The greatest square free factor of a binary recursive sequence

Tarlok Nath Shorey

To cite this version:

Tarlok Nath Shorey. The greatest square free factor of a binary recursive sequence. Hardy-Ramanujan Journal, 1983, Volume 6-1983, pp.23-36. 10.46298/hrj.1983.97. hal-01104239

HAL Id: hal-01104239

https://hal.science/hal-01104239

Submitted on 16 Jan 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Vol. 6 (1983) $23-36\}$

the greatest souare free factor of A BINARY RECURSIVE SEQUENCE

By T. N. SHOREY

8 1. For any sequence of Integers $u_{0}, v_{1}, \ldots, u_{m}, \ldots$ satisfying

$$
\mathbf{u}_{\mathrm{m}}=\mathrm{r} \mathbf{u}_{\mathrm{m}-1}+\mathrm{s} \mathbf{u}_{\mathrm{m}-2}, \mathrm{~m}=2,3 \ldots
$$

where E and s are rational integers vith $\mathrm{r}^{2}+4 \mathrm{~s} \neq 0$, we have

$$
\begin{equation*}
u_{m}=a \alpha^{m}+b \beta^{m}, m=0,1,2, \ldots \tag{1}
\end{equation*}
$$

where α and β are reots of the polynomial $X^{2}-r X-1$ and

$$
\begin{equation*}
a=\frac{\mathbf{u}_{0} \beta-u_{1}}{\beta-\alpha}, b=\frac{u_{1}-u_{0} \alpha}{\beta-\alpha} . \tag{2}
\end{equation*}
$$

The polynomial $X^{2}-r X-s$ is called the polynomial associated to the sequence $\left\{u_{m}\right\}$. The sequence $\left\{u_{m}\right\}$ is said to be a non-degenerate binary recursive sequence If a, b, α, β are non-zero and α / β is not a root of unity. For a raticnal integer x with $|x|>1$, denote by $P(x)$ the greatest prime factor of x and by $Q(x)$ the greatent square free factor of x. If p_{1}, \ldots, p_{r} are all the distiact primes dividing x, then $Q(x)=p_{1} \ldots p_{s}$. For non-zero rational integers x and y, denote by $[x, y]$ and (x, y), respectively, the least common multiple and the greatest common divisor of x and y. Further we define $P(1)=P(-1)=1$ and

$$
P\left(\frac{x}{y}\right)=P\left(\frac{x}{(x, y)} \frac{y}{(x, y)}\right)=P\left(\frac{[x, y]}{(x, y)}\right)
$$

and

$$
Q\left(\frac{x}{y}\right)=Q\left(\frac{[x, y]}{(x, y)}\right)
$$

Lee $\left\{u_{m}\right\}$ be a non-degenerate binary' recursive sequence glven by (1). Stewait [4] proved that

$$
Q\left(u_{m}\right)>C\left(\frac{m}{\left((\log m)^{2}\right.}\right)^{1 / d}, m>C^{\prime}
$$

where $d=\left[Q(\alpha)::^{\prime} Q\right]$ and $C>0, C^{\prime}>0$ are effectively computable numbers depending only on a and b. Observé that $d=1$ or 2 . Further, if $|\alpha|>|\beta|$. Stewart $|\boldsymbol{|}|$ proved that for any 0 with $0<0<1$,

$$
\mathrm{Q}\left(\mathrm{u}_{\mathrm{m}}\right)>\mathrm{m}^{\theta}, \mathrm{m}>\mathrm{C}^{\prime \prime}
$$

where $\mathrm{C}^{\prime \prime}>0$ is an effectively computable number depending only on θ and the sequence $\left\{u_{m}\right\}$. We shall generallie and etrengthen this result at follows:

Theorem 1

Let $\left\{\mathrm{u}_{\mathrm{m}}\right\}$ be a non-degenerate binary recursive sequence, There exist effectively computable numbers $\mathrm{C}_{1}>0$ and $\mathrm{C}_{2}>0$ depending only on the sequence $\left\{\mathbf{u}_{\mathrm{m}}\right.$ \} such that for every $m>C_{1}$, we have

$$
\log Q\left(u_{m}\right)>C_{2}(\log m)^{2}(\log \log m)^{-1}
$$

The improvemeat depends on utilising the fact that the contribution from small primes in u_{m} is small. Stewart [5] proved theorem 1 for the grestest sqaare free factor of the members of Lucas and Lehmer sequences. Further, for Lucas and Lehmer sequences, Stewart [5] proved that for almost all m

$$
\log Q\left(u_{m}\right)>(\log m)^{2+\log 2-\varepsilon}, \varepsilon>0
$$

Theorem 1 is contalned in the following result.

Theorem 2

Let $\left\{u_{\mathrm{m}}\right\}$ be a non-degenerate binary recursive sequence. There exist effectively computable numbers $\mathrm{C}_{\mathbf{3}}>0$ and $\mathrm{C}_{4}>0$ depending only on the sequence $\left\{\mathbf{u}_{\mathrm{m}}\right\}$ such that for every pair m, n with $\mathrm{m}>\mathrm{n}, \mathrm{m}>\mathrm{C}_{3}$ and $\mathrm{u}_{\mathrm{n}} \neq 0$, we have

$$
\log Q\left(\Delta_{m, n}^{\prime}\right)>C_{4}(\log m)^{2}(\log \log m)^{-1}
$$

where

$$
\Delta_{m, n}^{\prime}=\left[u_{m}, u_{n}\right] /\left(u_{m}, u_{n}\right)
$$

For a non-degenerate binary recurslve sequence $\left\{u_{m}\right\}$, observe that the equation $\mathrm{o}_{\mathrm{m}}=0$ Implies that m is bounded by an effectively computable number depending only ot the sequence $\left\{\mathrm{u}_{\mathrm{m}}\right\}$. We apply theorem 2 with the least integer n (n is either 0 or 1) such that $u_{n} \neq 0$ to obtain theorem 1 . For estimates on $P\left(u_{m}\right)$ and $P\left(\Delta_{m}^{\prime}, n\right)$, wo refer to Stewart [4] and the author [3]. Seo also the next theorem.

Let $\left\{u_{m}\right\}$ and $\left\{v_{m}\right\}$ benon-degenerate binary recursive sequences whose associated polynomials are identically equal. Denote by α and β the roots of their asseciated polynomial. Then tre sequeace $\left\{u_{m}\right\}$ is given by (1) and (2). Further for $m=0,1,2, \ldots$, we have

$$
v_{m}=a_{1} \alpha^{m}+b_{1} \beta^{m}
$$

where

$$
a_{1}=\frac{v_{0} \beta-v_{1}}{\beta-\alpha}, b_{1}=\frac{v_{1}-v_{0} \alpha}{\beta-\alpha} .
$$

For m and n with $u_{m} v_{n} \neq 0$, put

$$
\Delta_{m, n}=\left[u_{m}, v_{n}\right] /\left(u_{m}, v_{n}\right)
$$

Then theorem 2 is a particular case of the following result. Theorem 3

Let $\mathrm{A}>0$ and $0<\mathrm{K}<(\mathrm{d}+1)^{-1}$ where $\mathrm{d}=[\mathrm{Q}(\alpha): \mathrm{Q}]$ There exist effectively computable numbers $\mathrm{C}_{5}>0$ and $\mathrm{C}_{6}>0$ depending only on A, K, the sequences $\left\{\mathrm{u}_{\mathrm{m}}\right\}$ and $\left\{\nu_{\mathrm{m}}\right\}$ such that for every pair m, n with $m>n, m \geqslant C_{5}, v_{n} \neq 0$ and

$$
\begin{equation*}
\frac{a \alpha^{m}}{a_{1} \alpha^{n}} \neq \frac{b \beta^{m}}{b_{1} \beta^{n}} \tag{3}
\end{equation*}
$$

either

$$
\log P\left(\mathbb{A}_{m, n}\right)>(\log m)^{A}
$$

or

$$
\begin{aligned}
& \sum_{p \mid \Delta_{m, n}} 1>c_{6} \frac{\log m}{\log \log m} \\
& p>m^{K}
\end{aligned}
$$

where p runs through primes
For the proof of theorem 2, we may assume $\log P\left(\Delta_{m, s}^{\prime}\right)<(\log m)^{2}$. Then we apply theorem 3 with $\left\{u_{\mathrm{m}}\right\}=\left\{\nabla_{\mathrm{m}}\right\}, \mathrm{A}=2$ and $\mathrm{K}=\frac{1}{4} \quad$ Observe that (3) is satisfie, d, snce α / β is not a root of unity. Now the assertion of theorem 2 follows immediately.

The proof of theorem 3 depends on the theory of linear forms in logarithms. Let $\alpha_{1}, \ldots, \alpha_{n}$ be non-zero algebraic numb:rs Let K be their splitting field over $Q . P u t D=[K: Q]$

We denote by A_{1}, \ldots, A_{n} upper bounds for the hoighte of $\alpha_{1}, \ldots, \alpha_{n}$ respectively, where we assume that $A_{j}>3$ for $1<j<n$. Write

The proof of theorem 3 depends on the following theorem of Baker [1] on linear forms in logarithms.

Theorem A.
There exist effectively computable absolute constants $\mathrm{C}_{7}>0$ and $\mathrm{C}_{8}>0$ such that the inequalities

$$
\begin{aligned}
& 0<\left|\alpha_{1}^{b_{1}} \ldots \alpha_{n}^{b_{n}}-1\right|< \\
& \exp \left(-\left(C_{7} n D\right)^{C_{8}}{ }^{n} \Omega \log \Omega^{\prime} \log B\right)
\end{aligned}
$$

have no solution in rational integers $\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}$ with absolute values at most B (>2).

We shall also need a p-adic analogue, doe to van dor Poortea [2], of theorem A.

Theorem B.
Let \wp a a prime ideal of K lying above a rational prime p. There exist effectively computable absolute constants $\mathrm{C}_{9}>0$ and $\mathrm{C}_{10}>0$ such that the inequalities

$$
\begin{aligned}
& \infty>\operatorname{ord}_{\wp(}\left(\alpha_{1}^{b_{1}} \ldots \alpha_{n}^{b_{n}}-1\right)> \\
& \quad\left(C_{9} n D\right)^{C_{10}} \frac{p^{D}}{\log p} \Omega(\log B)^{2}
\end{aligned}
$$

have no solution in rational integers $\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}$ whih absolute values at most $\mathrm{B}(>2)$.
§ 2. Proof of theorem 3.
(4)

$$
\text { Let } A>0 \text { and } 0<K<(d+1)^{-1} \text {. Put }
$$

Observe that $0<\tau<1$. Let $\left\{u_{m}\right\}$ and $\left\{\mathbf{v}_{\mathrm{m}}\right\}$ be as in therotm 3. There is no loss of generality in assuming that $|\alpha| \geqslant|\beta|$. Then, since α / β is not a root of unity, we find that $|\alpha|>1$. For algebraic integer $\approx \varepsilon Q(\alpha)$, denote by [x] the ideal generated by x in the rivg of integers of $Q(\alpha)$. There exists a positive rational integer k such that

$$
\left(\left[\alpha^{2}\right],\left[\beta^{2}\right]\right)=[k]
$$

Put $\alpha_{1}=\alpha^{2} / \mathrm{k}$ and $\beta_{1}=\beta^{2} / \mathrm{k}$. Then the Ideals $\left[\alpha_{1}\right]$ and [β_{1}] are relatively coprime. For $m=0,1,2, \ldots$, notice that

$$
\begin{aligned}
U_{m} & =k^{-m} u_{2 m}=Q \alpha_{1}^{m}+b \beta_{1}^{m}, \\
U_{m}^{\prime} & =k^{-m} u_{2 m+1}=\theta \alpha \alpha_{1}^{m}+b \beta \beta_{1^{\prime}}^{m} \\
v_{m} & =k^{-m} v_{2 m}=a_{1} \alpha_{1}^{m}+b_{1} \beta_{1}^{m} \\
v_{m}^{\prime} & =k^{-m} v_{2 m+1}=a_{1} \alpha \alpha_{1}^{m}+b_{1} \beta \beta_{1}^{m} .
\end{aligned}
$$

Observe that the sequences $\left\{U_{m}\right\},\left\{U_{m}^{\prime}\right\},\left\{V_{m}\right\}$ and $\left\{\mathbf{V}_{\mathbf{m}}^{\prime}\right\}$ are non-degenerate binary recursive sequences. By proving the theorem separately for sequences $\left\{U_{m}\right\}$ and $\left\{\mathrm{V}_{\mathrm{m}}\right\},\left\{\mathrm{U}_{\mathrm{m}}\right\}$ and $\left\{\mathrm{V}_{\mathrm{m}}^{\prime}\right\},\left\{\mathrm{U}_{\mathrm{m}}^{\prime}\right\}$ and $\left\{\mathrm{V}_{\mathrm{m}}\right\},\left\{\mathrm{U}_{\mathrm{m}}^{\prime}\right\}$ and $\left\{\mathrm{V}_{\mathrm{m}}^{\prime}\right\}$, there is no lose of generality in assuming that $([\alpha],[\beta])=[1]$.

Denote by c_{1}, c_{2}, \ldots effectively computable positive numbers depending only on A, K, the sequences $\left\{u_{m}\right\}$ and
$\left\{v_{m}\right\}$. We may assume that $m>c_{1}$ with c_{1} sufficiontly large. Thed, since $\left\{u_{m}\right\}$ is non-degenerate, we see that $\mathbf{u}_{\mathrm{m}} \neq 0$, Let $0<\mathrm{n}<\mathrm{m}$ satisfy $\mathrm{v}_{\mathrm{n}} \neq 0$ and suppose that (3) is valld. We suppose

$$
\begin{equation*}
\operatorname{leg} P\left(\Delta_{m, n}\right)<(\log m)^{A} \tag{5}
\end{equation*}
$$

Let π_{1}, \ldots, π_{s} be all the rational primes satlafying $\left.\pi_{i}\right|^{\Delta_{m, n}}$ and $\pi_{1}>\mathrm{m}^{\mathrm{K}}$ for $1<1<\mathrm{e}$. Let $0<\varepsilon<1$. We suppose that

$$
\begin{equation*}
s<+\varepsilon(\log m)(\log \log m)^{-1} \tag{6}
\end{equation*}
$$

We shall arrive at a contradiction for a suitable choice of ε dependisg only on A, K the se quencer $\left\{u_{m}\right\}$ and $\left\{v_{m}\right\}$. We write

$$
\begin{gather*}
B_{1}=\frac{u_{m}}{\left(u_{m}, v_{n}\right)}, \quad B_{2}=\frac{v_{n}}{\left(u_{m}, v_{n}\right)}, \tag{7}\\
\Lambda=\left(u_{m}, v_{n}\right) .
\end{gather*}
$$

Then
(8) $\quad \frac{u_{m}}{v_{n}}=\frac{B_{1}}{B_{2}}$ and $\left(B_{1}, B_{2}\right)=1$.

Further

$$
\begin{equation*}
\Delta_{m, n}= \pm B_{1} B_{2} \tag{9}
\end{equation*}
$$

For a prime p dividing B_{1}, we see from (7) that

$$
\operatorname{ord}_{p}\left(B_{1}\right)<\operatorname{ord}_{p}\left(n_{m}\right)
$$

Let \wp be a prime ideal in the ring of integers of $Q(\alpha)$ dividing p. Then, since the ideals $[\alpha]$ and $[\beta]$ are relatively prime, either $\wp 0$ does not divide $[\alpha]$ or \wp dees not divide $[\beta]$. For simplicity assume that \wp dots not divide [α]. Then, by (1), we have

$$
\operatorname{ord}_{p}\left(u_{m}\right)<\operatorname{ord}_{\wp}\left(u_{m}\right)
$$

$$
<r_{2}+\text { ord }_{\wp}\left(-\frac{b}{a}\left(\frac{\beta}{\alpha}\right)^{m}-1\right)
$$

Now we apply theorem B with $n=2, D=d, \alpha_{1} \approx-b / a$, $\alpha_{2}=\beta / \alpha, b_{1}=1$ and $b_{2}=m$ to conclude that

$$
\begin{aligned}
\operatorname{ord}_{\wp}(- & \left.\frac{b}{a}\left(\frac{\beta}{\alpha}\right)^{m}-1\right) \\
& <c_{3} p^{d}(\log p)^{-1}(\log m)^{+2}
\end{aligned}
$$

Therefore

$$
\operatorname{ord}_{p}\left(B_{1}\right)<c_{4} p^{d}(\log p)^{-1}(\log m)^{2}
$$

Thls inequalliy follows similarly whes $\wp 0$ does not divide $[\beta]$. Consequently, by (4),

$$
\begin{aligned}
& \sum_{p \mid B_{1}} \text { ord }_{p}\left(B_{1}\right) \log p<c_{4} m^{\tau}(\log m)^{2} . \\
& p<m^{K}
\end{aligned}
$$

Similarly

$$
\sum_{\mathrm{p} \| \mathrm{B}_{2} \mathrm{ord}}^{\mathrm{p} \leqslant \mathrm{~m}^{\mathrm{K}}} \boldsymbol{(\mathrm { B } _ { 2 }) \operatorname { l o g } \mathrm { p } < \mathrm { c } _ { 5 } \mathrm { m } ^ { \tau } (\operatorname { l o g } \mathrm { m }) ^ { 2 } .}
$$

Consequently, by (9), we may write

$$
\begin{equation*}
B_{1}=B_{3} \pi_{1}^{x_{1}} \ldots \pi_{s}^{x_{s}}, B_{2}=B_{4} \pi_{1}^{y_{1}} \ldots \pi_{s}^{y_{s}} \tag{10}
\end{equation*}
$$

where $x_{1}, \ldots, w_{s}, y_{1}, \ldots, y_{s}$ are non-negative integers and $B_{3}, B_{4} \boldsymbol{\varepsilon} Z$ with
(11) $\quad \log \max \left(\left|B_{3}\right|,\left|B_{4}\right|\right)<c_{6} m^{\tau}(\log m)^{2}$.

Further we see from (7) that

$$
\log \max \left(\left|B_{1}\right|,\left|B_{2}\right|\right)<c_{q} m
$$

whith, together with (10), implles tbat

$$
\begin{equation*}
\max \left(x_{1}, \ldots, \pi_{s}, y_{1}, \ldots, y_{s}\right)<c_{8} m \tag{12}
\end{equation*}
$$

with $c_{8}>1$.
We bave

$$
\begin{align*}
& u_{m} a_{1}^{-1} a \alpha^{m-n} v_{n} \tag{13}\\
& =-b_{1} \beta^{n}\left(a_{1}^{-1} a \alpha^{m-n}-b_{1}^{-1} b \beta^{m-n}\right)
\end{align*}
$$

and, by (7) and (1),

$$
\begin{equation*}
\Lambda B_{1}-a \alpha^{m}=b \beta^{m} \tag{14}
\end{equation*}
$$

In view of (3), we see that

$$
\begin{equation*}
u_{m}^{-a} l_{1}^{-1} a \alpha^{m-n} v_{n} \neq 0 \tag{15}
\end{equation*}
$$

Put

$$
\begin{aligned}
& T=a_{1}^{-1} a \alpha^{m-n} v_{n} u_{m}^{-1}-1 \\
& T_{1}=a^{-1} \alpha^{-m} \Lambda B_{1}-1
\end{aligned}
$$

By (15) and (14), notice that

$$
\mathrm{TT}_{1} \neq 0
$$

Further it follows from (8) and (10) that

$$
\begin{aligned}
T_{1} & =a_{1}^{-1} \alpha^{-m} \pi_{1}{ }_{1} \ldots \pi_{s}^{x_{s}}\left(B_{3} \Lambda\right)-1 \\
\text { and } T & =\frac{a}{a_{1}} \alpha^{m-n} \pi_{1}^{z_{1}} \ldots \pi_{s}^{z_{B}} \frac{B_{4}}{B_{3}}-1
\end{aligned}
$$

where $z_{i}=y_{i}-x_{i}$ for $1<i<8$ Now we split the proof of theorem 3 ln two cases.
Case I. $|\alpha|>|\beta|$. Dividing both the sides of (13) by u_{m}, we bave

$$
\begin{equation*}
0<\left|\mathbf{T}^{\prime}\right|<c_{9}^{-n}, c_{9}>1 . \tag{!6}
\end{equation*}
$$

We apply theorem ${ }_{i f}$ with
$n=s+3<\varepsilon(\log m)(\log \log m)^{-1}+3$ by (6),
$D=d<2, \quad \log A_{1}=\log A_{2}=c_{10}, \log A_{3}=\ldots=$
$\log A_{n-1}=(\log m)^{A}$ by $(5), \log A_{a}=c_{6} m^{\tau}(\operatorname{lcgm})^{2}$ by (11) and $B=c_{8} m$ by (12) to conclude that

$$
\begin{equation*}
|T|>\exp \left(-\mathrm{m}^{\tau+c_{11} \varepsilon}(\log m)^{5}\right) . \tag{17}
\end{equation*}
$$

We shall choose ε to atisly
(18) $\varepsilon<\left(1-\tau_{)} / 2 c_{11}\right.$.

Put

$$
\tau_{1}=(1+\tau) / 2
$$

Then, slace $0<\tau<1$, we find that $\tau<\tau_{1}<1$.
Comblalng (16), (17) and (18), we bave

$$
\mathrm{n}<\mathrm{c}_{12} \mathrm{~m}^{\tau_{1}}(\log \mathrm{~m})^{5}
$$

Then
(19) $\quad \log |\wedge:<\log | v_{n} \mid<c_{13} m^{\tau_{1}}(\log m)^{5}$.

Dividing both the sides of (14) by a $\alpha^{\mathfrak{m}}$, we have

$$
\begin{equation*}
0<\left|\mathrm{T}_{1}\right|<\mathrm{c}_{14}^{-\mathrm{m}}, \mathrm{c}_{14}>1 \tag{20}
\end{equation*}
$$

We apply theorem A with $n=s+3<\varepsilon(\log m)(\log \log m)^{-1}$ +3 by (6), $D=d<2, \quad \log A_{1}=\log A_{2}=c_{15}$,
$\log A_{3}=\ldots=\log A_{n-1}=(\log m)^{A^{\prime}}$ by (5), $\log A_{n}=2 c_{13}{ }^{m}{ }^{\tau_{1}}$ ($\log \mathrm{m})^{5}$ by (19), (11) and $B=c_{8} m$ by (12) to conclude that

$$
\begin{equation*}
\left|\mathbf{T}_{1}\right|>\exp \left(-m^{\left.\left.\tau_{1}+c_{16} \boldsymbol{\varepsilon}_{(\log m}\right)^{8}\right) .}\right. \tag{21}
\end{equation*}
$$

Les

$$
\varepsilon=\min \left(\frac{1-\tau}{2 c_{11}}, \frac{1-\tau_{1}}{2 c_{16}}, \frac{1}{2}\right)
$$

Then (18) is satisfied. Put

$$
\tau_{2}=\left(1+\tau_{1}\right) / 2
$$

Observe that $\tau_{1}<\tau_{2}<1$. Now we combine (20) and (21) to conclude that

$$
\mathrm{m} \leqslant \mathrm{c}_{17} \mathrm{~m}^{\tau}{ }_{(\log \mathrm{m})^{8}}
$$

which, slace $\tau_{2}<1$, implios that $m<c_{18}$. But this is not possible if $\mathrm{c}_{1}>\mathrm{c}_{18}$.

Case II

$$
|d|=|\beta| \text { Lat } r_{1} \text { and } \tau_{2} \text { be defined as in case } I_{0}
$$

Observe that β is not a unit, slace α / β is not a root of unity. Therefore there exlsts a prime ideal \wp in the ring of integers of $\mathrm{Q}(\alpha)$ such that $\wp /[\beta]$. Further, since the Ideals $[\alpha]$ and $[\beta]$ are relatively coprime, observe that \wp does not divide $[\alpha]$. Consequen!ly ord $\wp_{\rho}\left(\mathrm{u}_{\mathrm{m}}\right)<\mathrm{c}_{19}$. Now, by countlng the power of prime ideal on borh the sides in (13), we have

$$
\mathrm{n}<\mathrm{c}_{20}+\operatorname{ord}_{\rho,}\left(\mathrm{u}_{\infty}\right)+\operatorname{ord}_{\rho}(\mathrm{T})<\mathrm{c}_{21}+\operatorname{ogd}(\mathrm{T}) .
$$

We apply theorem B wlth $p<c_{22}$ and the same parameters as In ease I for obtaining a lower bound for | I | by theorem A. We obtsin

$$
\operatorname{ord}_{\wp}(T)<m^{\tau+c_{23}} \varepsilon_{(\log m)^{5}}
$$

We shall choose $\boldsymbol{\varepsilon}$ to satisfy

$$
\begin{equation*}
\varepsilon<\frac{1-\tau}{2 c_{23}} \tag{22}
\end{equation*}
$$

Then

$$
\mathrm{n}_{1} \mathrm{c}_{24} \mathrm{~m}^{\tau_{1}}(\log m)^{5}
$$

which implies that

$$
\log |\wedge| \leqslant c_{25}{ }^{m^{\tau}}(\log m)^{5}
$$

Counting the power of p ime ideal 8 on both the sides In (14), we obtain

$$
m<c_{26}+\operatorname{ord}_{\wp}\left(T_{1}\right) .
$$

We apply theorem B with $p<c_{22}, \log A_{n}=c_{25}{ }^{\mathrm{m}}{ }^{1}(\log m)^{5}$ and the same parameters as in case I for obtaining a lower bound for $\left|T_{1}\right|$ by theorem A We oblaln

Let

$$
\begin{aligned}
& \operatorname{ord}_{\wp 0}\left(T_{1}\right) \leqslant m^{\tau_{1}}+o_{27} \varepsilon \\
& \varepsilon=\min \left(\frac{1-\tau}{2 c_{23}}, \frac{1-\tau_{1}}{2 c_{27}}, \frac{1}{2}\right)
\end{aligned}
$$

Then (22) is satisfied. We obtain

$$
\mathrm{m}<\mathrm{c}_{28} \mathrm{~m}^{\tau}(\log \mathrm{m})^{8}
$$

Conseque itly $m<c_{29}$ which is not possible if $c_{1}>c_{29}$. Thle completes the proof of theorem 3.

Remarks

(1) Let $\left\{u_{m}\right\}$ be a non-degenerate blary recursive sequence. For every palr m, n with $m>n, u_{m} u_{n} \neq 0$ and $Q\left(u_{m}\right)=Q\left(u_{n}\right)$, we have

$$
m-n>c_{30}(\log m)^{2}(\log \log m)^{-1}
$$

whese $c_{30}>0$ is an e'fectively computable namber dependIng only on the sequence $\left\{u_{m}\right\}$. This follows immediately from theorem 1 and the relation (13) with $\mathrm{a}_{1}=\mathrm{a}, \mathrm{b}_{1}=\mathrm{b}$.
(ii) Let $\mathrm{P} \geqslant 2$ and denote by S the set of all non-zero Integers composed of primes not exceeding P. We can apply the algument of proof of theorem 1 to prove that for every $x \in S, y \in S$ with $(x, y)=1,|x>|y|$ and $\log | x \mid>e^{e}$,

$$
\log Q(x+y)>c_{31}(\log \log |x|)^{2}(\log \log \log |x|)^{-1}
$$

where $\mathrm{c}_{31}>0$ is an effectively computable number depending oniy on P.

References

1. A. Baker, The theory of linear forms in logarithms, Trenscendence theory: Advances and applications, A. Baker and D.W, Masser ed., Academic Press, London and New York 1977.
2. A. J. van der Poorten, Linear forms in logarithms in the p-adic case, Transcendence theory : Advances and appllcations, A. Baker and Masser ed., Academic Prass, London and New York 1977.
3. T.N. Shorey, Linear forms in members of a binary recursive sequence, Acta. Arith. (to appear).
4. C.L. Stewart, On divisors of terms of Linear recursive sequences, Jour reine angew Math 333 (1982), 12-31.
5. C.L. Stewart, On divisors of Fermat, Fibonacci, Lucas and Lchmer numbers III, Jour. London Matio. Soc. (to appear).

School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road
Bombay 400005
India.

