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THE GREATEST SQUARE FREE FACFOR OF 
A BINARY RECURSIVE SEQUENCE 

By T. N. SHOREY 

1 I. For 

1at1sryin1 

any 1equence of lntegera u • a1, ... , u , ... 
o m 

u = r u 1 + 8 u 2• m = 2, 3 .... m m- m-
~ 

whore r and s aro rational lnteaers with r + 4 s -F 0, we 
have 

m m (1) u = aG( d- b/J , m = o, J, 2, ... m . 

wbero rl. and {3 are reots or the polynomial ~2- r X- 1 and 

uoa - ul 01 - uog( 

C2l a = /3-J. , b = 1$-J. 

'rho polrnomial iX
2 
-r iX- 8 Is called tbe polyno~lal 

111ociated to tho sequence { u } • lbo sequence { u } 11 m m 
1atd to bo a non-d<.generate binar)' recunlve sequence If 
a, b, G(, 13 are non-zero and cl//J is not a root of unity. For 
a ratirnal integer IXj with I 1 1 > I. denote by P(x) tbe 
greatest prime factor of :x1 and by Q(x:) the greateat square f,ee 
factor of 111:. If p1, ... ,p r are all tbe dls1ioct primes dividing 111:, 

then Q (111:) = p
1 

... p r For non-zero ratioaal integers .lll .lnd 

r. denote by [:11, y] and (x, y), respectively, tbe leau common 
multiple and the greatest commoa divisor of x andy . Further 
we deftne P(l) = P( -I) = 1 and 

p ( ~ ) _ p ( _1111 _1_ ) .. p ( [lll, Y) ) 
y - (x, y) (11, y) (x, y) 

and 

[0 ( -~- ) ,.. Q ( (1, Y] ) 
Y (x, y) 
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Let { u } be a non..;degenerate binary· recursive sequence 
m 

given by (I)' Stewaa t [4] proved that 

m 1/d 

Q (u81) > C (((log m)2 l ,m > C', 

where d = [Q (cl) :·Q] and C > 0, C' > 0 are effectively 
computable numbers depending only on a and b. Obaerve 
that d = 1 or 2. Further, If 1 J. I > 113 i' , Stewart (tl proved 
that for any 9 with 0 < e < 1, 

Q{u l > m0 m > C'' 
m ' ' 

where C" > 0 ia ao effectively computable number depeodi11g 
only on Q and the sequence { u } . We sbal11eoerallae and 

m 
ltrengtheil this result a• follows : 

lheorem 1 

Let { u } be t1 non-degenerate binary recursive sequencs. m 
There e;cisl effectively computable numbers C 

1 
> 0 and c

2 
> 0 

depending only on the sequence { u } such that for every 
m 

m ::> C 1 , we have 

2 -1 
log Q (om)> c2 (leg m) (log log m) • 

The improvemeJt depends on otillaln11 tho fact that the 
contribution from small primes in u is small. Stewart [5] 

m 
proved theorem /1 for the greattst sq IJ&re free factor of the 
members of Lucas and Lehmer sequences . Further, for Luca11 
and L~hmer seqoeoc:et, Stewart [5) proved that for almost all m 

. log Q (u )';>(los m)l+loiZ-E ,E > o. 
m 

Theorem 1 Ia cont~lned in tho following reault. 
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Theorem 2 

Let { u } be a non-degenerate binar1 recurslre sequence. 
m 

Thtre exllt effectlrely computable numbers c8 >0 and c4 >0 

depending only on the sequence { u } such that for evef1 p•lr m 
m, n with m > n, m > c3 and u

0 
~ 0, we have 

2 -1 
log Q C~'m, 

0
) :> C4: (log m) (log log m} 

where 
11' = [u , u ] j (u , u ). m, n m n m n 

For a non-degenerate binary recursive sequence { u } , m 
observe that the equation u = 0 Implies that m Is bounded 

m 
by an effectively computable number depending only oe the 
1equence { u } • We apply theorem 2 with the least integer 

m 

n (n is either 0 or I) such that u ~ 0 to obtain theorem-1. 
n 

For estimates on P (u ) and P (A' ), we refer to 
m m. n 

Stewart [4] and the author [3]. See also the nn:t theorem. 

Let { u } and { v } be non-degenerate binary recarslvt m m 
sequen~es whose auoclated polynomials are identically equal. 
Denote by rJ.. and 13 the roots of their asscciated polynomial. 
Tben tl e sequeoce { u } is given by (1) and 12). Further 

m 

form = 0, J, '1, •. . ,we have 

where 
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Form and n with u v ~ 0, put m n 

A = [u • v lj( . m, o m n u • v ) 
m · n 

Then theorem 2 is a particular case of the . following result. 

Theorem 3 

26 

ut A > 0 and 0 < ~ < (d + 1) -I where d = ( Qto[) : Q] 
There exist effectively computable numbers c

5 
> 0 and c6 > 0 

depending only on A, K, the sequences { um } and { v m } such 

that for evuy pair m, n with m > o, m > c5, v ~ 0 and . n 

(3) 

either 

or 

A 
log P (A ) > (lt'g m) m, n 

log m 
I > C6 \og log m 

PI Am, 0 

K 
P > m 

where p runs through primes 

For the proof of theorem 2, we may assume 
. 2 

log P (A' ) < (1(\g rn) . Theo we apply tbeoreiD 3 with 
DJ, b 

{ u } = { 'f } , A = 2 and K = i Observe that (3) it m m 
utlsfie,d, s •ncc JIB is not a root of unlty. Now the aurrtloo 
of theorem 2 follows immediately. 

Tbe proof of theorem 3 depends on the theory of linear 
forms in logarithms. Let aL1 , ... , cl.

0 
be noo-zer.> algebraic 

numb:rs L't K: b: tbeir splitting field over Q.Put D .:a [lC:QJ 
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We denote by A1 , ... , An upper bounds for the heights of 

G{
1 

, ... ,e[
0 

respectively, 

for ,1 ...;. j <; n. Write 

where we assume that A. > 3 
J 

n-1 
.G' = tt log A. , .G = .0' log A . 

j=l J n 

the proof of tbeorelll 3 depends on the following theorem of 
Baker [l] on linear forms in logarithms. 

Theorem A. 

There exist effectively computable a&solute constants 

c7 > 0 and c8 > 0 such that the inequalities 

bl bn 
0 < I .(1 ... a{D - I I <: 

C8D 
exp (- (C7nD) .G log O' log B) 

hrue no 60lution in rational int~ger1 b1 , ... , b 
0 

with a/Jsolute 

values at most B (> 2) . 

We shall also need a p-adio analogue, due to van der 
Poortea [2), lilf theorem A. 

TheoretaB. 

Let tp be a prime ideal ofK lying above a r•tional prlmt p. 
There exist effectively computable absolute constants c9 > 0 

and c
10 

> 0 such that th1 Inequalities 

b1 bn 
oo > ord&J(al1 ... aln -1) > 

C D D 
(C nO) lO _P_ 0 (log B)2 

9 log p 
have no solution in ratfonal integers b

1
, ... , b 

0 
wtih absolute 

~•lues at most B(> 2). 
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I 2. Proof of theorem 3. 

-1 
Let A > o and o < K < (d + 1) . Put 

(4) 't=K(d+l). 

Observe that 0 < 't < 1. Let ~ u t ~nd ~ v } be as in m r m 

theroem 3. There Is no loss of generillity in assuoolDII that 
I el I ~I 13 1. Then, since J../11 is not a root of unity, we fiod 
that I el I > 1. For algebraic integer 11 E Q (J..), denote by 
[•] tile ideal generated by 111: in the ring of integers of Q(J..). 
There e~iats a positive rational integer k such that 

2 2 
( [ol ] • [/3 J ) ::;: [ k ] • 

. 2 2 
Put oL1 = oL /k and 111 = fj /k. Then the Ideal~ [.C1] and 

[81] are relatively coprime. For m = 0~1,2, ... , notice that 

-m m m 
U m = k usm = a.t1 + bfj1 ' 

U'm = k -m u2m+l = aJ..ol~ + b/38~. 

v m 

V' m 

-m m m 
=k v2m::;:a1.Ll+bl/31, 

-m m m 
= k v2m+l =a1alaL1 +blfjfjJ.. 

Observe that the 1equences { U } , { u· } , { V }. and 
m m m 

{ V' } arc non-dea~enerate binary recursive sequences. By m 
proving the theorem upatately for acquences { U } and 

m 
{ V m } , { U m } and { v· m } , { u·m } and { V m } , { u· m } 

and { V' } , there is no loi1 of senerallty in assuming that m 
( [.C). [fj]) = [1). 

Denote by c1, c2, .. . effectively computable positive 

numbers dependtns only on A, K, the sequences { u } and 
m 
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{ •m}. We may anume that m > r1 with c1 •ufflcleotly 

large . Then, since { um } is non-degenerate, we sec that 

u ~ 0, Let 0 .-;,. n < m satiafy v ~ 0 and euppo1e lhat (3) 
m n 

Is valid. We suppoae 

(5) leg P (6 ) < (log m)A. 
m,n 

Let ff
1

, ... , " be all lhe rational prime• eatllfying ft 
1
16 

s m~ 

K 
and ftl > m for 1<1<•· Let 0 < E < 1. We suppo11 that 

(6) 
-1 s ...;; + £ {leg m) (log log m) • 

We ahall arrive at a contradiction for a 1uitable choice of € 
depending only on A, K the •e quence1 { u } and { v } • m m 

We write 

u v 
m n 

(7. Bl = - ---- B~ = (u , v ) (u , v ) • 
m n Ill n 

A - (u , v ). 
m D 

I hen 
u B1 m 

(8) 
B2 

and (Bl,B2) ""1. v 
n 

Further 

(9) A = :!::: B1 B2• 
m,n 

For a prime p divldiDI B1, we 1ee from ( 7) that 

ord (B
1

) < ord (u ) . p p m 

Let &J be a prime ideal in the rins of integers of Q laO 
•lvlding p. Then, since the ideals [Q{] and [J3] arc relatively 
prime, either &J does not divide [oL] or &J dc>es not divide [#3]. 
For simplicity assume that tp dots not divide [J.]. Then, by 
(1), we have 
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ord (u ) < ordv..(u ) p m 0~ m 

< r 2 + ord fp { 7 : ( ! ) m - I) . 
Nc.w we apply thtorem B wlth n = 2, D =- d, o£

1 
• · - b/a, 

.L2 ;. 13/ol., b1 = 1 and b2 ~ m to cc.nclude that 

b 13 m 
ord fp ( - -;- ( J. ) - 1 ) 

d --1 +J < ~3 p (los p) (los m) • 

therefore. 
d . -1 2 

ordp (B1) < c4 p dog p) (log m) • 

This Inequality follows 1imllarly when fp does not divide [/3]. 
Consequently, by (4) , 

Sllllilarly 

L or'(j (B1) los p < c~ m 't (log m1
2 

p!B
1 

p 

K 
p~m 

"" 1 't 2 L., erd ,B2) log p < c5 m (lrg m) . 
PIUS p 

K 
p<;;m 

Consequently, by l9J, we ma:y write 

IID1 ilts Y1 Ys 
(10) B

1 
= B

3 
tt

1 
... tt

5 
, B

2 
= B

4 
tt

1 
... tt

5 

where x1, ... , 1
5

, y1, ... , y 
8 

are non-negative inCegers and 

B3• B4 £ z with 

ell) 
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Further we see from (7) that 

log max ( \ .B1 I , 1 B2 1 ) < c
7
m 

whh.h, to gel her with (10), implies tbat 

(12) max (x
1

, ... , K
8

, y
1

, ... , y 
1

) ~ c
8

m 

with c8 > 1. 

We bave 

-1 m-n 
(13) urn a1 aol v

0 

=- b /30 (a -1 a .tm-n -b -1 bam- n) 
1 1 1 

and, by (7) and tl), 

(14) A B
1
- aol10 

= b /3m 

In view of (3), we ue that 

(15) 

Put 

-1 m-n u - ,a
1 

acL v ~ 0. m n 

- 1 m- n -1 
T = a1 a oL v 

0 
um - J, 

-1 - m 
T1 = a oL A B1 - 1. 

By (15) aad (14), notice tbat 
TT1 ;;e 0. 

Further it follows from (8) and (10) that 
at X 

T -1,-m . 1 ... s(BA)- 1 1 = 8 1 a ff 1 ff s 3 

a m-n zl z•B' 
and T - cL 1t ... ff B - 1 

a1 1 s 3 

where z . = y. - :x:. for l ~ i ..; s Now we 1plit tbe proof 
1 1 1 

of theorem 3 In two cases. 

Case I. 1 .,( 1 > 1 13! • DivldtDB both the sides ef (13) by 
um' we have 
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(16) -0 
0 < I T I < c

9 
• c9 > l. 

We apply lbeorem1\with . 
- 1 

n = s+3<E (logm) (loelogm) + 3by (6), 

D =d.;;;; 2, log A
1

"" log A2 =c10 , log A3 • ... = 

A T 2 
log A 

1 
= (log m) by (5), log A = c

6
m (leg m) by (11) 

D- a 

and B = c
8

ro by (12) to conclude that 

T+c E 5 
(17) 1 T 1 > exp ( -m 11 (log m) ). 

We shall choose E co aatisfy 

(18) € .;;;;(l-T~j2c 11 • 

Put 
T 1 = (1 + T)/2. 

Then, since 0 < T < 1, we find that T < T 
1 

< 1. 

Comblalo1 (16), (17) and (18), wo have 

'tl 5 
n .;;;; c12 m (loll m) 

Then 

(19) 

m 
Dividing both the sides of (14) by a .( , we have 

-m 
(20) 0 < I T l I < c14 , c14 > I. 

-1 We apply theorem A with n = s t- 3 < E (log m) (IClg log m) 

+ 3 by (6), D ,. d .;;;; 2, log A1 • log A2 = c
15 

' 
A 'tl 

log j
3 

- ... =log An _
1 

=(log m) by (5), log A
0 

= 2c13 m 

5 
(los m) by ( 19 ), ( ll) and B = c8m by (12) to concludo that 
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'!:1 + c16E 8 
1 T 1 > exp (-m (log m) ). 

1 

1 - '!: 1 ·- '!: 1 1 ) 

2 c
11 

• 2 c
16 

' 2 

Then (18) Is satisfied. Put 

T 2 ;: (l + T 1) I 2. 

Observe thal T 
1 
< T 

2
< 1. Now we ~ombine (20) aod (21) to 

conclude that 

which, since r 
2 

< I, implies that m < c13. But tltla Is not 

possible if c 
1 

> c 18 • 

Case II 

1 d. I = 1/31· v,t T 1 and T 2 be defined as io case I. 

Obse!ve tha t 13 is D()t a \lnlt, since J..//3 ia not a root of unity. 
Therefore tbere eaglsts a prime Ideal FjJ In the rln& of Integers 
of Q (ol) such that $-J ! [ ~]. Further, since the Ideals [ol] and 
[/3] arc relat•vely coprime, observe that p does not divide [cl]. 
Consequen~ly ord

6
u (um) < c19 .Now, by counting the power 

of prime Ideal ~·1 on b()tb the sides in (13), we have 



1', N. SHOREY 34 

We apply theorem B with p .,;;; c22 and the sr~me parameters 

a1 In ease I for obtaining a lower bound for I r I by theorem A. 
We obtain 

T + c2S E 5 
ord&J (T) ...;; m (log m) 

We shall choose E to satisfy 

(22) 

then 

which implies tbat 

1- T 
€ ..;-2 • 

c23 

Tl 5 
log I 1\ I .,;;; c25 m (log m ) 

Counting the power ~>f p ··line Ideal &J on both the sides 
In (14), we obtain 

Tl 5 
We apply theorem B with p ' c22 , log A

0 
=c25 m (log m) 

and tbe same parameters as in case I for obtaining a lower 
bound for 111

1
1 by tlleorcm A We obtain 

T 1 + 027E 8 
ordSJ (T 1) < m (log m) • 

Let 
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Thea (22) Is ntlsfled. We obtaio 

T 2 8 
m < c28 m (log m) 

~onseq(Jeltlv m < c29 which Is not possible If c1 > c29 . 

Tbll completrs the proof of theorrm 3. 

Remarks 

(I) Let { u } be a non-degenerate blaary recursive 
m 

sequence FJr every pair m, o with m >a, u u ~ 0 and 
m o 

Q (u ) = Q (u \,we have 
ID D 

2 -1 
m - n > c

30 
(log m) (log log m) 

whore c
30 

> 0 Is an e'fectively computabl' number deDend

lns only on the sequence { u } . This follows immediately 
m 

from theorem 1 aod the relatbn (13) with a
1 

= a, b
1 

== b. 

(il) Let P > 2 and denote by S the set of all non-zero 
lntrgers rompostd t'f primes not exceeding P. We can apply 
the a1 gument of proof of theorem 1 to prove that for every 

xES, yES wit'l (x,y) =1, I~ >IYI and Jog 1~ : > ee, 

2 --1 
log Q !x t y);;;;.. c

31 
(log log lxl) (log Jog log lxl) 

where c31 > 0 is an effectively computable number 

depending only on p . 
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