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ON A QUESTION OF RAMACHANDRA

By Hugh L MONTGOMERY *

Let ak(n) be the Dirichlet series coefficlents defined by

the relation
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Here k is a positive integer, and we see more explicitly that
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With possible applications to the Riemann zeta function in
mind, Ramachandra has wanted to know the asymptotic size

of the quantity
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as a function of N and o, where o is fixed, 5 <o cl. We

settle this question by demonstrating the following

1
Theorem : Let ¢ be fixed, 5 <e< 1. With the ak(n)

defined by (1), we have

1] i-
(3) max k( ) ) 2k — (log N)
k n<N logiog N

Research supported in part by N S F Grant MCS 80-02559.




32

In addition, for any integer k>1
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‘ Here' the impliclt constants may depead only on o,

4 km

With a little more care one could |how that the valoes of
k for which the maximum in (3) is attalned satisfy

k = (log N)/loglog N.

To estabifsh that the right baad side majorizes the left
above we shall require the following two lemmas.
Lemma 1: LetY > 2, and put
ReR(Y)= {ripir=p<Y}.

. |
Theo for any k > 1, and fixed o, 5 <e <,
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Proof: Let Xz, X3, ey Xp be iandependznt randem

variables, each uniformly distributed on the circle |[z| =

Then
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Lemma 2: LetY > 2, and put
S=8(y) ={s:pis=>p>y}.

-1
Then for anyk > 1, and fixede, — < o < I,

2
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Proof : From (2) we see that ak(s) < k! foralls,
Thus

2
) ak(s) X ak(s) k'( ] g )k
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and the stated bound follows on taking the 2k-th root.

We now prove the Theorem. We first show that the left
hand side of {3) is at Jeast as large as the right hand side.
Let Y be the largest integer such that

P= N p< N
p<Y

Then by the prime number theorem with remainder,

log N
Y =logN + 0 ( A )
(log log N)

'!"akck = ) (P) = % (Y). Then
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log N
toglog N

Clearly k ~ ,and by more careful use of the

. leg N
prime sumber theorem we see that k >'W
N. Thus N I/k< log N, and we have the desired lower bouad.
Io (4) the value ofk is prescribed ; we choose Y so that
n (Y) = k, we take N = P, and procced as above. We obtain

the desired lower bound since

for all large

(log N) l—0 kl-—a

~)
b loglog N e k)a'
We now complete the proof of (3). Let R and S be as In
Lemmas | and 2. where Y is a parameter to be chosen later.
Aoy n is uniquely of the form n = rswithr € R,s8 € S. If

f1 () = kand Q (r) = m then by (2)

k
3 (o) = (m ) - (r) B (s).
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(5) <F®?+ O

where

and
a_ (s) —
S = max 3 e o
m s ¢S 8
s <N
By Lemma 1 1
‘ yl-
R ’
(6) < Tog Y
m
To treat S we note that ()(s) = m, s €S, thens >Y .
log N
Ifm > I:Y then it follows that s > N, and the sum

- log N
defining S will be empty. Thus we may suppose thatm< ° log Y

From this bound and Lemma 2 we ste that
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On eombining (5), (6), and (7) it follows that
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and It suffices to take Y = log N.

' To complete the proof of (4) we may proceed more simply.
With the Xp as in the proof of Lemma ! we see that

1
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By the triangle inequality this is

X X

P p
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By Lemmas 1 and 2 this is

"2 2
& Y + k°Y
og Y 1

aand it suffices to take Y = k log k.

University of Michigan
Ann Arbor, Michigan 48109.



