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ON THE ZEROS OF THE RIEiiANII ZETA· 
FUNCTION AND L-SERIES·II 

By 

R. BALASUBRAMANIAN AND K. RAMACHANDRA 

To 
Professors E. C. TITCHMARSH, Yu. V. LINNIK and 

j. E. LITTLEWOOD 
In Memoriam 

I 1. Introduction 

Thls paper Is a continuation of Rllmacbandra's paper [2] 
wlth the same title. It Is divided into twe parts A and B for 
convenience. Bllth the parts deal with the cluiters of zero• of 
tho Rlemaoo zeta-function (part A near ,. = 1 and part B in 
l < • < 1). The maio result of pari A is 

Theorem A 

Lett ({3 0 + iY0) = O where {30 ;;>land y 0 > 100. Let 

1 
0 < .A ..;; -200-. Let u and v be positive and let N {u) denote 

\:..(., .. "'t«...C v . 
the number of zeros P (osru..et:ted with multiplicities) of the zeta 
function which satisfy I P - 1 - iv I < u. Define the function 

1 (Y0) by 

-,AY 
g (Y 0) = NY (4.A) e + 

0 

( 2u) - u 1 
\' .' e du 



Then there exist effective positive constants A 1, A2, A 3 
independent of X. 130, and Yo such that for all Y satisfying 

2 Y > A3 log log Y 0 > (A3 + lOO<J) we have 

2 4 -1 -1 
g (Y0 ) > A1 A { A Y (1-- 130) - } . 

Remark 1 
-AY 

We can replace g (Y 0) by N (4A) e + 
Yo 

y 8 + 2A AY+l 

f [f 
y 0 -2A o 

( 2u) -u ] · 
Nv y e du dv. 

The final inequality of the theorem still holds If X Y > 1 
In addition to the other conditions of the theorem. The proof of 
this result can be achieved by considering a lower bound for 

[YJ I ta. .12 
1 + p J 

j = - [Y] 
l 

X c; p::: 2X 

b + J
·y-1 w ere a.j = Yo Lemma 2 gives for this sum the 

lower bound 

>> h 0 - o. 12 >> Y. J J 
Remark 2 

This theorem improves Theorem 1 of [2]. The 
earlier history of thla result Is co'lnected with the 
name• N. LEVINSON, H. L. MONTGOMERY and 
K. RAMACHANDRA. For detailed historical cemments see 
[2]. It should be mentioned that LEVINSON was the first to 
prove that NY (A)> 2 for all Y0 > 'Y 0 (A) . Io the lower 

0 
bound fur g (YV} the dependence on X can be 

. ) 
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Reawk3 

For convenience we 5tate this theorem in part A again and' 
point out Ita application to VJNOGRADOV's zero-free 
region. Zero-free regions arc not new. (For an exposition of 
·the uaual methods of getting zero-free regions •ee for Instance 
[4] ) . But theorem A says something new In tbc followinc 
direction, 

It may be looked upon a new information about the zer:oa. 

or t(s) in cr;>l- (log log t) -I, t > 100. A simple corollary 
to theort'm A can be stated very easily. Let us call a zero P 

isolated if in a disc with centre P and radius 10- 800 there are 
no other zeros. Then there are at most only finitdy many isolated 

zerosP "' 13+i"Yintheregioncr;;>L-(loglogt)-
2

, t>lOO. 
Moreover N ()...) ;;;;.. 10000 for allY e"<ceeding an effective · 

"Y 
positive constant depending only on A.. 

Remark 4 

The method adopted In part A is the same as that of [2] 
with an important difference. replace the inequality 

s l ja I 2 I 2ia l 2 10 1 + p + 1 + p > 3, 
valid for all primes p (Th ia was used In [2]) by an averaged 
inequality 

> l 1 • 
X< p.;;; 2X 

where a 
1 

and a 2 are any two real numbers satisfying 

-5 2 0<a1 -a2 <1andS=I0 (a 1 -a:.6). This ine-

quality holds for all X ;;.. JQ90
, The proof of tbis inequality 



depends crucially on an Important Idea of BALASUBRA-
MANIAN which we utlll.zed In [1). BALASUBRAMANIAN'S 
Idea makes it possible to prove this inequality by using the 
HARDY-LITTLEWOOD upper baund f()r 
(the number of primes io smaH intervals) which )Vas obtained 
by them by using the fundamental method of BRUN. For 
an exposition of BRUN'S method see [3]. We sketch the 
proof of this averaged Inequality in part A. The re&t of the 
work in part A · consists in repeating without any essential 
changes tbe work done in (2] and the appendix therein. 

Remark 5 

The resuh In part A (and ah0 those of part B) depend 
primarily on the: EULER and the functional equation, 
Heacc they eaaily to more general situations where 
these twe are available. In particular the results have obvious 
&Daloaues to zeta-functions and L functions of algebraic 
number fielda . 

. . I 
Part B deals with "good and bad zeros" uf t(s) in > 2· 

Our results of part B were inspired by a letter of Professor 
D. R. HEATH-BROWN, where he announced without proof 
the following theorem which be proved in September 1975. 
We quote from hislecter in his notation. 

''Theorem (D. R. HEATH-BROWN) 

Let N £ ( a, T) denote the number of zeros f' = /3 + iY 

oft(s) in the region J Y I >;;; T. /3 >a for which t(s) does not 
vanish on 

{ s : lim 1 - Y I .-; ( log Y ) 
2 

• Re s :;;.. /3- e l 
2 - 2a + € " except at s = P. Then N ( a, T ) < < T . e: 

Here the constant by the Sfmbol depends 
gnly on e: , • · 



s 
We tried to reconstruct the proof of HEATH-BROWN'S 

theorem and we did Around Auaust 1977, 
RAMACHANDRA wrote up an improved version of this 
theorem In his unpublished article "REMARKS ON GOOD 
AND B.\D ZBROS OF t<s)". This improvement (which 
was possible by applying sorRe techniques employed In [2]) 
can be stated as (It Is the malo result of part B). 

Theorem B: 

Let M be a positi1•e function of T 3UCh that M log T lie1 

between Exp ('i'(T) l"g bg log T) and T)c where e is any 
c 

positive conatant less than I, and 'lt(T) < 2 log log T is any 

positive function which ttndl to infinity T tends to infinity. 
Ltt u1 agree to call a zero P 0 = {30 + iY 0 (T < Y 0 < 2T, 

T > T ) "M-sood'' if ' 0 

P (M(log T) -- l) 

(in the sum over P. P is counted arcording to its multiplicity), 
ana 

. 2 
t(::;) 0 in { I l'n 1 - YO I .o;;, (h1g T : , Res>J30 + da} 

-8 -8000 -I where d = 10 , a == 10 m t.t and m= (log log T/. 
Then the numotr of''M. geod" 2eros (counted with multiplicitJ) 

in { Re s > u 0 , T IJU < 2T } l T ;;;;. lO) 

(2+E)(J-u) 
is O(T 6

). Here the 0- constant depends ()nly on f} 
find not on T and u 0 (> J), 
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We then sketch a proof of the following 

Corollary 1 : 

Let be any constant 5atisfving 0<S0 < f. We shall fix 

it once for all. Let agree to call a zero P "g)od" if Re P>t 

-1+3 
and further in a disc with centre I' and radius (log I P I) 0 
the number of zeros (oft (s)) counted with multiplicity, is 

[ 
I '& log I P I ] 0 log I P I . 

Let us call P to be if it is not good. If the number of bad 

%eros P with .ReP> (1 and: lm P 1 < T, is O(TB (l-(1) + E) 
(where T > 10, (1 ;;;;. t. E > o, and B is a positive con!tant inde-
pendent ofallparameters and the 0-constant depends on/yon E, 

h .h. b. h T 0 TB(l-(1)+ 2 E) · w zc zs ar ztrary1 t en N((l, ) = ( 11 

true. Here, as usual T) is the number of zeros P oft(s) 
with Re P > (1, and 1 lm P 1 .;;;; r. 

In parricular taking B "' 2 lo the above corollary we caa 
state qualitativdy (but vaguely) the following 

Corollary 2: 

If the thick clusters of uros are rather rare in (1 > I then 
density hypothesis is true. 

We are very much thankful to Professor D. R. HEATH-
BROWN for his Jetter. Since his result Is not Intended to be 
published we would like to tbc results of part B as 
joint work with him. 



i We begin witb 

Lemma 1. 
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PART- A 

The number of primes p satisfying X < p < 2X, for which 

l l(B1-B2) I- '7t 
P - 1 ..... e. < o < e ' -w> . 

-1 -1 does not txc•ed 20J (log J) , where J = X 9 (a 1 - a 2) • 

80 0 <B1 -a2 .;.l,andJ>10 · 

Proof. 

Treating pas a variable we see that {as p 
I ("1- 0 2) 

varies over X < p < 2X), p maket at most 

-1 [ (o1 -o2) (21'") log2] +1 revolutions on the unit circle . 

In eacb revolution the inequality of the lemma defines a 
-1 p- Interval of leogtb not exceeding 5X0 ("1 - B 2 ) .The 

Hardy-Ltttlewood upper bound (obtained hy the fundamental 
metllod of Brun) for the number of primes in small intervals 
completes the proof of lemma 1. (However we have used the 
Selberg upper bound at the last step). For an exposition of 
Brun's method see (3]. 

Lemma 2. 
2 Let 0 < a1 - s 2 < = 10 (a1 - a 2) , and X any 

90 real number> 10 . Then there holds, 

l 
X"'"' p"'"' 2X 

1012 102 2 
dt+p I +lt+p I> 1 

X"'"' p.;;. 2X 



Proof. 

Suppose the lemma is false: Then the number of primes 
IG . 

p for which I 1-t p 1 1 > '71, plus the number of primes p fer 
ia -2 · 

which)I+p 
2 1 > '1'/, does not exceed l 1 

' X ..;;; p ..;: 2X· 
-2 

Hence at least (1·- S'IJ ) 1 of the primes satisfy both 
X< p 

t•1 ia 2 ia 1 ta 2 I 1 + p I '1 and I I + p I 'I'J and hence I p 7
- p / 

t(a.l-0.2) =I p - 1 :11'1'/ . Thus we obtain from this and 

lemma 1, the Inequality 

( l _ a'IJ-2) 1 < 40X'I'J [ l [ 2X'1 ] ]-1 
X < p < 2X -a -a og a - a 

-- - 1 2 1 l 
-1 80 i pro\'ided 2X'I'J ( a1 -a2 ) > 10 . We now aet 'I'J = , 

where 
-5 2 l = 10 ta1 - a 2) and get 

___!_ < X (log ( 
3 log X - 5 

X 
) 

-1 
) ' 200 

which is a contradiction for all X > 1090 • This completes 
the proof of lemma 2. 

We now almost copy down the section §2 of [2], with the 
changes sketched in the appeadix of that paper. We denote by 

s a real number Jyi r.g in ( l , ) , and by c( a real 

number exceeding and w will denote a complex variable. 
1 

We denote by /30 Ia a f1xed z:ro of (w) with 13 0 ;;> 2, 
G > 100. and by cl. • .. Ca •.•• cHectiV• p0sltive 

{ 
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The 0-constantl will be absolute constants. These 
constaota are absolute numerical constants with the exception 

. 1 
of C 4: (and C2) wh lcb may depend on A. (0 < A. < Wo),and 

we will specify how it depends on A.. The number A. occurs 

in the following way . We set a = a 
1

, and subject a2 to 

0< a1 - o 2 .;;;; I. DA. (1 + ia1) and 

DA. (l + ia2) denote discs with centres 1 + ia1 and 1 + 1a2 
respectively with radius A. each. We now start with lemma 1 
of [2} and continue as In that paper. 

Lemma 3. Let 
2 (s) = ; 1 (s) <1> 2 (s), where ; 1 (s) = (s) (s- {a 1) 

t (s + ia1), and</>2 (s) =- (s- ia 2)t (a+ ia2). 

Then 

where 

Proof 

</>' (s) 
</> (s) 

00 b 
0 -· s 

n = 1 n 
b are non-negative re:JlnumberJ. Further there holds for 

0 . . 

2 a _2 A (n) 
X< n < 2X 

The proof i1 trivial except the last inequality which 
follows from lemma 2. 

Lemma 4. For all X > I, we have by writing 
•• (a) 

F {a) = </> (s) , 



H> 

F (• + w) Xw r ( ; )dw = 

Rew"" 2 
00 

-2 2 
D.,. 

Preef. 

Follows from 

b n 
I 

1 n 

2tU f 
Re w = 

. 1 
M4ving line ot: integration to Re w = - 2 + 100 • and 

1 
anum4ng that. l < s ..; 1 + 100 , we have 

l 
Lemma 5. If 1 < 1 1 + iiu, then fur X> 1, cl. 1 > 100, 

where 

, 
1- s lol cl.l 

O(X + -- ) X 

l 1 == Re (;.....Xl - s r ( 1; s) + 

P-s- Ia lx 1 r 
f 

and is the same as l 1 with o 1 replaced by o 2 .Here P === fj + iY 



· II 

runs over all the zeros oft (w) with positive 1eal part. (In future 
the same convention will be in force. Also the restriction of the 
sums to zeros which satisfy some conditions will be indicated 
below the summation symbol or explained at appropriate places) 

We now 0 = 130 + 1• 1 and 

00 b 2 
• - (1 - Exp (- ( 
s n 

5 

P- s- ia 
Re 

2 

p 

s- j(J2] 
r - --

2 ..• 

and we will see that lemmas 3 and 5 give 

Lemma 6: 

Le>t 1 < s < 

2 1- s -6 X 210 (fl
1
-a

2
) 1-s (1-s) < 2(-x r - 2 + 

Proof: 

follows from l
3 

6 (a!- a
2

) (s-J) ..... t, 



12 
. We now impose condition• on 1 and X so as to satisfy 

-6 2 xl-s 1- t (1-s) 
-10 (a1 -a2) - - X r - . 

s-1 2 

-6 2Xl-s 
<;; - J 10 (Ul - a 2) -. s-1 

This requires 

6 2 13 o - I 13o - s ) - i 10 (cL 1 -cL2) + (s --1 )(X r( _
2

_ 

( 
1 -I' ) - r - 2 - ) < o 

l. e. 
., /3-1 /3-s 

- i 10- 6 (a -a ) ... -!&X 0 r ( _o_ + L) 
1 2 2 

· /Jo- 1r(l3o-•.) J-s - < 1 - 13 0 ) x - 2 -· + 2 r < -t 1 ) o 
i. e. 

6 2 13o - 1 l-/30 - t 10- (u1 - a ) + C (X --- + 
2 1 s- f3o 
(1 - 130 )1og X) < o. 

By puttiog s;;;ol + c 2 ( 1-130 ), we are Jed to the requirement 

4 ( 1 - llo )logX ) 

I 
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We DOW record 
Lemma 7. We have 

1 - 6 2 X 1 - 1 
- 1 -s 

0<- 2 10 (a 1-a2 ) s-l ) 

subject to the conditions 
1000 

c:l1 > 100, X > (log a 1 ) 

1 
1 + c2 (l - f3o> .:::. s < 1 + iOo and 

I -6 
2 10 

{3 -1 

(a -a )2+C {X: t (t-{30 )logx) 
1 2 1 2 

< o. 
Here C 1 aod the 0-constants are ab5o/ute positive constanu and 

c2 is anypositive constant 1 in fact any positiYe variable) not 

-1 excuding ( 100 ( 1- {3 0 ) ) . 

The ne;r;t lemma is ess{'ntially due to Montgomery 

Lemma 8. 
We haYe,for X--;> 1, 

P-s'-w Re (X 'I I 
P - s - ia1 ) ) {3 _ 8 r ( 2 < C 3 X kg X, 

where c3 is a certain constant. 

Proof 

Let a the complex nu:nber P- s- ia1 . Observe that 

the real part of a lies b_tween- 3/2 and zero and write 

a ( a) ( a) 2 2 · a {3 -s X r . -2 = X ( [' 2 - -; ) + -;<X - X ) 

+ 2 xf3-$ 
a 
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The first two terms on the ,'lgbt are 0 (X/3 -slog X) and the 
real part of the last term Is negative. These remarks complete 
the proof of lemma 8 

and 

We next write 

X
P- s-ia 1 r( P-s

2
-ia 1) 

"14 = Re l 

= 1 6 + 1.7 

where 

and 

We now write X= Exp (Y + u 1 + u2 + ... ···+urn + um+l) 

where y > 1000 log al, 0 uk c4 (k = 1, 2, ....... m), 

me [YJ, and 0 < um+l ::=:. y As u 1, u 2, ... ,um+l vary over 

this (m + 1) dimrnsiooal box the maximum ard the minimum 

values of X are x1 =- Exp (C1 [Y] + 2Y) and X 0 = (Y). 

We DOW wisb to average the inequality of lemma 7 over the 

(m + I) d1memional box defined already To do this we have 

to Impose the condition 

[ 

[3 -1 ] 0 
1 - 6 2 xo .;;.0 

- 1 o (ol. -ol. ) + C ---- + (1- t3o) trgX 1 
2 1 c., . -



We satisfy this by lmposi,Jg the c :mditlons 
-1 -1 1 - 6 

1000Joga1 < Y < C1 (C4 + 2) { -4- 10 

2 -- 1 
(a 1 - a 2) } (I - J3 0) (1) 

-- 1 1 -6 2 
and {410 (a 1 - a: 2 )} 

(2) 

1 -6 2 X 1-s 
Trivially - 2 10 (a1 - a 2) -

8
-_-1- < 

1-s 1 -6 2 x1 2 10 («1- "2) --
1 -1 

(3) 

and 1-s 1-s X < x0 
( (} 

Our next task is to obtain ao upper bound for the average 

-m -l[J J c4 y ... ... dum+1 (5) 

We do this in lemmac; 9 and 10 h> follow B:fore proceedlrg 
further we record the following relations. 

m = [Y], x0 = Exp and X 1 ..;;; Exp((C 4 + 2) Y).(6) 

Lemma 9 

We have 

-m -IJJ J c4 Y ,' .. . 

2 - 1 [ 2 ]m t 2 1-s 
..;;4C5 c, Y (loga 1)X0 . 

Here C 5 is an absolute positive constant and C 4 is a positive 

constant still at our choice. 



Proof 

Trivially, 

This proves the lemma completely. 

Lemma 10. 

For any real number V Itt Ny (r) the number of 

zeros of the zeta-function in the disc D ( 1 + iv ), with 
r 

1 
.A ( 0 < .A < -100 ), Y > 2 and V > 10 define 

{ 
-.A y 

f (V) = f (.A, Y, V) = max NV (2)\.}e 
V ·.A ..;V..-;;V +.A 

.A y + 1 

+ f 2u - u } 
Ny{y) e du . 

0 
Then 
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where C 6 and C 5 are certain abstl/ute positil•e constants and 

C 
4 

> 0 is still al our choice. 

Proof. 

We shall get the upper b0und 

-Ill -1 
c4 y f f ... f('1,6) dul ... dum+l 

< c6 (c4 + c5 + 2) f(ot1) Y 

and leave the remaining part of the work containing "s as a 

trivial imitation. 

We start by writing 

" =- " 6 n 
Re 

n 
y 

l ... 

<I'Y-4 1 1 < 
n+l 

y 

l S say, 
n n 

where n rung over 0, J, 2, ... , [A. Y] + I and for these values 
of n the inner sum is oVCf those zeros which satisfy the 
summation conditirn for 'Y mdicated, plus of c..>urse tbe 
condition that 13 + i'Y shall lie in DA. (1 + io 1). The average 
of S is tasi ly seen to be n 

n n+l 
-.c:\Y--cl I<;;-- y ·-y l 

lf n :> 1, 



Here we have used lemma 8 In tbe case n = 0. Hence the 
average ?f 16 doea not exceed 

2C7 (c 4 + C5 + 2) y (I+ t 

f .. I t3 -1 1 xo 
Y-C:1 inl . 

Pin DA (tttc:L 1) L J 
1 

where I runs over all intervals of length Y contained in 

(o1 - A, o 1 + A]. It remains to appraise tbe maximum. 

1 
We denote by N(u, I, -y) the number of zeros counted (witb 

multiplicity) In the last sum (in max) wilh real parts > a, 
I 

we bave. 

l = J 1 - A Exp ( Y (l - u) )d N(u, I, ) 
1 

< Nc:l 
j 

1 
N(l- A, I, y) Exp (-:X.:Y) + 

1 t 
Y f N iG", I, y) Exp( - Y(J- ") )da 

1-A 
A 1 (2A) Exp (-A Y) -+ Y f N(l- u, I, y) 

0 
Exp (- uY) du 

. A l < N cl. (2A) Exp (- A Y) +'if N (2u + y) 
3 cl.3 

X.Y+l .;;;; N , (2A.) Exp ( - X. Y) + f 
-3 0 

Exp (- uY) du 

2u -u 
N ( y) c du 

a(3 



where aL3 is a; y rral number which is the end point of any 

interval I under consideration. A similar argument applies to 
tbe avera!c of '28. This completes the proof of the lemma. 

Collecting the results ofav:raglng the inequality of lemma 
7 we state 

Lemma 11 
1 

Lett (130 + 1a 1 ) 0. where 13 0 >2• a 1 > 100, 

1 
+ c2 (1-/30) < s 1 + JOo ' where c2 satisfies 

-1 0 < C 2 ..;;; ( 1 00 (l -{30 ) ) , 0 < a 1 - a 2 .;;;, I, 

1 -1 1 -6 
1000 log a 1 Y <:; c1 (C4 + 2) { 4- 10 

. ') . 1 
{ol-a2).} (l-/30)- ' 

. ' 

-1 1 -b 2 
Exp (-Y (1-{30)) < c2 C1 { 410 (a 1-a2) } 

Then, we have with m = [Y]. 

2 -1 2 m+2 
+ 4C 5 c4 v ( C

4
.A ) (Jog ct 1} + c8 

f c6 (C 4 -tr 5 +2)(f(a 1) + f(rl 2))Y. 

In the above equations C1, c5 . c6 and c8 are certain 

ef(ertive absolute positive constants and c 4 >0 is still arbitrary. 

The number c2 is also arbitrary hut is subjPct to the restriction 

stated above. 
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Proof: 

Follows by (3). (4), (6) and lemmas 9 and 10. We have 

divided ihrougbout by XI-s after averaging; and used the 
0 

inequality 

[ 
xxot ]1- s ...--- Exp (-(s - 1) (C4 +l)Y) 

This completes tbe proof of lemma 11. 

lemma l i Ia the fundamental re&ult that we have arriv::d 
at. We will now record a sp:c:ial case of lemma II as 

Theorem 1: 
1 

Let C( 130 + i y 0) =- r, where 13 0 > 2 andy 0 > 100. Let 

1 o < A ..._ iou . Then there exist positive constants c;. c1 0 and 

C 11 , independent of A. 130 anJ )' 0 such that 

2 Y::>C 9 Jog log)' 
0 

;;;;.C 9 , there holds, for all such Y, the inequality 

ClO A 
6 

- ·-- - -· 
Y(t-J30 l g(Y o> > 

where g.(Y0 ) = NY (4A.) c -t- max 
o (Y0 -2A<V,Y0 -r2A.) 

A.Y+l J NV( ) c - u du , 
0 

and NV (u) is the number of zeros ? of the ::eta-f:mction whicl! 

1 P- 1 - \V 1 ..; q. 
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Proof: 
1 

G!ven any A ing 0 < A < 200 we select tt1 = 'Y 0 • 

A 6 -2 
" 2 =Yo - 100 . PutC2 =4.10 C 1(tt 1 -ct2 ) 

- 2 
'= 1 + C 2(1-J30 ) and c4 = 400 A . We note that since 

Y > C' 9 l<'g log Y0 the second term in the first ir.cquality of 

lemwa 11, ard term CRcanbereplaccd byanotberpositive 
I constant D 1. resultirg inequality is easily seen to be 

D A 6 
2 

The uppt!bouad Y = 0((1-J30 )-l A 4) for Y is unnecessary 

sioce we can increase 0 3 to 111ake the ltHS negative when Y 
\l;.e, 

exceeds tll is •ound. A I so by the same rea ·,on j,ft condition 

C 2 = 0( (1-J3
0
)-

1
) unnecessa1y. This completes the 

preof of Tteorcm 1. 

Corollary 
3 

for all t > 30 and all v in 4 u < 1 we have 

3'2 r(', I t (u + ir) l D 4 (l - g) I lflg t + 05 kg Jog t, 

where D 4 and D 5 are positive numerical constants independent 

of u and r, then 

1 'lf3 1/'3 
1 _ 13··=0t (log y 0 ) (log logY(!) ). 

0 
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Remark 1. 

Tbe sta !ement involving D 4aod 0 5 is actually true and It Ia 

a very deep result and is almost completely 'due to the Ideas of 
I. U. VINOGRADOV. Hence we have the Vioogradov zero-
free region 

Remark 2·. 
For the history gf Theorem 1 see [2] . Here it sufficu .to 

' 1ay that theortm 1 contains some extra information apart 
from giving tbe well known zero-free region .of Vioogradov. 

Proof of the Corollary 
We choose A to be a positive constant and suppose Y > 

100 
A kg log 'Y 0. Then we can neglect the ftrst terming ('Yo) 

The iottgral which occurs in max ... is 
1 

A + Y 

vf -rY 
N (r) e dr 

0 
where N (r) = Ny(r).lntegrating by parts we get, introducing 

u 
H (u) = f N (r)dr, the expression 

0 r 

u 

e-uY] Y H (u) _ 

1 A +-y 

1 
A + y 

f -uY ' 
Y H (u) (ue ) d\l 

0 



1 
A. + y 

1 - A.Y 
..;, Y H (A + - ) e - Y y f 

1 
y 

-uY' 
H (u) (ue ) du 

-uY' 1 
Now - (uc ) > 0 fr·r u > :y--. We now see by u .. log 

H (u} == 

tbat 

2« 

log { I t (1 + iv + 
0 

i 9 - 1 
ue ) I 1 t(t t iv) I } dQ 

21f 
1 f 3/2 < 2-n (D 4u log Yo+ + 1000) IJg I ' g t) dQ 

0 

1 
0 Y(l- {3

0
") - [ 

log Y0 ] 
-y 312 + log log Y 0 . 

\ { logY 0 ) 
I. e. I - 13o = 0 - Y 1/2 + Y log log Y 0 

100 
Choosing Y (Y """T log log y 0), ao as to minimise the 

0-term we get the result stated in tbeco:ollary. For the result 
1 2-n 

on H {u) expressing it as -2-J ... see page 126 of 
1f 0 

THcbmarsh's book' T.be Theory of Functiom", Oxford (1939). 
This rciult Is called formula. An alternative method 

is to apply maximum modulus principle to the function 



-1 (s) (s0) ) 

7t [ s - !10 ]' 
l - ' p p - so 

where 

P runs over all the zeros counted inN (rJ and s
0 

= 1 + iV. 

According to the maximum mcdulus principle the absolute 
value at s = 11 0 is not mnre than Its maximum modulus on a 

circle of radtus 10 rand centre s0 . This gives an upper bound 

for N (r). Tb Is is e11ough to give V mogradov regioD. 

PART-B 

The notation In this part is of that of part A. 

Some preparations 

(s) 
3. We write F (s) = - -- and proceed to count 

(11) 

the zeros P of t (s) in Re s > tr, 

1 
T..;;;Im ( 2 < tT "' 1). We write P = {3 l :y for a •yp:cal 

zero oft (s). Let M be a positive function ofT &:Jnh that M 
c 

log T does nor exceed (log T) (wbrrt c is a positive constant 
1 < 2-- ) but ex(;eeds every fixed positive p>wer of log log T. 

g and d will be positive coost.aotot which are not more than 

10 -s. Let a, H, m andY be p.:>sitlve functions ofT to be 
y Y + u -t .. . + u 

chosen later. We write Z = e , Y ,. e 1 m where 
u , ... , u are Independent real variables varying between 0 to 

1 m 

H both inclusive. a will be less 10- 8 and H. m, Y tend 
to Infinity with T. A lao mH shall not exceed gY. 
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By well known techniques we hue, for any fixed zero, 
P0 = /10 + tY0 (!!! denotes definition). 

00 n D 

1> (X, P0) == L A (n) n - 1'0 (e 2X -e-X) 
n=l 

1 f w w 
2wl F (P0 + W} r (W) X (2 - l)dW 

Re W = 2 
P-P0 P-P0 = o0 Joa2 + L r(P-Po)X (2 - 1) 

Pr:P 0 
1 

+ 0 (X 2 ) 
(where n0 is the order of P 0 and P runs over all the complex 

zeros oft (s) ) . Breaking tbc scrlcs1> (X, P 0) suitably we get 

n n -P --
; (X, p • Z) !!! ' A (n) n O(e 2X - e X) 

1 · 0 L 

1 

Zso zso <n< 
1 

= (o
0 

+ D 
1

) log 2 + 0 (X -lO 

/3-13 + I (X 0 + I) I p - p 0 I Y) 
iP-P 01 < M 

P-P P.-P 
+ L r (P- P 

0
) x 0 (2 ° - I) 

IP- Pg.l > M 
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wbero n0 + n1 is tbe number of zeros P wltb·l P:.. P 0 1 < M. -· We multiply both sides by X and lntrgrate with respect to 
We assume · that there is no zero P with 

2 M I Y - Y 8 I <; (log T) , 13 :> 130 + ad, and also a ..; 2. 
Writing 

G(1) 

H H 
I!! H-·m j ... f X-a (X, s, Z) du1 

0 0 

and R • L I P - P 0 1 , we get, 

I P-P0 I 41;. M 

... du m 

+ 0 (R Y e- (l- d) Y + z 

{log T)50 4m e -a (1-d) y ) - -
(MH)m 

> e -a(l+c) y (o +a ) Iocr 2 0 1 • 

1 

1+0 - -- + z + 0 [ (
RYe - a(d+g) Y - 4o) · ( en(d+g)Y )J 

no +nl (log T)20 

. 8000 -1 provtded m = [log log T], and H = 10 M • HaviDg 

•H fixed m and H we satisfy mH < gY by writing Y = -. We . g 

can now fix d and g t J be any two constants wblcb may be 
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chosen to be equal. Next we put 

M 
(note that a .;;;; 2 Is satisfied). 

We next make the assumption 

0= 
1 

gY = mH 

It = 1 p _ p 
0 1 = 0 ( (M log log T) -

1 L 1 ) 
IP-P 1 .;;;;M IP-P0 t<M 

0 
(Note that we have already made ao assumption about P 0 ); 

Under these two asaumptioos we see that G (1) serves •• a 
zero detecting function wbicb detects zeros of the type P 0• 

1 I 
Note ad .. y = and tbat the conditions Imposed on 

M enable one to deduce the euimate 0 (T(2 +E) (1 -a)) for 
tile number of 1ucb zeros P 0. Heoce we st•te 

Theorem 2. The number of "M·gond zeros" (counted 
with multiplicitv) to be defined below, real part is> tr is 

O(T(2+ E) (l-tr)), where the 0-constant depends only on E, 
which is an arbitrary po.,itive constant. 

4. Definitions. we define three netlons 

Definition: 1 A ztro P0 =Bo+iY0 (Tc;;Y0 c:;2T, l:;>T0) of 

Ia said to be M-good if 

L IP-P0 1 
IP-P0 1<M 

1 
1 P-P0 1 c;; M 

-1 
• C) (M (log lo1 T) ) 



28 
and 

(II) t (s) 0 in Im s- 'Y 0 I < _<I•g T) 2 
( Rc 1 > 130 + da 

-8000 -1 wl!ere u = 10 m M where m = [log log TJ and 

d = 10·-S . 

Definition 2. A zero P 0 is 5aid to be M 1 -M2 - good 

(where M 1 < M 2 are two possible values of M aucb that 

-1 leg 1M2 M 1 ) 

loa leg log T 
tends to inftnlty) If 

n (It 0, M2> !!!!! l 1 .... 
I I 

Defiultion A zero P0 is said to be good (8 a po1ltive 
- . - - I 

c:onstant, which is once for all fixed subject to 0 < a < 2)if 

_:_l + 8 
n (f> 0 , tlog I PO I ) ) 1 

1 P - P 0 1 < (los!P 0 I)- 1 + a 

( 

log log 1 P 0 1 ) 

"" e. log log l<'g 1P 01 • 

Ehberwlec P 0 is uld to be a bad zero. 

The motivation behind the second definition Is tbls. P11t 
2 . 3 

P0 = M 1, P1 = P0U, P2 == P0U .. ... whereU•(Iog logT) 

and atop at the htgbest j say J with P. < M 2. If P 0 11 not 
] 

1 
for aDy j then there are at Jeast 8 J ;zeros P wicb 
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1 P- P 0 I < M2. For, suppose tbere Is no zero ? satisfying 

Pj<IP-P01< Pj+l' Then it follows 

-] 
R 1 lP o• Pj+ 1) >> Pj+ 1 (log log T) . 

2: 1P·P0 1 

IP-P0t < Pj 

1P-P0 1.-;Pj 

P. I ]+ ..:;. p. ::;: . s 
1 Jog T) 

Heoce tac M -aood zeros can be c I au i fied P {good 

zero for at least one j and counted separately Hence tb is 

aumber 11 aaaln O(T(2 + •> (I- u)). Of course we have tbe 
condition (li) in the fint definition. To meet tbls, we take 
tbe lc<&U aj=a and count only the zeros P0 = 130 + 1"10 with 

u < 130 < u + da. Mating a suitable inductive hypothesis 

(eucb lnducuve araumeats were first employed by M. JUTILA 
In connection with l"tJDe density results) on N(u + da, T) we 
can secure (il) for most 0 . lo deftnltlon 3 we can take 

-l+S1 M 1 ,M2sulta"Jiy (e.g. M l = (logT) , M2 = (logT) 

l 
0 < a1 ...::: < 2> so that dcfinHlon 3 and the results about 

good and bid zeros follow from definition 2. 
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