
HAL Id: hal-01104246
https://hal.science/hal-01104246

Submitted on 16 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SDfR protocol : Service Discovery for Robots
Stefan-Gabriel Chitic, Julien Ponge, Olivier Simonin

To cite this version:
Stefan-Gabriel Chitic, Julien Ponge, Olivier Simonin. SDfR protocol : Service Discovery for Robots.
Journée sur les Architectures Logicielles pour la Robotique Autonome, les Systèmes Cyber-Physiques
et les Systèmes Auto-Adaptables, Dec 2014, Paris, France. �hal-01104246�

https://hal.science/hal-01104246
https://hal.archives-ouvertes.fr

SDfR protocol : Service Discovery for Robots

Stefan-Gabriel CHITIC
Université de Lyon,

INSA-Lyon, CITI-INRIA
F-69621, Villeurbanne, France
stefan.chitic@insa-lyon.fr

Julien PONGE
Université de Lyon,

INSA-Lyon, CITI-INRIA
F-69621, Villeurbanne, France
julien.ponge@insa-lyon.fr

Olivier SIMONIN
Université de Lyon,

INSA-Lyon, CITI-INRIA
F-69621, Villeurbanne, France

olivier.simonin@insa-
lyon.fr

ABSTRACT
Nowadays robotic applications tend towards fleets of robots, be-
ing capable of sharing information between multiple hosts as well
as performing one or multiple tasks together. In order to facili-
tate interaction and cooperation robots should advertise about their
functionalities as services. In this paper, we propose a protocol
for highly dynamic robotic applications that will allow robots to
discover their neighbors services and their capabilities in any wire-
less infrastructure. The protocol is an adaptation of the Service
Discovery Protocol (SDP) used in Universal Plug and Play(UPnP).
The paper also includes a series of benchmarking across multiple
scenarios that allow us to evaluate our protocol. Our experiments
looked up the various impacts that our proposal has on a multi-robot
system, like request time of a publisher and a subscriber, the quan-
tity of CPU and memory used and quantity of send and received
bytes over the network.

Keywords
Multi-robot, Middleware, Robotic cloud, Service Discovery, Net-
work discovery

1. INTRODUCTION
Robots will progressively populate our everyday life, in order to
assist humans in many tasks or to replace them in dangerous mis-
sions. They are becoming a standard equipment in modern manu-
facturing sites, providing fast and reliable routine operations. They
will be used also in hazardous environments, requiring robots to be
more autonomous and able of cooperation with humans. Another
important domain is Military missions which will employ robots
as unmanned combat vehicles in order to reduce human casualties.
Finally, robots are entering our domestic environment as service
robots, being used in simple but unwanted jobs, such as vacuum
cleaning, floor washing, and lawn mowing.

Nowadays robotic applications tend to use fleets of robots, being
capable of sharing information as well as performing one or multi-
ple tasks together. An autonomous robot fleet refers to a dynamic
system that is populated by heterogeneous devices, with different

hardware and software components capable of sharing data and per-
forming one or several tasks within other members. The fleet can
also communicate with mobile or fix connected objects and sen-
sors, cooperating together to achieve a common goal.

All those new applications that are operating in a multi-robot con-
text, are generating multiple layers of complexity into the robotic
development. Firstly, a robotic application should manage the com-
plexity of the robot as a unit with all the communication and com-
patibility issues between its internal components. Secondly, they
need to manage the complexity inside the fleet by managing the
mobility, communication, information and task sharing among mul-
tiple robots. Finally, a third layer of complexity is added, because
the robots can be in communication with the environment in which
they have been deployed, being part of Internet of Things [2].

Recent work has shown that these layers of complexity can be man-
aged using the appropriate middleware families ([3],[5],[13]). A
robotic middleware is a software that acts as a bridge between a
network layer or an operating system and applications, being an
important component in the process of developing, deploying and
operating a robotic application inside a fleet. In our work, we adopt
such a middleware based vision.

In this paper we focus on a central need of fleets of robots: how to
allow them to be aware of connected neighbors and their services.
Combining component and service-oriented programming greatly
simplifies the implementation of highly-adaptive, constantly-evolving
applications [7]. The robots should advertise their functionalities
as services in order to allow other members of the fleet to inter-
act with them. In network based application, service-oriented pro-
gramming is now a largely accepted principle [9]. The main con-
cepts of service-oriented programming are the publications by the
providers and the discovery by the consumers of the robotic ser-
vices.

In the robotic context, we adapt the well-known SDP protocol in
order to allow robots to discover their connected neighbors, their
services and their capabilities in any wireless infrastructure. SDP
protocol is highly used nowadays in most of the connected devices.
To take into account the mobility of robots, we have changed a se-
ries of fields in the messages headers as well as added a memory
mechanism to limit consumed bandwidth. Our proposal is vali-
dated using experimental benchmarks on multiple scenarios with a
various number of Turtlebot 2.

The paper is structured as follows: Section 2 discusses the service
discovery in the related domains. Section 3 present our proposal

for service discovery in a fleet context. Section 4 proposes an im-
plementation of our protocol. Section 5 evaluates our protocol via
a series of benchmarks and Section 6 concludes the paper.

2. RELATED WORK
In the robotic world, the problem of service discovery was ap-
proached mostly in centralized network infrastructures by using
classical Universal Plug and Play (UPnP) protocol. Since the con-
cept of having the robotic tasks and processes as services is not
mature yet, the main focus on research on service discovery in
robotics has orientated toward the integration with the environment
like smart homes or smart cities. Paper [2] provides a case study of
integration of service robots and smart-homes via UPnP. In these
cases, the authors are not referring to a robot as part of a specific
fleet, but as part of an environment, in which the robot is considered
as an entity that can offer services. This point of view is slightly
different in case of a robotic fleet [19], where robots are composed
of multiple services that need to be discovered by the other mem-
bers.

Another way to see a fleet of networked robots is like a service-
oriented multi agent system that deals with large-scale and highly-
dynamic systems that need to provide mechanisms to discover ser-
vice availabilities. Such environments like Peer-to-Peer (P2P), Multi-
Agent Systems(MAS) or Service-Oriented Environments(SOE) tend
to approach the problem of service discovery in centralized, dis-
tributed or decentralized way. Centralized mechanism like super-
peers [8], middle-agents [10] or central registries [17] are limited in
number of agents in the system and in terms of number of requests.
It also uses a centralized node which can have serious impact if the
central point becomes unreachable. Distributed approaches such as
Distributed Hash Tables(DHT) [12] offers more scalability and ro-
bustness by having multiple specific nodes that can manage the re-
sources. Decentralized systems consider all the nodes equals. This
approach provides more flexibility, but it has its downsides, since
each node only has partial view of the entire system. As mentioned
in [4], an interesting way to discover service inside a decentralized
and self-organized multi-agent system is to use the homophily be-
tween agents.

Classical protocols and middlewares for service discovery in dis-
tributed environments like data-grids, clouds or even smart envi-
ronments use same type of methods. The base service discovery is
having one centralized registry that manages service description. It
still has the same issues as in the case of multi-agent system but it
provides consistency and scalability. The other approach is having
a decentralized system (e.g UPnP, Jini [14] or SLP [16]) that can
be : a purely distributed solution where each node stores its own
service repositories or a hybrid solution that includes super-nodes
that aggregate information from other peers.

The solutions presented above have their downsides when applied
to ad-hoc multi-robot systems. Firstly, due to the mobility of the
robots, the network connection is highly instable and robots can
disconnect and reconnect very often. Existing protocols do not per-
form the same way in a highly dynamic environment and in a static
one. As mentioned in [9], the challenge is to set the trade off be-
tween physical mobility and scalability. Secondly, existing proto-
cols are not very adaptive. The discovery protocol should be ready
to be used at any time and track its usage and failures. Existing
protocols like UPnP, have a limited memory factor and when the
connection is timed-outed, the discovery process reinitializes itself
at reconnection.

Figure 1: SDfR in ad-hoc network

Next sections present our extension of SDP used in UPnP in or-
der to overcome the limitation of existing service discovery ap-
proaches.

3. SERVICE DISCOVERY FOR ROBOTS
Before detailing our approach, we abstract the model. Robot ser-
vice discovery inside a fleet is based on a publish subscriber pro-
cess. A process running on each robot looks up its neighbors and
responds to new ones while advertising its own presence. Based on
this, other processes on each robot can publish their services and
access the neighbors services list. Figure 1 illustrates the protocol
functioning on an ad-hoc segmented network.

Our protocol, called Service Discovery for Robots (SDfR), is adapted
from Simple Service Discovery Protocol (SSDP) that is being used
in UPnP. SSDP is used for advertisement and discovery of network
services and presence information. It accomplishes this without as-
sistance of server-based configuration mechanisms, being a purely
distributed service discovery protocol. Being an evolution of SSDP,
SDfR can be also used to provide service discovery with the smart-
environment in which the robots are being deployed.

In order to have a suitable service discovery protocol for ad-hoc
networked robots, we propose a protocol that is coping with the
possibility of network disconnection. For this, we introduce a mem-
ory mechanism in which the protocol does not reinitializes itself
after reconnection in order to avoid network overload.

This section is structured as follows: Subsection 3.1 discusses the
limitations of SSDP and how SDfR overcomes those. Section 3.2
presents the whole protocol model. Section 3.3 continues with the
validation of the model and Section 3.4 presents the headers and
the messages defined.

3.1 SSDP limitations overcome
SSDP is sending all the transmissions in multicast over UDP in a
request-response context. It waits for a request to be acknowledged
until a timeout is reached. This way of using multicast transmis-
sion has a great impact on the bandwidth consumed by the proto-
col. Even-more the protocol reinitializes each time a disconnection
is made non-gracefully or a timeout parameter has expired. It does
not provide any memory factor. Finally, it has limited performance
in ad-hoc network. SSDP is most adapted for a centralized infras-
tructure where mobility is managed within network coverage.

Figure 2: SDfR state automaton

SSDP and SDfR are similar because of:
Multicast transmissions As in SSDP, SDfR is sending most of the

internal messages in multicast, avoiding the overhead gener-
ated by unicast transmission in order to propagate the same
message.

HTTP messages The messages that are being sent are an evolution
of HTTP messages.

The main differences between SSDP and SDfR are:

Limited multicast transmissions SDfR does not have a request-
response model. In order to avoid failure in case of a dis-
connection due to the movement of the robots outside the
coverage area, all the communications are done using UDP
(User Datagram Protocol)

Unicast transmissions To limit the network flooding when the pro-
tocol needs information from just one robot, a second trans-
mission is enable in unicast mode.

History map SDfR does not need to reinitialize the entire discov-
ery protocol when the connection is lost, because it disposes
of a history map of all the already seen robots and their ser-
vices. In order to avoid services that are out of reach (e.g
service of robots that are present in the history map but are
not present in the covered communication area), a connection
indicator is computed for each robot.

3.2 Protocol Description
We have designed a model based on timed automaton [1] for SDfR
protocol. Figure 2 presents the timed automaton of our protocol.
We have chosen to model in this way because SDfR has a finite
number of states extended with a finite set of real-value clocks.

SDfR, defines two methods that indicate the desired action to be
performed: M-SEARCH and NOTIFY. The M-SEARCH method

type is used when a new robot requests the discovery of new fleet
members and their services. The only message type associated with
this method is Discovery. The other method, NOTIFY is used to re-
spond to a Discovery request or to inform the other about changes
in the current state of the robot. The message types associated with
this method are: Update, Alive and Byebye.

• The Update message is being sent as a response to a Discov-
ery request or when the current services or capacities of the
robot change.

• The Alive message is sent recurrently, as a beacon, in order
to inform the others about the presence of the robot.

• The Byebye message is being send when the robot stop grace-
fully, in order to inform the others about its disappearance.

When the protocol initializes a discovery muticast message is sent,
and then the protocol changes state into listen on a multicast as well
as on an unicast socket. When the other robots receive a discovery
message, they will respond with an update message.

When the protocol receives an update message, it will pass into an
atomic state, Updating neighbors table. When the protocol receives
an alive message, it will pass into Check if known state, that will de-
termine if the unicast IP of the sender is already known. If so, it will
pass into Updating neighbors table, otherwise it will send a unicast
discovery message. The sender of the alive message responds by
sending an unicast update message.

If the protocol traps a gracefully shutdown, a byebye message is
sent and the other robots will update their neighbor table.

3.3 Protocol validation
We have modeled our system with UPPAAL [11], a well-known
formalism for the behavior of systems. All the state change depend
on the message exchange timeout. In our protocol, all the actions

Figure 3: SDfR client automaton

that change the states depend on a specific time interval and on the
sequence of the previous states. Thus, the time in our automaton
is at the same time quantitative and qualitative. In order to simu-
late and check our model we have used a composition of the SDfR
automaton and a client automaton (see fig. 3) that simulates the
behavior of a random publisher or subscriber.

In order to verify our model, we have used linear temporal logic
(LTL) [1]. In LTL, for a given formula f, A[] means that f holds for
all paths and E<> means that there exits a path where f hold. We
have verified our model for deadlock and reachability properties.

A state is a deadlock state if there are no outgoing action transitions
neither from the state itself or any of its delay successors. UPPAAL
provides a special keyword, as shown in eq. (1), for verifying if a
composition of automaton has a deadlock.

A[] not deadlock (1)

The evaluation succeed, thus protocol has no deadlocks.

Reachability properties are the simplest form of properties. They
ask whether a given state formula can be satisfied by any reach-
able state. In order to prove that our protocol satisfies reachability
properties, we have used eq. (2) and eq. (3).

Clients = {8c|c follows the behavior of a SDfR client}
States = {Closed, SendingDiscovery,

Listen, UpdatingTable,

SendingAlive, SendingUpdate}
(2)

8c 2 Clients, 8s 2 States, 9E <> c.s == True (3)

Method Location USN

MAN DTYPE DMOB ContentLength

DCAP
hhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhh

9
>>>>>>=

>>>>>>;

Key
Values
Map

Figure 4: SDfR common header

We have conduced the model checking of our automaton in UP-
PAAL. The model validation is independent to the number of clients
used. After the evaluation, all the states from all clients are reach-
able.

3.4 Messages and headers
In order to better understand the dynamic of the protocol, the fol-
lowing subsection focuses on the message and their headers and
how they differ from UPnP in order to be adapted for multi-robot
systems.

SDfR is compatible with UPnP because it uses the structures of
SSDP, the service discovery protocol used in UPnP. This gives SDfR
the advantage of being interoperable with any smart environment.
In fig. 4, the fields inside a SDfR message header are displayed.

A full description of the SDfR header can be find below (fields with
a + are new):
Location - Location of the device. This field was present in UPnP

and was kept for retrocompatibility with this protocol.

USN - Unique Service Name. The field was present already in
UPnP and reused by SDfR.

MAN - Message Type. The field was present already in UPnP and
reused by SDfR.

DTYPE+ - Device Type. This represents the type of hardware
platform. (e.g Turtlebot2, PR2, etc).

DMOB+ - Device Mobility. This new field was added in order to
characterize the mobility of a robot. (e.g Mobile, Temporary
Mobile, Static, etc).

ContentLength - The length of the message content without the
header. For transmissions without any payload, the field is
set to 0.

DCAP+ - Device Capacities. It represents a dictionary on keys
and values that characterizes the state of the robot. It can
include statical information like the CPU frequency or the
memory capacity, as well as dynamically information like
the percentage of battery, the CPU usage ratio, etc. This data
was included in every header of the SDfR because the infor-
mation sent is highly-dynamic.

The main differences between SDfR and SSDP are the addition of
3 new fields: DTYPE, DMOB and DCAP. Another difference is the
location field that is always marked by a ‘*’. In SSDP, the location
was used to physically pin point the device like ‘kitchen-fridge’,

I

but in a fleet context it is hardly the case to have a fix physical
location. Furthermore, the USN from SSDP, which represents the
unique name of the service, is changed with the unicast IP address
of the robot. All the SDfR messages are being sent in multicast, but
the robot needs the unicast address in order to use the information
given by the protocol.

All the messages share the same header information, only the pay-
load of the message differs form one message type to another. There
are even messages without payload like Byebye or Discovery. The
fields, like in HTTP messages, do not have a fixed size, being very
useful to customize the header for future use.

Bellow are two examples of SDfR message. First we present a
discovery message.
M-SEARCH
Location:*
USN:10.1.124.134
UUID:847568B4-CF41-4530-940C
MAN:ssdp:discovery
DTYPE:Turtlebot2
DCAP:CPU=2.0Ghz|RAM=4Gb|BAT=59%
DMOB:Mobile,
ContentLength:0

The following message is the update message send in response to
the previous message by another robot.
NOTIFY
Location:*
USN:10.1.101.94
UUID:D1FED88A-659B-4EC1-A01E
MAN:ssdp:update
DTYPE:Turtlebot2
DCAP:CPU=2.0Ghz|RAM=4Gb|BAT=98%
DMOB:Mobile,
ContentLength:247

{"Services":
[

{
"Name":"P2P Monitoring",
"URL":"10.1.101.94:8042/auto_description",
"Uuid":"3FA2F711-E142-4572-9AF0"
"Metadata":{

"status" : "ok",
"alerts" : "0",

}
}

]
}

4. IMPLEMENTATION
Our solution is coded in the Go programming language [15]. We
wanted an easy to build programming language that allows us to
develop simple, reliable, and efficient robotic service. Go provides
concurrent abstractions and safe memory management, something
lacking in C/C++ and to a certain degree from Python. Even more,
with ‘Go’, we can build all-in-one package, that does not have any
dependencies since all the auxiliary libraries are built-in in the ser-
vice executable. Even with all the dependences, the executable is
still lite. Furthermore, we are able to build cross-platform executa-
bles which is an important aspect in deploying SDfR service across
a heterogeneous platform of robots.

Figure 5: SDfR service architecture

To achieve the service discovery goal, we needed a generic way to
describe the services in the Update messages. Our service is not
interested in consuming the registered services, its purpose is to
distribute the information about these services across the network
fleet. A service is described as follows:

Name - The name of the service. Same service on multiple robots
may have the same name.

URL - The auto-description URL of the service. This is being
used by other services / processes that want to consume the
service to configure themselves.

Uuid - A universal unique identifier. This field is unique across all
the fleet. Even if a service is found on multiple robots, they
will have different Uuids.

Metadata - A key value dictionary that is used to filter and to de-
scribe the services.

We have implemented SDfR as a service itself. The main advantage
is that it can run separately of the other processes on the robot and
all the messages are being consumed by instances of the service
on multiple robots. If it fails, it would not affect the other services
running on the robot. It is able to recover after crash and restart
the process independently. This sand-boxing1 also ensures that the
information sent by the protocol is not corrupted by any other third-
parties.

SDfR service is composed of two key components that share the
same memory as shown in fig. 5. The external interface used to
communicate with other services and components is represented
as a RESTfull2 interface. The second component is the internal
communication interface used by SDfR participants in order to ad-
vertise their presence and services across the neighbors network.

A neighbor robot is defined as follows in SDfR list of services:

IPAddr - The unicast IP address of the neighbor.

DeviceType - The device type of the neighbor (e.g Turltebot2,
PR2).

DeviceCapabilities - A key value dictionary of the robot capaci-
ties.

1Component isolation or sand-boxing is a security mechanism for
separating running process. The code and data spaces are also sep-
arated for each process.
2RESTfull defines a set of architectural principles by which it can
design Web services that focus on a system’s resources, including
how resource states are addressed and transferred over HTTP by a
wide range of clients written in different languages.

DeviceServices - A list of services. The list is composed of the
service type presented above.

DeviceMobility - The mobility of the robot.

PingRatio - The quality of transmission between the requester and
the desired robot.

URL Method Description
/me/services/ GET Returns the registered

service list
/me/services/ POST Registers or updates

a service in the local
service list

/me/services/ DELETE Deletes a local service
from the list

/me/capacities/ GET Returns the capacities
of the robot

/me/capacities/ POST Adds or update a ca-
pacity

/me/capacities/ DELETE Deletes a capacity
/neighbors/ GET Returns a full list of

neighbors and full de-
scription of their ser-
vices

/search/capacities/
?<value>=[><]<key>

GET Filters the list of
neighbors for capaci-
ties in the URL query.
> < can be used for
comparison and | for
regular expression

/search/services/
<name>/
?<value>=[><]<key>

GET Filters the list of
neighbors for services
with the specified
name and metadata
filters from the URL
query. > < can be
used for comparison
and | for regular
expression

Table 1: API description

A full description of each web-service provide by SDfR can be
found in table 1. SDfR service is represented as Representational
State Transfer [6] (RESTfull) web-service. It is based on normal
HTTP requests which enables to infer the type of request being
made and is completely stateless. All the responses are JSON mes-
sages.

The service that pilots SDfR protocol has some built-in additional
features. Firstly, based on a simple configuration file, it is able to
automatically connect to an ad-hoc network. The SSID network is
composed using the fleet id and is secured using a WAP2 Personal
password from the configuration file. This mechanism allows to
have multiple fleets of robots in the same networked space. Even
more, the robots can auto assign IP addresses. The standard net-
work space is 10.<fleet id>.<x>.<y>, where x and y are computed
by each robot from their internal MAC address in order to avoid
IP conflict [18]. Furthermore, if an IP conflict happens, the service
has a mechanism to trigger an IP change on the robots.

5. BENCHMARKING
To evaluate our protocol we looked up the various impacts that it
will have on the system composed by the robots. Firstly we were
interested by the request time of a publisher that advertise its ser-
vice and a subscriber that request information about the services on
nearby neighbors. Secondly, we have analyzed the impact on the
machine on which the SDfR runs, especially the CPU used. Finally,
keeping in mind that the protocol should not use a great bandwidth,
we analyzed the quantity of send and received bytes.

We have divided our benchmarks into 5 scenarios by using various
number of Tuterbot 2 robots equipped with an Intel Core 2 Duo,
2.1 GHz CPU, 4Gb of Ram PC running on Ubuntu 13.04. We have
used a number of 2, 4, 6, 8 and 10 robots. For each scenario, we
have run 4 different ratios of publishers /subscribers: 20%/80%,
40%/60%, 60%40%, 80%/20%.

Nb Robots Pub/Sub ratio Nb pub Nb sub
2 20% 4 16
2 40% 8 12
2 60% 12 8
2 80% 16 4
4 20% 8 32
4 40% 16 24
4 60% 24 16
4 80% 32 8
6 20% 12 48
6 40% 24 36
6 60% 36 24
6 80% 48 12
8 20% 16 64
8 40% 32 48
8 60% 48 32
8 80% 64 16
10 20% 20 80
10 40% 40 60
10 60% 60 40
10 80% 80 20

Table 2: Test-cases summary

In our test-runs we have used simulated services that want to reg-
ister/subscribe into SDfR. We have a combined number of 10 pub-
lisher/subscribers on each robot. We have simulated three type of
actions: publish, unpublish and subscribe.

• We have simulated new services that want to publish via a
POST to /me/services/ with a delay time between 1
and 10 seconds. In order to simulate publishers, we have
used an Apache server on each robots that responds to the
auto-discovery URL of each publisher.

• Each of the already published services could be unpublished
with a random delay between 1 and 5 seconds via a DELETE
to /me/services/.

• We have generated separated threads for each subscriber that
perform GET requests on /neighbors/ . Each thread will
constantly request the table of neighbors from SDfR, in order
to stress at maximum our protocol.

Each test-run was given 5 minutes to collect the data for our bench-
marks. In table 2 is summarized our test cases.

We have analyzed the request time of a service that wants to publish
itself in SDfR because it is an important metric for the use of the
protocol. A service needs to have a fast response when it advertises
its service in order to avoid blocking states. As displayed in fig. 6,
the response time is between 106.2 and 107.2 ms which is satisfy-
ing. When the number of robots increases the request time remains
limited, having a maximum increase of 0.5 ms per 10 robots. The
publish request time also includes the auto-description URL check,
where SDfR performs a request on the Apache Server.

Figure 6:

In figure 7, we looked the request time of a service subscriber.
Based on the number of subscribers per robot, we have generated
parallel threads that requested constantly the neighbors table. We
have observed that the request time is very low, between 1.7 and
2.9 ms even if the SDfR service was stressed at maximum. The
trend for this graphic appears to be linear in the number of robots.

Figure 7: Service subscribe average time

In order to measures the weight of the service on the host machine,
we have analyzed the CPU usage and the memory occupation. The
CPU average usage was between 0.2% and 0.8% (see fig. 8). The
average value is computed using all the peak measurements. The
peak occupations represented 0.1% of the total test-run. If we com-
pute over all the test-run, the average value is almost 0%.

The memory occupation was at almost 0.2% of the total memory of

the PC regardless of the robots or publishers numbers (no graphics
given).

Figure 8: CPU % usage

Another import metric that we have analyzed during our test-runs
is the quantity of bytes sent and received by each robot. Figure 9
and 10 present the evolution of the quantity of kilobytes transmitted
and received by all the robots that took part in each scenario. The
receptions are between 60 and 380 kilobytes during the 5 minutes
run per robot, while the transmissions are between 50 and 800 kilo-
bytes per robot. Those values are very satisfying because a robot
is sending on average only 160 kilobytes/minute. The bandwidth
occupied by SDfR is very low.

Figure 9: SDfR Transmission bytes

6. CONCLUSION
In this paper we presented the challenges to make an adapted ser-
vice discovery protocol for multi-robot systems. We have discussed
the limited applicability of existing service discovery protocols in
the context of robot fleets. Then, we have proposed a new pro-
tocol, called SDfR, suitable for service discovery inside an ad-hoc
networked fleet and we have presented our implementation as a ser-
vice with a RESTfull interface in ‘Go’ language. Furthermore, we
have evaluated our new protocol in terms of resource consumption
on the robots.

Figure 10: SDfR Reception bytes

These results show that SDfR is a light and useful brick in the ser-
vice management in a robotic fleet even if a benchmarking with a
larger number of robots should be made.

Our perspectives are to continue to enrich the families of middle-
ware for robotics by adding other components that use SDfR ser-
vice. Our vision is to improve the robotic fleet middleware by
adding new service oriented bricks like P2P monitoring and P2P
configuring.

In our approach to improve the family of middleware for multi-
robot systems, we intend to use SDfR in order to build additional
bricks of middleware that will simplify the process of development,
but especially the process of deployment and operation of new
robotic softwares. The next step is to investigate a new monitoring
environment for the fleet of robots. We plan to provide a mecha-
nism to monitor the fleet based on a peer to peer (P2P) protocol.
This new service will be registered with SDfR, but will also rely on
SDfR in order to obtain information about the nearby robots. The
monitoring tool can be used by an end-user in order to survey the
fleet, even the part of the fleet that is not reachable by the ad-hoc
network.

In addition, we want to provide a simple mechanism to deploy new
software and configure the robots. In our opinion, when a new soft-
ware needs to be deployed, we do not need to deploy it manually on
each robot. Even more, we consider that the automated deployment
should be done in the environment where the robots are deployed,
thus using a P2P deployment tool.

7. REFERENCES
[1] R. Alur and D. L. Dill. A theory of timed automata.

Theoretical computer science, 126(2):183–235, 1994.
[2] R. Borja, J. de la Pinta, A. Álvarez, and J. Maestre.

Integration of service robots in the smart home by means of
UPnP: A surveillance robot case study. Robotics and
Autonomous Systems, 61(2):153 – 160, 2013.

[3] S. Chitic, J. Ponge, and O. Simonin. Are middlewares ready
for multi-robots systems? In Simulation, Modeling, and
Programming for Autonomous Robots - 4th International
Conference, SIMPAR 2014, Bergamo, Italy, October 20-23,
2014. Proceedings, pages 279–290, 2014.

[4] E. del Val, M. Rebollo, and V. Botti. Enhancing
decentralized service discovery in open service-oriented
multi-agent systems. Autonomous Agents and Multi-Agent
Systems, 28(1):1–30, 2014.

[5] A. Elkady and T. Sobh. Robotics middleware: A
comprehensive literature survey and attribute-based
bibliography. Journal of Robotics, 2012, 2012.

[6] R. Fielding. Representational state transfer. Architectural
Styles and the Design of Netowork-based Software
Architecture, pages 76–85, 2000.

[7] S. Frénot, F. Le Mouël, J. Ponge, and G. Salagnac. Various
Extensions for the Ambient OSGi framework. In Adamus
Workshop in ICPS, Berlin, Allemagne, July 2010.

[8] P. K. Gummadi, S. Saroiu, and S. D. Gribble. A
measurement study of napster and gnutella as examples of
peer-to-peer file sharing systems. ACM SIGCOMM
Computer Communication Review, 32(1):82–82, 2002.

[9] V. Issarny, N. Georgantas, S. Hachem, A. Zarras,
P. Vassiliadist, M. Autili, M. A. Gerosa, and A. B. Hamida.
Service-oriented middleware for the future internet: state of
the art and research directions. Journal of Internet Services
and Applications, 2(1):23–45, 2011.

[10] M. Klusch, B. Fries, and K. Sycara. Automated semantic
web service discovery with owls-mx. In Proceedings of the
fifth international joint conference on Autonomous agents
and multiagent systems, pages 915–922. ACM, 2006.

[11] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell.
International Journal on Software Tools for Technology
Transfer (STTT), 1(1):134–152, 1997.

[12] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer
information system based on the xor metric. In Peer-to-Peer
Systems, pages 53–65. Springer, 2002.

[13] N. Mohamed, J. Al-Jaroodi, and I. Jawhar. Middleware for
robotics: A survey. In Robotics, Automation and
Mechatronics, 2008 IEEE Conference on, pages 736–742.
IEEE, 2008.

[14] A. Pereira, N. Costa, and C. Serôdio. Peer-to-peer Jini for
truly service-oriented WSNs. International Journal of
Distributed Sensor Networks, 2011, 2011.

[15] R. Pike. Go at google. In Proceedings of the 3rd Annual
Conference on Systems, Programming, and Applications:
Software for Humanity, SPLASH ’12, pages 5–6, New York,
NY, USA, 2012. ACM.

[16] D. Romero, R. Rouvoy, L. Seinturier, and P. Carton. Service
discovery in ubiquitous feedback control loops. In
Distributed Applications and Interoperable Systems, pages
112–125. Springer, 2010.

[17] P. Rompothong and T. Senivongse. A query federation of
uddi registries. In Proceedings of the 1st international
symposium on Information and communication technologies,
pages 561–566. Trinity College Dublin, 2003.

[18] S. Thomson, T. Narten, and T. Jinmei. Ipv6 stateless address
autoconfiguration. IETF RFC 4862, 9 2007.

[19] C. N. Ververidis and G. C. Polyzos. Service discovery for
mobile ad hoc networks: a survey of issues and techniques.
Communications Surveys & Tutorials, IEEE, 10(3):30–45,
2008.

