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ON THE ZEROS OF THE RIEMANN ZETA-
FUNCTION AND L-SERIES-II

A By
'R. BALASUBRAMANIAN AND K. RAMACHANDRA

To

Professors E. C. TITCHMARSH, Yu. V. LINNIK and
J. E. LITTLEWOOD
In Memoriam

§ 1. Introduction

This paper is a continuation of Ramachandra’s paper [2]
with the same title. It is divided into twe parts A and B for
convenlence. Both the parts deal with the clusters of zeros of
the Riemann zeta-function (part A near ¢ = | and part B in
} <o <1). The main result of part A is ‘

Theorem A
Let T (Bo + wo) = 0 where BO > tand 70 > 100, Let

1
0 < AN< . Letuandv be positive and let N (n) denote
200 (WA N & B

the number of zeros P (cennected with multzplzcmes) of the zeta
function which satisfy | P — 1 — iv | < u. Define the function
g (v by

—-AY

‘ )\ Y+1 :
maximum 2u\ — u '
70’2>*"V‘7 +2>\4 7 N ( ) }.
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Then there exist effective positive constants Al’ AZ’AS

independent of X\, BO’ and Yo such that for all Y satisfying

Y > AB log log Yo > (A3 + 100())2 we have

2 4 _ — -
8 O >A A (AT Y TR a-8) 7 —A, )

Remark 1

' —A\Y
We can replace g (‘/0) by Ny N\ e +

Yo N . AY+1 " S0 » _ ‘
f N [J Nv (—f)c du]dv.
Yo —

The final inequality of the theorem still holds if AY > 1
in addition to the other conditions of the theorem.The proof of
this result can be achieved by considering a lower bound for

[Y] ja, 2

3 b '1+pJ

where aj =Y, + jYﬁI. Lemma 2 gives for this sum the

0
lower bound

3 2
| >>j|70-uj| > Y.
Remark 2

This theorem improves Theorem 1 of [2]. The
earlier history of this result is coanected with the
names N. LEVINSON, H. L. MONTGOMERY and
K. RAMACHANDRA. For detailed historical comments see
[2]. Itshould be mentioned that LEVINSON was the first to

prove ihat NY (X\) > 2 for atl Yo=Yy (X) Io the lower
0

bound fur g (YQ) the dependence on A can be sharpened.

i



Remark 3

For convenience we state this theorem in part A again and
point out its application to VINOGRADOV’s zero-free
region, Zero-free regions are not new. (For an exposition of
‘the usual methods of getting zero-free regions see tor Instance
[4]). But theorem A says something new in the following
direction, |

It may be looked upon as a new information about the zeros.

of L(#) in e>1 — (log log t)—l, t > 100. A simple coroliary
to thecrem A can be stated very easily. Let us call a zero P

isolated if in a disc with centre P and radius 10~ 00 there are
no other zeros, Then there are at most only finitely many isolated

zeros P = 3+1Y in the regiono >1~— (log log t)m2 , t2> 100,
Moreover Ny {\) > 10000 for ally exceeding an effective

positive constant depending only on X .

Remark 4

The method adopted In part A is the same as that of [2]
with an important difference. We replace the inequality:
8 ja | 2 2ia | 2
10 ‘ 1+p I + | 14+p >3,
valid for all primes p (This was used in [2]) by an averaged
inequality '

ial 2 ia2 2
3 (|1+p ' + hsp | )
X<p< 2X
>98 3 1,
X<sp<2X
v«rhen:f.u1 and a,are any two real numbers satisfying
-5 ; ;
0<al—02<land8=10 (al—az). Thls ine-

quality holds for ali X  10°0, The proof of this inequality
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depends crucially on an important idea of BALASUBRA-
MANIAN which we utilized in [1]. BALASUBRAMANIAN'S
ldea makes it possible to prove this inequality by using the
HARDY-LITTLEWOOD upper bound for =®(x +h)—(x)
(the number of primes in small intervals) which was obtained
by them by using the fundamental method of BRUN. For
an exposition of BRUN’'S method see [3]. We sketch the
proof of this averaged inequality in part A. The rest of the
work in part A consists in repeating without any essential
changes the work done in [2] and the appendix therein.

Remark 5§

The result in hart A (and also those of part B) depend
primarily on the EULER product and the functional equation.
Hence they ®xtend easily to more general situations where
these twe are available. In particular the results have obvious
analogues to zeta-functions and L functions of algebraic
number ficlds.

‘ . 1
Part B deals with*‘good and bad zeros” of {(8) in o > 2

Our results of part B were inspired by a letter of Professor
D. R. HEATH-BROWN, where he announced witbout proof
the following theorem which he proved in September 1975.
We quote from his letter in his notation.

“Theorem (D. R. HEATH-BROWN)
Let N . (o, T) denote the number of zerosP = [ + iY

of L(s) in the region| Y| < T. B > @ for which {(s) does not
vanish on

2
{s:|lms- Y] < (logY) .Res>fB~¢g}
exceptats = P. ThenNe (¢, T) < < 12-20+ ¢ "
Here the constant implied by the Vinogradov symbol depends
onlyon &
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We tried to reconstruct the proof of HEATH-BROWN'S
theorem and we did succeed! Around August 1977,
RAMACHANDRA wrote up an improved version of this
theorem in his unpublished article “REMARKS ON GOOD
AND BAD ZEBROS OF {¢s)”. This improvement (which
was possible by applying some techniques employed in [2])
can be stated as follows. (It fs the main result of part B).

Theorem B :

Let M be a positive function of T such that M log T lies
between Exp (Y (T) log log log T) and (lag 'l‘)c where ¢ is any

c
positive constant less than }, and (T < > log log T is any

positive function which tends to infinity as T tends to infinity.
Let us agree 3o call a zero PU = BO + WO (T< v, < 2T,

T > T, “M-good” if

0

b 3 9'—'0 “ : 1 —1

P
[ P-—P0§<M

— oM
I

© (M(log log T) e’

(in the sum over P, P is counted a-cording to its multiplicity),
and '

: 2
CE) =0im{ |[lms— Y, < (logT! ,Rcs>[30+ da }

0

where d = 10'8,0 = IO-SOOOm—-l M and m = [log log T]|.

Then the number of *“M- geod’* zeros (counted with multiplicit))

in {Res)cro,’l's:[mﬂa;?,T} (T > 10)

2+€) (- ao)
is (T ). Here the 0-constant depends only on €
and not on T and % > 1.
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. We then sketch a proof of the following
Corollary 1 :

Let 80 be any constant satisfying 0<80 < §. We shall fix

it dnce for all. Let us agrée to call a zero P *'grod” if Re P>}

_ —-143
and further in a disc with centre P and radius (log 1P D 0
the number of zeros (of {(s)) counted with multiplicity, is

[ _lgloglP|_
logleglog| P ) ¥

Let us call P to be ““bad" if it is not good. If the number of bad

zeros P withReP > o and  ImP | < T, is O(TB (1—2) + s)
(where T > 10,0 > }, € > 0, and B is apositive constant inde-
pendent of all parameters and the 0-constant depends only on €,

which is arbitrary) then N(o¢, T) = 0 (TB(1 -+ 28) is

true. Here, as usual N o, T) is the number of zeros P of {(s)
withReP > o,and | ImP | < T.

In particular taking B = 2 in the above corollary we can
state qualitatively (but vaguely) the following

Corollary 2 :

If the thick clusters of zeros are rather rare ino > § then
density hypothesis is true.

We are very much thankful to Professor B. R. HEATH-
BROWN for his letter. Since his result is not intended to be
published we would like to regard the results of part B as
joint work with him.



PART - A
§ 3. We begin with
Lemma 1.
The number of primes p satisfying X « p < 2X, for which
! (al— a2) -1 - 9 (A
P =Y 0<9 <)

-1 -1
does not exceed 30] (logl) ,Where ] = X 0 (alu az) "
80

0 <al—¢¢2 < l,and] » 10
Proof.
Treating p as a continuous variable we see that (as p
| (a1 - az)
varies over X < p « 2X), p makes at most

[ (al-az) (27) =4 log2]+1 revolutions on the uait circle.

In each revolution the inequality of the lemma defines a

p — interval of length not exceeding 5X@ (al - az)ml.The

Hardy-Littlewcod upper bound (obtained by the fundamental
method of Brun) for the number of primes in small intervals
completes the proof of lemma 1. (However we have used the
Selberg upper boand at the last step). For an exposition of
Brun’s method see [3].

Lemma 2.
5

Let0<a -8,<1,3 = 10 (a

9 |
1 ~—az) ,and X any

1

real number > 10 90. Then there holds,

ia jia

1, 2,2
b (liep 1 +hi4p ) 3835 1
X<p<2X X<p<2X



Proof.

Suppose the lemma is false: Then the number of primes
ia '
p for which l 14p ! l > 7, plus the number of primes p for
e, w
whichl l+p |> 1, does not exceed 3 31
- X< p « 2X.
-2
of the primes satisfy both

Hence at least (1 -89 1
<2X

) b
Xsp
a ia fa

i
2] < ’qandhence'p l’--p 2’

ial
| 14p "< Mend |1+p

I(al—muz)
= |p -1 L<_§ 27. Thus we obtain from this and

lemma 1, the fnequality
2 40X

(L -3n 31 <
)X<p<2X —a ““[log[ -a ]]

2)

provided 2X7 (al-a > 10 . We now set 7 = (28)i

where 8 = 10~ ° (@, - 02)2 and get

1 %’ = Xy,
3 Tlogx 55("’14( 200 )) ’

which is a contradictioa for all X > 1090. This completeé
the proof of lemma 2.

We now almost copy down the section §2 of [2], with the
changes sketched in the appeadix of that paper. We denote by

. 101 \
s areal number lyirg in ( 1 ,m) , and by o a real

number exceeding 100, and w will denote a complex variable.
1

We denote by Bu +, 1@ a fixed zero of { (W) with Bu >

@ > 100, and by C, , C; , Cg4, ... eflective positive constants,

' ] 1 P o
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The 0-constants will be effective absolute constants. These
constants are absolute numerical constants with the exception

-1
of Ci (and CZ) which may dependon A (0 < X\ < T‘é(‘)),and

we will specify how it depends oo A. The number A occurs

in the following way. We set a =a , and subject a, to

l

0<a1—az<1. D)\ (1+ia1) ‘and
D)\(l + 162) denote discs with centres 1 + ia, and 1 + iaz

respectively with radius A each. We now start with lemma 1
of [2] and continue as in that paper.

Lemma 3. Let

P () =9, (59, (6), where . (s) = L(s) T (s — 10.)

s+ i0,), and @y (9) = L2 () L (s — i0) L (8 + idy).

Then
¢’ (s) § bn
¢ (s) =y
where bn are non-negative real numbers. Further there holds for
90 -5

allX » 107, with y = 10

Db

0
X <o 2X

2 . ;
@, - az) , the inequality,

1
>?8 z A (n)
X <0< 2X

Proof

The proof is trivial except the last ianequality which
follows from lemma 2.

Lemma 4. For all X > 1, we have by writing
' (s
$(s)

F(s) =
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1 | W\
-i'";‘t‘fF(a+w)XwI‘(T)dW=

Rew = 2
an
2 bﬂ _9)2
- Z TE""(“ (% )
n = ‘1 n |
Proof.

' w w
Elines foe. o f (—{)I‘(_i_)dw
ollows irom 2% A
Rew = 2
2 Bxp ( 3—-)2
m(-())
1

Moving the line of integration to Rew = — 2 + 700 3nd

1

assuming that 1 <s < 1 + 100* Ve have

; 1
Lemma 5. If 1 <3s < 1+ = t/zenforX>1,J_l> 100,

100°
® b L
e a ;@
2 Z s(1-~Bxp(—(X))=221-r2'22+ ¢
n = LB
1-38 logdl
0(X T+ —%)
where
— 1~
3 = Re(—X' s1‘( 25)1
1
P—s—ia -
ZX 1 [ [P-s—:al]
——— )
’

and 22 is the same as 3 with alreplaced by az.Here P=B+iY



runs over all the zeros of { (w) with positive real part. (In future
the same convention will be in force. Also the restriction of the
sums to zeros which satisfy some conditions will be indicated
below the summation symbol or explained at appropriate places)

We now write ’0 = BO + '“1 and

® 4 2
-] n
> =) - Exp (- (5)»
3 s
p=1 n :
P-s—ua P—s—iul
R IAN l|
4 2
P;éP
—s—la P—s—ia2
z Re ZX F e »
5 2 -
P

and we will see that lemmas 3 and 5 give

Lemma 6 :
1 () _
letl <s <1+ ,X>(loga) Then
100
21078 (@ - ay’ x* 2—x" "t =2
. ) — < 2(— 2)+

B, — s B.—s
0 0 1—s
X F(——2 )) -1—224+ 225+ 0(X i

Proof : .

-6 . wl-—s -1
Follows from 23>2.IO (al-az) X (s-1n -,
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.- We now impote conditions on s and X so as to satisfy

’ 1-
-6 2 X —8
~107% (@, —a,) -..._s_l X' ( )

Bo=s [By —
()

1-s8
-6 2 X
< - 110 (@ -0 <=7
This requires
B

— 310 S, -t + (s-1)(x °

)
__F( 1;s))<0

: B,—1 ;
_ilo’ﬁ(al-az)g.—zxo T( 02 +1)

Bo—'

_ B A
— (1-Bx T

1 —
)%—21‘(—-—2——8.}])%0
i e

< . B,—1 1-8
-6 2 0 0
- % 10 (al_az) +C1(X ~:—~—~+
$ BO
a - Bo)log X)<0o.

By puttiog s>»1 + C2 ( 1~BO ), we are led to the requirement

Bo'ﬁl
1 -6 2 X
— _2 10 (al-az) + Cl _—‘"é—""‘ 4+ (1 - BO )POgX
<0 ?
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We now record
Lemma 7. We have

1—8

0 1 0*6 . : OYl_s
< —-'5"1 (01—02) +24+25+ (- )

-1
subject to the conditions

1000
o, > 100, X > (loga,) .

1
1 +C2(1-BO) < s <1 + 700 and

o
1 =6 2 e L { L=} log &
“~g W iRy +C1( Co 0
< 0.
Here C | and the O-constants are absolute positive constants and

C2 is any positive constant in fact any positive variable) not
exceeding (100 (1-8,, ) =5,

The next lemma is essentially due to Montgomery

Lemma 8.
We have, for X > 1,
; P—s—ia
P—sf-wa 1 -8
Re ( X , ! F(——.‘,—H—))_f:caxB leg X,

where C,3 is a certain p.sitive constant.

Proof

Let a denote the complex number P -s - ia . Observe that

the real part of a lies b.tween - 3/2 and zero and write
a a a [ a 2 2 a B-s
X](z):,\(sz)—a)+a(X—X )

2 _B—
; — xB—s
a
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The first two terms on the right are 0 (XB =8 log X) aod the
real part of the last term is negative. These remarks complete
the proof of lemma § '

We next write

P~=»s—-ic¢1 P—s~ia1
2. =Re 3 X T‘( )
4 p=p 2
; 0
= g T 3,
P—s-ia P—s—ia
= 2) = 3 +3
and 3. = Re X I' § s 8 “9
where Te= Re 3 .
P Py P in D)\. 1+ wl)
and 28 = Re 3
; ‘ Pin D)\(l 4 ia2)'
We now write X = Exp (Y + U+ Uyt +u I- um+l)
where Y > 1000 log al’ 0 < Uk a C4 Ik = 1, divens ),

me [Y],and 0 < u <Y Asu,, Ugreos ¥ q vary over

m+ 1
this (m + 1) dimensional box the maximum ard the minimum
values of X are X1 = Exp (C4[Y] + 2Y) and X0= Exp (Y).

We now wish to average the inequality of lemma 7 over the

(m + 1) d)mensional box defined already To do this we have
to impose the condition

By—1

X v
6 2 0 e <0
10 (d,—aly) + C e + (1= ByMegX,
‘ : : ] -

1&'-—#
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We satisfy this by Imposing the esnditions

. =3 1 -6
1000loga, <Y< C (C, +2) {10
_— = 4 4
2 — 1
(¢ —a )"} (1 =By (1)
' —1 1 — B 2
and Exp (=Y (1-8,)) gczcl {10 (@, — ) }
(2)
1 1-5s
Trivially — 510 (a1 - a2) s 1 <
1-5
1 -6 2 X
e - 1
5 10 (@, az) (3)
. 8§ —1
and x1=8 . x 1-8 (4)

Our next task is to obtaln ap upper bound for the average

’\_-m -1
c, Y ff...f(24+z5)duldu2...dum+1 (5)

We do this in lemmas 9 and 10 to foilow B:fore proceedirg
further we record the following relations.

m = [Y], XO = Exp .Y) and Xl < Exp((C4 + 2) Y).(6)

Lemma 9

We have
c " Y—lf "
4 Jf (27 - zg)du1 dum_'_1
2 -1 2 m+2 1—5
<4C5 C4 Y [C4)\] (lo;;t:tl))(0 )

Here C5 is an absolute positive constant and C4 is a positive

constant still at our choice.
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Proof
Trivially,

tgs =0 | ¢ ™y~!
| lp—1—ia | > A

0
+ 2 > E + 2

m m
lp-s-ia | p-l—ia,t > X [P =8 =10\

2 mi1 1-
S = GI)" T (oga )X, Tl m+2)

m + — B

. 2 -1, 2 2 1
< 4C; C,Y &c4x’ (loga, )X
This proves the lemma completely.

Lemma 10.
For any real number V let Ny (r) denote the number of

zeros of the zeta-function in the disc Dr (1 + iv), with

i
A0S A< .0),Y>2andV > 10define

100
-AY
FV)=f{A: Y, Y)= max {NV (2N e A
V-X<KVKV+ A
AY+1
[
+ V(Y)c du }
0

Then

—-m -1
C, Y ff...f(26+28)dul ...... do_ o
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< ¢, \C FC+ ) (@) +T@Y)Y Xi '

where C

6 and C5 are certain absalute positive constants and

C4 > 0 is still at our choice.

Proof.

We shall get the upper bound

m

R
C4’ Y ff...f(zﬁ) dul

SC(C, +C + I Y

d“m+1

and leave the remaining part of the work cootaining 28 as a
trivial imitation, S S
We start by writing
= R Y -
26 Sn © . 3 | iSn say,
n S | PO |
Yy < |Y - al | < o

where n runs over 0, 1, 2, ..., [AY] + | and for these values
of n the inner sum is oveg those zeros which satisfy the
summation conditicn for Y indicated, plus of course the
condition that § + iY shall lie in D)\ (L + ie)). The average

of Sn is casily seen to be

[ B—i 1—
z X 5
| C,(C, + C. + 2)Y 0 X, 0,
AR (y-a 1<t} °
<'f : ' Y ifn=0,
! & -2, l—0
LCp(C,+Ce+2Y{ 2 Xg X Aiy-a 172y x1 "
n n+1
';['C\Y-‘c[li "

ifn - ] li
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Here we have used lemma 8 in the case n = 0. Hence the
average of 3. does ot exceed "

2C. (C, +Cs+ DY (wc(z))x;“"

[ max 2 XOB-1 1
: Y—(l in I,

L P in Dy (141)) i

1
where 1 runs over all intervals of length Y contained in

[“1 -\, 01'-}- A]l. It remains to appiaise the maximum.

1
We denote by N(o, I, -Y) the cumber of zeros counted (with

multiplicity) in the last sum (in max) with real parts > o, and
1
we bave

-
1

B-1 1
EXO = ff Exp( Y (Il —o))d N(o, I, )

1
= N(I- X, I, 37) Bxp (= XY) +

1 1
Y [ Nie, I, T) Exp(—-Y(1 - ¢) )do
1-X

1
< N, QNEp(-AY)+Y fNNI-u 1, T)
:13 / 0 Y
Exp (— uY) du
. * . X 2
<N, @M Ep(-AY) £ Q@+ 3)
o 0 ok *
3
Exp (~uY) du
2 —
< N_ (2X) Exp (- AY) + f)\Y'H (‘l‘]) e © du
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where o{3 is a: y real pumber which is the end point of any

interval I under consideraticn. A similar argument applies to
the average of 3. This completes the proof of the lemma.

Collecting the results of av:raging the inequality of lemma
7 we state

Lemma 11

] , ‘
Let T (BO + )al) = 0, where EU }E, a:t > 100,
1
1 + C2 (I—BO) < s« 1 4 100 ° where C2 satisfies

-1
0<(‘2<(100(1-30)) ,0<a1~a2<l,

-1 -1 1 -6
1000 Joglege, <YK C,  (Cy +2) { 2 10

(“1— az) } (1 ,.— Bo) ' s
-1 1 -0 2
Exp (=Y (1-B))<Cy C; { 10 (al_az) b

Then, we have withm = {Y].

1 -6 2 =t
0<—- 510 (a;-ay) 5=  Exp(-(s-1)(C +DY)
. | 2 m+ 2 '
+4C. C, ¥ (c—:x ) (tog x ) + Cg

b ClCy+C5+2) (f(a)) + flay)) Y.

In the above equations Cl’ C5, (‘6 and C8' are certain
effective absolute positive constants and ("4>0 is still arbitrary.
The number C2 is also arbitrary but is subject to the restriction

stated above,
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Proof : | _
Follows by (3). (4), (6) and lemmas 9 and 10. We have

divided throughout by X;"S after averaging, and used the

laequality

1

X 1-s8
— [ )—‘_—6 ] < — Exp(-(s-1) (C4+1)Y)_

This completes the proof nf lemma 11.

Lemma 11 is the fundamental result that we have arrived
at. We will cow record a special case of lemma 11 as

Theorem 1 ;

4
Let ( BO +1 YO) = 0, where BO > ) and ‘io > 100. Let

1 . e r 4
0 < A\ < 100 Then there extstposzfzve constants C9, C10 and

Cll’ independent of X\ . Bo‘and Yo such that if

Y>C9 log log YO>C . , there holds, for all such Y, the inequality

where g'(YO) = NY (4X) c:m")\Y - max
0 (70*2)\ <V«;70+2)\)
. AY -+l
[' ( 2u )cq u 4
N v u,
, Y
0 \4

and NV {u) is the number of zeros ¢ of the :zeta-fanction which

satisfy | P-1-4V | < u.
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Proof :
1
Given any X\ satisfying0 < X\ < 200 V¢ select a1=70,
A c 8 &
ag = Y ~100 Put 9 = 4.10 l(al—-az) ’

s =1+ CZ(I—BO) and (*‘jt = 400 \ 2. We note that since
Y > Cg icg log Yy the second term in the first irequality of
lemma 1], ard the term CB cap be 1eplaced byanother positive
constant Dl' The resultirg inequality is easily seen to be
D2 )\6
2(¥,) > T(E‘B;) — Dy

The vpperbound ¥ = 0(“‘-30 )_1 )\4) for Y is unnecessary

sipce we cap increase D3 to make the RHS negative when Y
1he
exceeds this bound. Also by the same reason ja condition

C2 = 0f (1-[30)_1) is unnecessary. This completes the

b ]

preof of Theorem 1.

Corollary

b

If for all t > 30 and all ¢ in —2_ < o < 1 wehave

f0g1[(0+ia)g:_—:D4 (]‘0)3;2 legt + Dy lcg log ¢,

where D 4ana’ D5 are positive numerical constants independent

of @ andt, then

. 2(3 1/3
1 - BO=0( (log Yo )~ (loglogYy ) © ).
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Remark 1. :
The statement involving D4and Dsis actually trueand it is
a very deep result and is almost complelely'due to the ideas of

I. M. VINOGRADOYV. Hence we have the Vinogradov zero-
free region

¢ > 1~ D(log t)”m(lng leg :)‘1/3

Remark 2.

For the history ef Theorem 1 see [2]. Here it suffices to
tray that theorem 1 contains some extia information apart
from giving the well known zero-free region of Vinogradov.

Proof of the Corollary

We choose X\ to bea positiire constant and suppose Y >

100
“i"lrg log ¥y Then we can neglect the first term in g (70)

The integral which occurs in max ... is
1

A+ Y
Y
Yf N@e  dr
0

where N (1) = Nv(r).lntegrating by parts we get, introducing

u
H (uv) .-:df wdr, the expression
T
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1
Aty

1 - AY —uY ‘
<YH()\+T{)e -Y _1( H (u) (ve ) du

Y
—~uY ?
Now — (ue Yy >0 for u> . We now see by using
H (v} =

2%

1 i0 -1
é‘;flog{|{(1+iv+ue‘)||t(t¢iv)| } d@
0

2x
2 3/2 ;
< 2,,[ (D4u log ¥, + (Dg+ 1000) log 1>g t) d@
0
Y(1- By N

\ leg Y
. e, = e Y
i.e I-BO 0 ( Y1/2+Yl°gl°g 0

Choosing Y (Y >

N log log YO), s0 as to minimise the

O-term we get the result stated in the coroliary. For the result

1 2K

e b[' ...sec page 126 of

on H (u) expressing it as

Titchmarsh’s book ¢ The Theory of Functions”, Oxford (1939).
This result is called Jensen’s formuia. An alternative method
is to apply maximum modulus principle to the function
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T s

. S*‘-SO'
p “'P-so ,

P runs over all the zéros counted in N (r; and S = 1 4+ iV.

where

According to the maximum mcdulus priociple the absolute
value at s = SO is not mrre than Its maximum modulus on a

circle of radius 10 r and ceatre S,- This gives an upper bound

for N (r). Thls is enovgh to give Vinogradov z:ro—free region.

PART-B

The notation Io this part is ind>pendent of that of part A.

Some preparations

3. We write F (s) = — —C () acd proceed to count

the zeros Pof { (s) in Res> o,

T<Im s<2T (% <« o <L 1). Wewrite P=081 1Y for a *‘ypical
zero of { (s). Let M be a positive function of T sach that M
log T does not exceed (log T)c (where ¢ is 2 positive constant

1 :
< E‘) bat exceeds every fixed positive power of log log T.

gand d will be positive constants which are not more than

10_8. Leta, H, mand Y be positlve functions of T to be

v Y+u1-|\...+u
chosen later. We write Z =¢” ,Y = e I where
U, U are independent real variables varying between 0 to
H both inclusive. @ wiil be less than 10_8 and H. m, Y tead
to Infinity with T. Also mH shall not exceed gY.
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- By well known techniques we have, for any fixed zero,
Po = B, + 1Y, (= denotes definition),

@ p _ll _E
pX,P=2 Amn O K-o X
ww
- 55 j' F(py + WIT(WX (2 — 1AW
ReW = 2
=P, PP,
~pylog2 + 3 T (P-Pg) X @ ~ 1)
P?PO
1
+0X 2

(where ) is the order of P 0 and P runs over all the complex

zeros of { (s) ). Breaking the series ¢ (X, Po) suit’ai:ly we get

p A _ B
~Yo(e 2X B Xy

’1 X, PO' Z) = z A (n)n —e

1

Z80 & B <ZSO

1

= (ny +n,) log2 + 0 (X 10

> (X—0+l)|P—P0iY)
EP—POI<M

PP, PP
| " 0 (2
*’Z T (P PU)X (

0 _ 1)
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where D, + 0, is the number of zeros # with-| P - PO | s M.

-a
We multiply both sides by X and integrate with respect to
Uypeen ,um. We assume -that there is no zero P with

2 M
|7-~79|<(logT),B>BO + ed, and also ¢ < .
Writing

y H H
Ge) = H © f ...f_x"°.'¢1 (X, 8,2) du, ... du_
o o

and RaZIP-POI. we get,
iP~P0I <M

1G (Pg) | > (o + 8,) log 2)e~ *( 8

O RY ¢~ U-DY 5 20,

£ 0 ( (log ™ 4™ o=@ =D ¥ )
(MH)"™

> e—a(l+g) Y

; 1 '
RYe 2080 Y~ [ LlW+R)Y
S0 Sy R D)
0" "1 (log T)
; ’ : 0 -
provided m = [log log T],and H = 108 OOM l. Having

(no +n1) log 2

, _ »
fixed m and H we satisfy mH < g¥Y by writing Y = ’EE We

can now fix d and g 1, be any two constants which may be
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1
chosen to be equal. Next we put @ = g-\; = =5
M
(oote that & < 5 Is satisfied).

We next make the assumption
-1
R=2!P—POI=0 (M log log T) z 1
|P=Py1 <M |P-Py1 <M
(Note that we have already made an assumption about POJ-.

Under these two assumptions we see that G (s) serves as a
zero detecting function which detects zeros of the type Pu.

1
Notead = o = 5 and that the conditions imposed on

Y MH
M epable one to deduce the estimate 0 ([‘(2 +€) (1-a)

the number of such zeros P o Hence we state

) for

Theorem 2. The number of ‘“M-good zeros" (counted
with multiplicity) to be defined below, whose real part is > @ is

o(T Q+e) (l-a)). where the O—constant depends only on €,
which is an arbitrary positive constant. :

4. Definitions. Accordingly we define three netlons
Definition: 1 A zero P0=BO+WO(T<7°<2T, 1>T0) of

C(s). is said to be M-good if

|P’P0|<M

3 1
1P-P) <M

-8 (M (loglog T) )

D R =R (P, M) =
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and

() T () = 0in {”‘” =Yy | < (legT)

Re->30+da

where g = 10
8.

—8000 ,~1 ut where m = [log log T] and

d = 10
Definition 2, A zero P0 is said to be MJ.— M2 — good
(where M1 < M2 are two possible values of M such that
. —1

log lM2 Ml )
log leg log T

. sf
; M M
o (P My) = 31 = a(mg( 1 2))

tends to infinity) if

Definition 3. A zero P0 is sald to be good (8 a posltive

: . ‘ ]
constant, which is once for all fixed subject to 0 < ¥ <« —2-)if

e v : —1+8
n (P, tiog | POI ) ) = 3 1

1P-P, 1 < (loglPy )~

, log log | PO l
—e| ———m
( log log log |POI ) .

0 is said to be a bad zero.

l+3

Otherwise ¢
The motivation behind the second definition is this. Put
2 - 3
P0 = Ml' P1 o POU, P2 = POU »...WhereU = (log logT)
and stop at the highest j say J with Pi <M, If PO is not

1
P}.—good for apy j then there are at least * J zeros P with
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| P - Po | < M2. For, suppose there Is no zero ? satlsfying

PJ.<IP-POI< Pj Then it follows

1"

=1,
R1 (Po. Pj+ l) > Pj+l (log log T)

z | PPyl

iP-Pol < Pj

But R1 (PO, Pj+l) = 3 :
| P—PO | < PJ.
p'-i—i

< P, = &

3
7 (rglog T)
Heoce the M N Mz-good zeros can be classified iato Pj-good
zero for at least one j and counted separately Hence this

%) (1 -
aumber 1s again ()(T(2+ ) (@ a)). Of course we have the
condition (1i) in the first definition. To meet this, we take
the icast aj=a and count only the zeros PO = 'BO +1Y, with

I < Bu < 0o + da, Making a suitable inductive hypothesis

(such inductive arguments were first employed by M. JUTILA
In connection with syme density results) on N(¢ + da, T) we
can secure (ii) for most zeros PO' In definition 3 we can take

-1+8

~1+8
Ml’M sultarly (e.g. M l.—:(logT) 1, M2 = {logT) p

2
1
0 < 81 < ¥ < 3—) 80 that definition 3 and the results about

good and bad zeros follow from definition 2.
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