our derived exact results match very well with the simulation results and our
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Fig. 2. Outage probability vs.γth for random interferers when̄γSINR = 15 dB, γ̄INR = 0 dB,

λ = 50, L = 10 andβ = 3.

−10 −5 0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

γth (dB)

O
ut

ag
e 

pr
ob

ab
ili

ty

 

 

Simulation
GGA
Lower bound
Asymptotic

m
sj

=4;m
jd

=5;m
ij
=6;m

vj
=7

m
sj

=2;m
jd

=3;m
ij
=2;m

vj
=3

m
sj

=1;m
jd

=1;m
ij
=1;m

vj
=1

Fig. 3. Outage probability vs.γth for random interferers when̄γSINR = 15 dB, γ̄INR = 20 dB,

λ = 50, L = 10 andβ = 3.
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Fig. 4. Outage probability vs.γth for random interferers when̄γSINR = 20 dB, γ̄INR = 20 dB,

λ = 50, L = 10 andβ = 3.
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Fig. 5. Outage probability vs.γth for random interferers when̄γSINR = 15 dB, γ̄INR = 0 dB,

λ = 50, L = 10 andβ = 5.
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Fig. 6. Outage probability vs.γth for random interferers when̄γSINR = 15 dB, γ̄INR = 0 dB,

λ = 50, L = 20 andβ = 3.

derived lower bounds and asymptotic curves have considerable matches with the simulation,

especially for smallγth in these figures, which verify the accuracy of our analysis. The influence

of mij andmvj is examined in Fig. 7 for̄γSINR = 15 dB, γ̄INR = 0 dB, msj = 4 andmjd = 5.

One can see that the curves withmij = 1 andmvj = 1 has a slightly worse outage probability

than the curves withmij = 2, mvj = 3 andmij = 6, mvj = 7 while the curves withmij = 2,

mvj = 3 are almost the same as the curves withmij = 6, mvj = 7. Fig. 8 shows the result for

γ̄SINR = 15 dB, γ̄INR = 0 dB while Fig. 9 shows the result for the same conditions except that

γ̄INR is increased from0 dB in Fig. 8 to20 dB in Fig. 9. One can see that the outage probability

from simulation remains almost unchanged, as the SINR dominates the outage probability in the

case of fixed interferers and the influence of changing INR canbe ignored in this case. Fig. 10

shows the same conditions as Fig. 9 except thatγ̄SINR is increased from 15 dB in Fig. 9 to 20

dB in Fig. 10. One can see that the outage probability decreases with the increase of̄γSINR, as

expected.

Next, our derived closed-form approximations to the exact outage probability in the case of
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fixed interferences is examined in Fig. 11 where (39) is used as the approximation curve and

γ̄SINR = 10 dB, msj = 2, mjd = 3, msj = 2, mjd = 3. One can see that the simulation

curves for INRγ̄INR = 10, 15 and20 dB remain almost unchanged, asγ̄SINR is fixed in these

curves. One can see that the approximation curve withγ̄INR = 10 dB is closer to the exact

curve in Fig. 11 but still have a slight approximation error.With the increase of̄γINR, these

approximation errors decrease. In the case ofγ̄INR = 20 dB, this approximation error can be

ignored.
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Fig. 7. Outage probability vs.γth for fixed interferers when̄γSINR = 15 dB, γ̄INR = 0 dB,

msj = 4, mjd = 5.

VI. CONCLUSIONS

The outage probability performance of a dual-hop AF selective relaying system with relay

selection based on the global instantaneous SINR has been analyzed for different cases of

interferer number and locations. Exact analytical expressions in terms of one-dimensional integral

for the general cases have been derived. Closed-form expressions for its lower bounds and
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Fig. 8. Outage probability vs.γth for fixed interferers when̄γSINR = 15 dB, γ̄INR = 0 dB.
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Fig. 9. Outage probability vs.γth for fixed interferers when̄γSINR = 15 dB, γ̄INR = 20 dB.
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Fig. 10. Outage probability vs.γth for fixed interferers when̄γSINR = 20 dB, γ̄INR = 20 dB.
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Fig. 11. Outage probability vs.γth for fixed interferers when̄γSINR = 10 dB, msj = 2, mjd = 3,

mij = 2 andmvj = 3.
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asymptotic bounds have been obtained. Special cases for dominant interferences, i.i.d Nakagami-

m fading interferers and Rayleigh fading channel have also been studied. Numerical examples

have been presented to show the accuracy of the analysis by examining the effects of interferences

and their locations, which are otherwise not possible usingprevious results. These examples have

confirmed that the outage performance improves when the SINRincreases and provided useful

insights on the effects of different system parameters on the outage performance.

APPENDIX A

DERIVATION OF THE PDF OF Ysj FOR RANDOM INTERFERERS

One has the moment generation function of (10) as [26]

E(Y c
sj) =

acsjΓ
(

dsj+c

psj

)

Γ
(

dsj
psj

) (43)

wherec represents thec-th order moment. Denoteη1,ij =
∫∞

0
fl(lij)η(lij)dlij ,

η2,ij =
∫∞

0
fl(lij)η

2(lij)dlij and η3,ij =
∫∞

0
fl(lij)η

3(lij)dlij. One can derive the first-order

moment ofYsj as

E{Ysj} =

∞
∑

I=0

e−λIAI (λIAI)
I

I!

I
∑

i=1

E{Ωij}E{|hij |2} =

∞
∑

I=0

e−λIAI (λIAI)
I

I!

I
∑

i=1

KijPijη1,ij,

(44)

the second-order moment ofYsj as

E{Y 2
sj} =

∞
∑

I=0

e−λIAI (λIAI)
I

I!
E

{(

I
∑

i1=1

Ωi1j |hi1j |2
)(

I
∑

i2=1

Ωi2j |hi2j |2
)}

=

∞
∑

I=0

e−λIAI (λIAI)
I

I!

(

I
∑

i=1

K2
ijP

2
ijη2,ij

mij + 1

mij

+

I
∑

i1=1

I
∑

i2 6=i1=1

Ki1jPi1jKi2jPi2jη
2
1,ij

)

(45)
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and the third-order moment ofYsj as

E{Y 3
sj} =

∞
∑

I=0

e−λIAI (λIAI)
I

I!
E

{(

I
∑

i1=1

Ωi1j |hi1j|2
)(

I
∑

i2=1

Ωi2j |hi2j |2
)(

I
∑

i1=1

Ωi3j |hi3j |2
)}

=

∞
∑

I=0

e−λIAI (λIAI)
I

I!

(

I
∑

i=1

K3
ijP

3
ijη3,ij

(mij + 1)(mij + 2)

m2
ij

+

I
∑

i1=1

I
∑

i2 6=i1=1

K2
i1j
P 2
i1j
Ki2jPi2j

η2,ijη1,ij
mij + 1

mij

+
I
∑

i1=1

I
∑

i2 6=i1=1

I
∑

i3 6=i2 6=i1=1

Ki1jPi1jKi2jPi2jKi3jPi3jη
3
1,ij

)

.

(46)

Note that (44), (45) and (46) require an infinite series. However, in reality, one does not need

to include many terms in the calculation ase−λIAI (λIAI)
I

I!
decreases quickly withI. Therefore

approximations of (44), (45) and (46) can be made by choosingfinite series. Then, one can

calculate the values ofasj , psj anddsj in (10) by solving














































E{Ysj} =
asjΓ

(

dsj+1

psj

)

Γ

(

dsj
psj

)

E{Y 2
sj} =

a2sjΓ

(

dsj+2

psj

)

Γ

(

dsj
psj

)

E{Y 3
sj} =

a3sjΓ

(

dsj+3

psj

)

Γ

(

dsj
psj

) .

(47)

Furthermore, with the help of Beta functionB(·, ·) [14, (8.384)], one can simplify (47) as

(11), that can be solved numerically by using popular mathematical software packages, such as

MATLAB, MATHEMATICA and MAPLE.

APPENDIX B

DERIVATION OF THE PDF OF Γsj FOR RANDOM INTERFERERS

Assume independent random variablesu, x > 0 in the equations below. Using (10) and (13)

in (14) and after some manipulations, one has

fΓsj
(u) =

psj

(

msj

Ωsj

)msj

umsj−1

a
dsj
sj Γ(msj)Γ

(

dsj
psj

)

∫ ∞

σ2
sj

(x− σ2
sj)

dsj−1xmsj exp

(

−
(

x− σ2
sj

asj

)psj

− msjxu

Ωsj

)

dx.

(48)
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Using binomial expansion and variable substitution, (48) becomes

fΓsj
(u) =

msj
∑

r1=0

psjmsj!a
−dsj
sj

(

msj

Ωsj

)msj

σ
2(msj−r1)
sj xmsj−1e

−
msjσ

2
sju

Ωsj

Γ(msj)Γ
(

dsj
psj

)

r1!(msj − r1)!

×
∫ ∞

0

xdsj+r1−1e
−

(

x
asj

)psj

e
−

msjux

Ωsj dx.

(49)

The integral in (49) can be transformed by replacing the exponential functions with the Meijer’s

G-function as [27, pp. 346]

fΓsj
(u) =

msj
∑

r1=0

psjmsj!a
−dsj
sj

(

msj

Ωsj

)msj

σ
2(msj−r1)
sj umsj−1e

−
msjσ

2
sju

Ωsj

Γ(msj)Γ
(

dsj
psj

)

r1!(msj − r1)!

×
∫ ∞

0

xdsj+r1−1G1,0
0,1







(

x

asj

)psj

|
−

0






G1,0

0,1







msjux

Ωsj

|
−

0






dx.

(50)

This integral can be solved by using [28] as (15).

APPENDIX C

DERIVATION OF THE CDF OF Γsj FOR RANDOM INTERFERERS

Using the definition of CDF and (48), one has

FΓsj
(u) =

∫ u

0

fΓ1(t)dt =
psj

(

msj

Ωsj

)msj

a
dsj
sj Γ(msj)Γ

(

dsj
psj

)

×
∫ u

0

∫ ∞

σ2
sj

tmsj−1(x− σ2
sj)

dsj−1xmsj exp

(

−
(

x− σ2
sj

asj

)psj

− msjxt

Ωsj

)

dxdt.

(51)

By interchanging the order of integration and solving the integration overt first using [14,

(3.351)], one can get

FΓsj
(u) =

psjx
dsj−1

a
dsj
sj Γ(msj)Γ

(

dsj
psj

)

∫ ∞

0

exp

(

−
(

x

asj

)psj
)

γ

(

msj ,
msj(σ

2
sj + x)u

Ωsj

)

dx (52)
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whereγ(·, ·) is the lower incomplete Gamma function [14]. Then, using [14, (8.352)] to expand

the lower incomplete Gamma function as a finite series, one can get

FΓsj
(u) =

psj(msj − 1)!a
−dsj
sj

Γ(msj)Γ
(

dsj
psj

)

(

∫ ∞

0

xdsj−1e
−

(

x
asj

)psj

dx−
msj−1
∑

r2=0

r2
∑

r3=0

σ
2(r2−r3)
sj e

−
msjσ

2
sju

Ωsj

(

msju

Ωsj

)r2

r3!(r2 − r3)!

∫ ∞

0

xdsj+r3−1e
−

(

x
asj

)psj

e
−

msjux

Ωsj dx









.

(53)

By using [14, (3.381)] and using the same method as that for (50) twice, one can get the CDF

of Γsj as (16).

APPENDIX D

DERIVATION OF THE HIGH SINR APPROXIMATIONS FORPDF AND CDF OF Γsj FOR

RANDOM INTERFERERS

Using Taylor’s series expansion of (17) and [14, (3.381)] into (49) and (53), one can calculate

the PDF and CDF ofΓsj as (54) and (55), respectively,

fΓsj
(u) =

N1
∑

n1=0

msj
∑

r1=0

µ3,sj,r1,n1e
−

msjσ
2
sju

Ωsj umsj+n1−1 + o
[

(u/Ωsj)
N1
]

, (54)

whereµ3,sj,r1,n1 =
(−1)n1m

msj+n1+1

sj Ω
−msj−n1
sj σ

2(msj−r1)

sj a
dsj+n1+r1
sj Γ

(

dsj+n1+r1
psj

)

a
−dsj
sj

n1!Γ(r1+1)Γ(msj−r1+1)Γ

(

dsj
psj

) ,

FΓsj
(u) = 1−

N2
∑

n2=0

msj−1
∑

r2=0

r2
∑

r3=0

µ4,sj,r2,r3,n2u
n2+r2e

−
msjσ

2
sju

Ωsj + o
[

(u/Ωsj)
N2
]

, (55)

whereµ4,sj,r2,r3,n2 =
(−1)n2a

n2+r3
sj σ

2(r2−r3)
sj

(

msj
Ωsj

)n2+r2
Γ

(

dsj+n2+r3
psj

)

n2!r3!(r2−r3)!Γ

(

dsj
psj

) .

Furthermore, using (17) in (54) and (55) again, one can get (18) and (19).
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APPENDIX E

DERIVATION OF THE PDF AND CDF OF Γsj FOR FIXED INTERFERERS

Similarly, the PDF ofΓsj can be calculated using (13) and (27) as

fΓsj
(u) =

∫ ∞

−∞

|x| fWj
(xu) fYsj

(

x− σ2
sj

)

dzj

=

(

msj

Ωsj

)msj





Isj
∏

i∗=1

(

−Ωi∗j

mi∗j

)−mi∗j





Isj
∑

i=1

mij
∑

r=1

(−1)rbiru
msj−1

Γ(msj)(r − 1)!

∫ ∞

σ2
sj

zmsj (z − σ2
sj)

r−1e
−

msj
Ωsj

uz−
mij
Ωij

(z−σ2
sj)dz. (56)

This integral can be solved by using [14, (3.351)] as (28).

Using the definition of CDF and (56), one has

FΓsj
(u) =

∫ u

0

fΓsj
(t)dt =

(

msj

Ωsj

)msj





Isj
∏

i∗=1

(

−Ωi∗j

mi∗j

)−mi∗j





Isj
∑

i=1

mij
∑

r=1

(−1)rbir
Γ(msj)(r − 1)!

∫ u

0

∫ ∞

σ2
sj

tmsj−1zmsj (z − σ2
sj)

r−1e
−

msj
Ωsj

tz−
mij
Ωij

(z−σ2
sj)dzdt. (57)

By interchanging the order of integration and solving the integration overt first using [14,

(3.351)], one further has

FΓsj
(u) =





Isj
∏

i∗=1

(

−Ωi∗j

mi∗j

)−mi∗j





Isj
∑

i=1

mij
∑

r=1

(−1)rbir
Γ(msj)(r − 1)!

·
∫ ∞

0

z′r−1e
−

mij
Ωij

z′

γ(msj ,
msj

Ωsj

(z′ + σ2
sj)u)dz

′. (58)

Then, one can derive the CDF ofΓsj by using [14, (8.352)] and [14, (3.381)] in closed-form as

(29).

APPENDIX F

DERIVATION OF THE CDF OF Γj WHEN THE INTERFERENCES ARE DOMINANT

When the interference is dominant such that the noise can be ignored, one further hasσ2
sj ≈ 0

in (28) to give the PDF as

fΓsj
(u) =

Isj
∑

i=1

mij
∑

r=1

ϕ5,sj,ij,i,r
umsj−1

(
msj

Ωsj
u+

mij

Ωij
)msj+r

, (59)
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whereϕ5,sj,ij,i,r =

[

∏Isj

i∗=1

(

− Ωi∗j

mi∗j

)−mi∗j

]

(

msj

Ωsj

)msj (−1)rbirΓ(msj+r)

Γ(msj )(r−1)!
.

Also, the CDF ofΓsj in (29) becomes

FΓsj
(u) = 1−

Isj
∑

i=1

mij
∑

r=1

msj−1
∑

f=0

ϕ6,sj,ij,i,r,f
uf

(
msj

Ωsj
u+

mij

Ωij
)f+r

, (60)

whereϕ6,sj,ij,i,r,f =

[

∏Isj

i∗=1

(

− Ωi∗j

mi∗j

)−mi∗j

]

(

msj

Ωsj

)f
(−1)rbirΓ(f+r)

(r−1)!f !
. Therefore, (20) can be solved

as (35) with the help of [14, (3.197)].
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