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Local Higher-Order Statistics (LHS) – A Novel Image Representaion
for Texture Categorization and Facial Analysis

Gaurav Sharma, Frédéric Jurie

GREYC CNRS UMR 6072, Université de Caen Basse-Normandie, France

Abstract

We propose a new image representation for texture categorization and facial analysis, relying on the use of higher-order
local differential statistics as features. In contrast with models based on the global structure of textures and faces, it
has been recently shown that small local pixel pattern distributions can be highly discriminative while being extremely
efficient to compute. Motivated by such works, the proposed model employs higher-order statistics of local non-binarized
pixel patterns for the image description. Hence, in addition to being remarkably simple, it requires neither any user
specified quantization of the space (of pixel patterns) nor any heuristics for discarding low occupancy volumes of the
space. This leads to a more expressive representation which, when combined with discriminatively learned classifiers
and metrics, achieves state-of-the-art performance on challenging texture and facial analysis datasets outperforming
contemporary methods, with similar complexity setup. Further, it is complementary to higher complexity features and
when combined with them improves performance.

Keywords: Face verification, texture categorization, image classification, local features.

1. Introduction

Categorization of textures and analysis of faces under
multiple and difficult sources of variations like illumina-
tion, scale, pose, expression and appearance etc. are chal-
lenging problems in computer vision. Texture recognition
is beneficial for many applications such as mobile robot
navigation or biomedical image processing. It is also re-
lated to facial analysis e.g. facial expression categorization
and face verification, as the models developed for texture
recognition are generally found to be competitive for face
analysis. Analysis of faces, similarly, finds important ap-
plications in human computer interaction and in security
and surveillance scenarios. This paper proposes a new
model for obtaining a powerful and highly efficient repre-
sentation for textures and faces, with such applications in
mind.

Earlier works on texture analysis were focused on the
development and application of filter banks e.g. [1, 2, 3].
They computed filter response coefficients for a number
of filters or wavelets and learned their distributions. How-
ever, later works disproved the necessity of such ensembles
of filters e.g. Ojala et al. [4] and Varma and Zisserman [5]
showed that it is possible to discriminate between textures
using pixel neighbourhoods as small as 3×3 pixels. They
demonstrated that despite the global structure of the tex-
tures, very good discrimination could be achieved by ex-
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ploiting the distributions of such small pixel neighbour-
hoods. More recently, exploiting such micro-structures in
textures by representing images with distributions of lo-
cal descriptors has gained much attention and has led to
state-of-the-art performances [6, 7, 8, 9] for systems with
low complexity. However, as we discuss later, these meth-
ods suffer from several important limitations, such as the
use of fixed quantization of the feature space as well as
the use of heuristics to prune volumes in the feature space.
In addition, they represent feature distributions with his-
tograms and hence are restricted to the use of low order
statistics.

In contrast to these previous works, we propose a model
that represents images with higher order statistics of lo-
cal pixel neighbourhoods. We obtain a data driven parti-
tion of the feature space using parametric mixture mod-
els, to represent the distribution of the vectors, and learn
the parameters from the training data. Hence, the cod-
ing of vectors is intrinsically adapted to any classification
task and the computations involved remain very simple
despite the strengths. We validate our approach by ex-
tensive experiments on four challenging datasets: (i) Bro-
datz 32 texture dataset [10, 11], (ii) KTH TIPS 2a mate-
rials dataset [12], (iii) Japanese Female Facial Expressions
(JAFFE) dataset [13], and (iv) Labeled Faces in the Wild
(LFW) dataset [14], and show that using higher-order
statistics gives a more expressive description and leads
to state-of-the-art performance in low complexity settings.
We also show that they are complementary to the recent
high complexity state-of-the-art methods and, in partic-
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ular, we show that their combination with such methods
gives the state-of-the-art performance on the very chal-
lenging LFW dataset in the unsupervised protocol, when
no external labeled data is used.

This paper extends the work of Sharma et al. [15] with
a better description of the method, improved discussion
wrt. the current state-of-the-art methods and thorough ex-
perimental results, particularly in the case of supervised
face verification task. The proposed Local Higher-order
Statistics (LHS) are shown to be highly effective and ef-
ficient, when combined with state-of-the-art supervised
metric learning methods.

1.1. Related works

Most of the earlier works on texture analysis focused on
the development of filter banks and on characterizing the
statistical distributions of their responses e.g. [1, 2, 3], until
Ojala et al. [4] and, more recently, Varma and Zisserman
[5] showed that statistics of small pixel neighbourhoods
are capable of achieving high discrimination. Since then
many methods working with local pixel neighbourhoods
have been used successfully in texture and face analysis,
e.g. [8, 9, 16].

Local pixel pattern operators, such as Local Binary Pat-
terns (LBP) by Ojala et al. [4], have been very successful
for local pixel neighbourhood description. LBP based im-
age representation aims to capture the joint distribution of
local pixel intensities. LBP approximates the distribution
by first taking the differences between the center pixel and
its neighbours and then considering just the signs of the
differences. The first approximation lends invariance to
gray-scale shifts and the second to intensity scaling. Lo-
cal Ternary Patterns (LTP) were introduced by Tan and
Triggs [8] to add resistance to noise. LTP requires a pa-
rameter t, which defines a tolerance for similarity between
different gray intensities, allowing for robustness to noise.
Doing so lends an important strength: LTPs are capa-
ble of encoding pixel similarity information modulo noise.
However, LTP (and LBP) coding is still limited due to
its hard and fixed quantization. In addition, both LBP
and LTP representations usually use the so-called uniform
patterns: patterns with at most one 0-1 and at most one
1-0 transition, when seen as circular bit strings. The use
of these patterns is motivated by the empirical observa-
tion that uniform patterns account for nearly 90 percent
of all observed patterns in textures. Although it works
quite well in practice, still it is a heuristic for discarding
low occupancy volumes in feature space.

Most of the other recent methods, driven by the success
of earlier texton based texture classification method [1]
and recent advances in the field of object category classifi-
cation, adopt bag-of-words models to represent textures as
distributions of local textons [5, 16, 17, 18, 19, 20, 21, 22,
23]. They learn a dictionary of textons obtained by cluster-
ing vectors (e.g. based on either pixel intensities, sampled
on local neighbourhoods, or their differences), and then

represent the image as histograms over the learnt code-
book vector assignments. The local vectors are derived
in multiple ways, incorporating different invariances like
rotation, view point etc. E.g. [17, 18] generate an image
specific texton representation from rotation and scale in-
variant descriptors and compare them using Earth Movers
distance, whereas [5, 4, 16, 19] use a dictionary learned
over the complete dataset to represent each image as his-
togram over this dictionary.

In a more recent work, traditional image classification
methods when applied to the more challenging textures in
the wild scenario have shown very good performances [24].
Such methods use classic local features such as SIFT [25]
with different encoding methods, particularly Fisher scores
[26], similar to those employed in the present work. They
[24] also evaluate deep learning [27] based representation
and show their usefulness for the task. We note that while
these method give good performances, they are of much
higher complexities than the proposed method. The pro-
posed method is also complementary to such methods as
we will show empirically later.

Motivations. The motivations for this paper follow the
conclusions that can be drawn from these related works.
(i) As shown by [4, 5], and by all the recent papers that
build on these, modeling distributions of small pixel neigh-
bourhoods (as small as 3×3 pixels) can be very effective.
(ii) Unfortunately, all the previously mentioned related ap-
proaches involve coarse approximations that prevent them
from getting all the benefits of an accurate representation
of such small neighbourhoods, and (iii) all these methods
use low-order statistics, generally zeroth order counts i.e.
histograms, while using high-order moments can give a
more expressive representation. Addressing these limita-
tions by accurately describing small neighbourhoods with
their higher-order statistics, without coarse approxima-
tions, is the main contribution of the present paper.

2. The Local Higher-order Statistics (LHS) Model

As explained before, the proposed Local Higher-order
Statistics (LHS) model intends to represent images by ex-
ploiting, as well as possible, the distribution of local pixel
neighbourhoods. Thus, we start with small pixel neigh-
bourhoods of 3×3 pixels and model the statistics of their
local differential vectors.

2.1. Local differential vectors.

We work with all possible 3×3 neighbourhoods in the
image, i.e.

vn = (vc, v1, . . . , v8) (1)

where vc is the intensity of the center pixel and the rest are
those of its 8-neighbours. We are interested in exploiting
the distribution p(vn|I) of the these vectors, for a given
image, to represent the image. We obtain invariance to
monotonic changes in gray levels by subtracting the value
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of the center pixel from the rest and using the difference
vector i.e.

p(vn|I) ≈ p(v|I) (2)

v = (v1 − vc, . . . , v8 − vc). (3)

We call the vectors {v} thus obtained as the differential
vectors.

2.2. Higher order statistics.

The key contribution of LHS is to use the statistics of
the differential vectors {v|v ∈ I} to characterize the im-
ages. Instead of using a hard and/or predefined quantiza-
tion, we use parametric Gaussian mixture model (GMM)
to derive a probabilistic representation of the differential
space. Defining such soft quantization, which can equiv-
alently be seen as a generative model on the differential
vectors, allows us to use a characterization method which
exploits higher order statistics. We use the Fisher score
method (Jaakkola and Haussler [26]), where given a para-
metric generative model, a vector can be characterized by
the gradient with respect to the parameters of the model.
The Fisher score, for an observed vector v wrt. a distribu-
tion p(v|λ), where λ is parameter vector, is given as,

g(λ,v) = ∇λ log p(v|λ). (4)

The Fisher score, thus, is a vector of same dimensions
as the parameter vector λ. For a mixture of Gaussian
distribution i.e.

p(v|λ) =

Nk∑
c=1

αkN (v|µk,Σk) (5)

N (v|µk,Σk) =
1√

(2π)d|Σk|
e−

1
2 (v−µk)Σ−1

k (v−µk), (6)

the Fisher scores can be computed using the following
partial derivatives (we assume diagonal Σ to decrease the
number of parameters to be learnt)

∂ log p(v|λ)

∂µk
= γkΣ

−1
k (v− µk) (7a)

∂ log p(v|λ)

∂Σ−1
k

=
γk
2

(
Σk − (v− µk)2

)
(7b)

where, γk =
αkp(v|µk,Σk)∑
k αkp(v|µk,Σk)

(7c)

where the square of a vector is element-wise one. In the
derivatives above we can see that the information based
on the first and second powers of the differential vectors
are also coded; these are higher order statistics for the dif-
ferential vectors. After obtaining the differential vectors
corresponding to every pixel neighbourhood in the image,
we compute the image representation as the average vector
over all of them. We normalize each dimension of the im-
age vector to zero mean and unit variance. To perform the

Algorithm 1 Computing Local Higher-order Statistics

1: Randomly sample 2×2 pixels differential vectors {v ∈
I|I ∈ Itrain}

2: Learn the GMM parameters {αk,µk,Σk|k = 1 . . .K}
with EM algorithm on {v}

3: Compute the higher-order Fisher scores for {v} using
Eq. (7)

4: Compute means Ciµ and variances CiΣ for each coordi-
nate i ∈ {1, . . . , d0}

5: for all images {I} do
6: Compute all differential vectors v ∈ I
7: Compute the Fisher scores for all features {v} using

Eq. (7)
8: Compute the image representation x as the average

score over all features
9: Normalize each coordinate i as xi ← (xi −Ciµ)/CiΣ

10: Apply normalizations, Eq. (8) and (9)
11: end for

normalization we use training vectors and compute multi-
plicative and additive constants to perform whitening per
dimension [28]. We also incorporate two normalizations
(on image vector x) [29] i.e. power normalization,

(x1, . . . , xd)← (sign(x1)
√
|x1|, . . . , sign(xd)

√
|xd|), (8)

and L2 normalization,

(x1, . . . , xd)←

(
x1√∑
x2
i

, . . . ,
xd√∑
x2
i

)
. (9)

Perronnin et al. [29] motivate the power normalization for
obtaining a de-sparsification effect. Similar power normal-
ization has also been shown as an explicit feature map by
Vedaldi and Zisserman [30] i.e. a mapping which trans-
forms the vectors to a space where the dot product of the
transformed vectors corresponds to the Bhattacharyya ker-
nel between the original vectors.

The whole algorithm, which is remarkably simple, is
summarized in Alg. 1. Finally, we use the vectors obtained
as the representation of the images and employ either dis-
criminative linear support vector machine (SVM) for su-
pervised classification tasks or discriminatively learnt met-
ric (detailed below in Sec. 3) for supervised pair matching
i.e. verification task.

2.3. Relation to LBP/LTP.

We can view LHS vectors as generalization of local bi-
nary/ternary patterns (LBP/LTP) [4, 8]. In LBP every
pixel is coded as a binary vector of 8 bits with each bit
indicating whether each of the neighbouring 8 pixels, in
the 3× 3 patch centered on the current pixel, is of greater
intensity than the current pixel or not. We can derive the
LBP [4] by thresholding each coordinate of our differen-
tial vectors at zero. Hence the LBP space can be seen as a
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discretization of the differential space into two bins per co-
ordinate. Similarly, we can discretize the differential space
into more number of bins, with three bins per coordinate
i.e. (−∞,−t), [−t, t], (t,−∞) we arrive at the local ternary
patterns [8] and so on. The use of uniform patterns (pat-
terns with exactly one 0-1 and one 1-0 transitions), in both
LBP/LTP, can be seen as an empirically derived heuris-
tic for ignoring volumes in differential space which have
low occupancies. Thus, the binary/ternary patterns are
obtained with a quantization step and rejection heuristic
while in our case similar information is learnt from data.

3. Discriminative Metric Learning

Recently it has been shown that popular features can be
compressed by orders of magnitude by learning low dimen-
sional projections with a discriminative objective function
for the task of pair matching i.e. verification. Such super-
vised learning also enhances the discrimnation capability
of the features upon projection. In the experimental sec-
tion, we show the efficacy of the proposed Local Higher-
order Statistics (LHS) features when used with discrimina-
tive learning for the challenging task of face verification.
In this section, we give the details of the discriminative
metric learning method we use to learn such projection.

Metric learning has recently been a popular topic of re-
search in the machine learning community. While an ex-
haustive review of different metric learning methods is out
of scope of the paper, we encourage the interested reader
to see an excellent review by Bellet [31]. More closely re-
lated to the the present work, metric learning has been
successfully applied to the task of face verification, i.e. to
predict if two images are of the same person or not. This
is different from face recognition, as the faces may be of
person(s) never seen before. The discriminative objectives
used in such methods are based usually on margin maxi-
mizing or probabilistic principles [32, 33, 34, 35]. Inspired
by such works we now present the method we use to learn
a metric using the proposed LHS face representation.

We are intereseted in learning a ‘distance’ function, for
comparing two faces xi and xj , parameterized by two ma-
trices L and V . Our function DJ(·) is a combination of two
terms, first term DL(·) is the Euclidean distance in the low
dimensional space corresponding to the rowspace of L and
the second DV (·), is the dot product similarity in another
low dimensional space corresponding to the rowspace of V
i.e.

D2
J(xi,xj) = D2

L(xi,xj)−D2
V (xi,xj) (10)

D2
L(xi,xj) = ‖Lxi − Lxj‖2

= (xi − xj)
>L>L(xi − xj) (11)

D2
V (xi,xj) = x>i V

>V xj , (12)

where we use the subscript ‘J’ to signify joint Euclidean
distance and dot product similarity based distance. Both

Algorithm 2 SGD for distance learning

1: Given: Training set (T ), bias (b), margin (m), learning
rate (r)

2: Initialize: L, V ← Whitened PCA of randomly se-
lected training faces {x}

3: for all i = 1, . . . ,niters do
4: Randomly sample a face pair (xi,xj , yij) from T
5: Compute D2

J(xi,xj) using Eq. 10
6: if yij(b−D2

J(xi,xj)) < m then
7: L← L− ryijL(xi − xj)(xi − xj)

>

8: V ← V + ryijV xix
>
j

9: end if
10: end for

the matrices L and V map the original d0 dimensional LHS
features to d� d0

1 dimensional vectors.
We learn the projection matrices L and V by minimizing

the following loss function,

L(T ;L, V ) =
∑
T

max
(
0,m− yij(b−D2

J(xi,xj)
)

(13)

where T = {(xi,xj , yij)} is the provided training set, with
pairs of faces xi,xj ∈ Rd0 annotated to be of the same
person (yij = +1) or not (yij = −1). Minimization of this
margin-maximizing loss encourages the distance, between
pairs of faces of same (different) person, to be less (greater)
than the bias b by a margin of m.

We learn the parameters, i.e. L and V , with a stochastic
gradient descent (SGD) algorithm with easily calculable
analytic gradients outlined in Alg. 2.

4. Experimental Results

The experimental validation is done on four challenging
publicly available datasets of textures and faces. We first
discuss implementation details then present the datasets
and finally give the experimental results for each dataset.

As our focus is on the rich and expressive representation
of local neighbourhoods, we use a standard classification
framework based on linear SVM. As linear SVM works
directly in the input feature space, any improvement in
the performance is directly related to a better encoding of
local regions, and thus helps us gauge the quality of our
features.

4.1. Implementation details.

We use only the intensity information of the images and
convert color images, if any, to grayscale. We consider two
neighbourhood sampling strategies (i) rectangular sam-
pling, where the 8 neighbouring pixels are used, and (ii)
circular sampling, where, like in LBP/LTP [4, 8], we inter-
polate the diagonal samples to lie on a circle, of radius one,

1In general the number of rows of L and V can be different. Here,
we keep them the same.
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using bilinear interpolation. We randomly sample at most
one million features from training images to learn Gaus-
sian mixture model of the vectors, using the EM algorithm
initialized with k-means clustering. We keep the number
of components as an experimental parameter (Sec. 4.5).
We also use these features to compute the normalization
constants, by first computing their Fisher score vectors
and then computing (per coordinate) mean and variance
of those vectors (Alg. 1). We use the average of all the
features from the image as the representation for the im-
age. However, for the facial expression dataset we first
compute the average vectors for non overlapping cells of
10×10 pixels and concatenate these for all cells to obtain
the final image representation. Such gridding helps in cap-
turing spatial information in the image and is standard in
face analysis [36, 37]. We crop the 256×256 face images to
a ROI of (66, 96, 186, 226), to focus on the face, before fea-
ture extraction and do not apply any other pre-processing.
Finally, we use linear SVM as the classifier with the cost
parameter C set using five fold cross validation on the cur-
rent training set.

In the supervised setting for face verification, we use the
metric learning formulation described above in Sec. 3. We
set the bias b = 1.0, the margin m = 0.2 and rate r = 0.002
for all the experiments. During testing a face pair, we hor-
izontally flip the faces and average the distances between
the 4 possible pairs of flipped and non-flipped faces. Dur-
ing training, at each SGD iteration, we randomly select
one of the 4 possible flipped/non-flipped pairs for making
an update.

We also combine the proposed LHS with our imple-
mentation of Fisher Vectors based on dense SIFT features
(SIFT-FV) [34, 38, 26]. The implementation is similar to
LHS with the local differential vectors being replaced by
dense SIFT features. We extract SIFT features, using the
vlfeat library [39], with a step size of 1 pixel at 5 scales
i.e. original image and 2 upsampled and 2 downsampled
versions respectively, with a scale difference of

√
2. The

SIFT features are compressed to ds = 64 dimension us-
ing PCA. We use a vocabulary size of k = 16 and use a
spatial grid of Nc = 7 × 4, giving a feature of dimension
2× k × ds ×Nc = 57344.

4.2. Baselines.

We consider baselines of single scale LBP/LTP features
generated using the same samplings as our LHS features.
We use histogram representation over uniform LBP/LTP
features. We L1 normalize the histograms and take their
square roots and use them with linear SVM. It has been
shown that taking square root of histograms transforms
them to a space where the dot product corresponds to the
non linear Bhattacharyya kernel in the original space [30].
Thus using linear SVM with square root of histograms is
equivalent to SVM with non linear Bhattacharyya kernel.
Hence, our baselines are strong baselines.

4.3. Texture categorization

Brodatz – 32 Textures dataset2 [10, 11] is a stan-
dard dataset for texture recognition. It contains 32 tex-
ture classes e.g. bark, beach-sand, water, with 16 images
per class. Each of the image is used to generate 3 more
images by (i) rotating, (ii) scaling and (iii) both rotating
and scaling the original image – note that Brodatz-32 [10]
dataset is more challenging than original Brodatz dataset
and includes both rotation and scale changes. The images
are 64×64 pixels histogram normalized grayscale images.
We use the standard protocol [9], of randomly splitting
the dataset into two halves for training and testing, and
report average performance over 10 random splits.

KTH TIPS 2a dataset3 [12] is a dataset for material
categorization. It contains 11 materials e.g. cork, wool,
linen, with images of 4 samples for each material. The
samples were photographed at 9 scales, 3 poses and 4 dif-
ferent illumination conditions. All these variations make
it an extremely challenging dataset. We use the standard
protocol [9, 12] and report the average performance over
the 4 runs, where every time all images of one sample are
taken for test while the images of the remaining 3 samples
are used for training.

Tab. 1 (col. 1 and 2) shows the results for the differ-
ent methods on these texture datasets. We achieve a near
perfect accuracy of 99.5% on the Brodatz dataset. Our
best method outperforms the best LBP and LTP baselines
by 12.2% and 4.5% respectively and demonstrates the ad-
vantage of using rich, higher-order, data-adaptive encod-
ing of local neighbourhoods compared to fixed quantiza-
tion based LBP and LTP representations. Brodatz dataset
contains texture images with scale and rotation variations,
hence, the high accuracy achieved on the dataset leads us
to conclude that texture recognition can be done almost
perfectly under the presence of rotation and scaling varia-
tions.

On the more challenging KTH TIPS 2a dataset, the
best performance we obtain is far from saturated at 73%.
The gain in accuracy over LBP and LTP is 3.2% and
1.7% respectively. This dataset has much stronger vari-
ations in scale, illumination conditions, pose, etc. , than
the Brodatz dataset and the experiment is of texture cat-
egorization of unseen sample i.e. the test images are of
a sample not seen in training. Our descriptor again out-
performs LBP/LTP and demonstrates its higher discrim-
ination power and the generalization capability. More re-
cently it has been demonstrated that standard object im-
age classification pipeline of Fisher Vectors [38, 26] with
dense SIFT [25] when applied to texture categorization
[24] achieves excellent results. We note that such features
are of much higher complexity than the proposed LHS.
We analyse LHS wrt. such features in Sec. 4.7, albeit on

2http://www.cse.oulu.fi/CMV/TextureClassification
3http://www.nada.kth.se/cvap/datasets/kth-tips/
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Figure 1: The images of the 10 persons in the neutral expression. The
number below is the categorization accuracy for all 7 expressions for
the person (see Sec. 4.4).

the task of face verification. Also, it has been shown that
representations learnt for image classification tasks using
large amounts of external data transfer successfully to tex-
ture recognition as well [24].

4.4. Facial analysis

Japanese Female Facial Expressions (JAFFE)4 [13]
is a dataset for facial expression recognition. It contains 10
different females expressing 7 different emotions e.g. sad,
happy, angry. We perform expression recognition for both
known persons, like earlier works [40], and for unknown
person. In the first (experiment E1), one image per ex-
pression for each person is used for testing while remaining
ones and used for training. Thus, the person being tested
is present (different image) in training. In the second (ex-
periment E2), all images of one person are held out for
testing while the rest are used for training. Hence, there
are no images of the person being tested in the training
images, making the task more challenging. For both cases,
we report the mean and standard deviation of average ac-
curacies of 10 runs.

Tab. 1 (col. 3 and 4) shows the performance of the differ-
ent methods. On the first experiment (E1) we obtain very
high accuracies as the task is of recognition of expressions,
from a never seen image, of a person present in the train-
ing set. Our method again outperforms LBP and LTP
based representation by 2% and 1.2% respectively. On the
more challenging second experiment (E2) we see that the
accuracies are much less than E1. Our best accuracy is
again better than the best LBP and LTP accuracies by
2.8% and 4% respectively. Fig. 1 shows one image of each
of the 10 persons in the dataset along with the expression
recognition accuracy for that person. We can see the very
high intra-person differences in this dataset, which results
in very different accuracies for the different persons and
hence high standard deviation, for all the methods.

Labeled Faces in Wild (LFW) [14] is a popular dataset

4http://www.kasrl.org/jaffe.html
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Figure 2: The accuracies of the method for different number of GMM
components for Brodatz (left) and KTH TIPS 2a (right) dataset (see
Sec. 4.5)

for face verification by unconstrained pair matching i.e.
given two real-world face images decide whether they are of
the same person or not. LFW contains 13,233 face images
of 5749 different individuals of different ethnicity, gender,
age, etc. It is an extremely challenging dataset and con-
tains face images with large variations in pose, lighting,
clothing, hairstyles, etc. LFW dataset is organized into
two parts: ‘View 1’ is used for training, validation (e.g.
for choosing the parameters) while ‘View 2’ is only for fi-
nal testing and benchmarking. In our setup, we follow the
specified training and evaluation protocol. We use the,
publicly available, aligned version of the faces as provided
by Wolf et al. [41]5.

We first report results in the restricted unsupervised
task of the LFW dataset, i.e. (i) we use strictly the data
provided without any other data from any other source
and (ii) we do not utilize class labels while obtaining the
image representation. This task evaluates the information
contained in the features without help from any supervised
modifications. We will provide results later in the super-
vised setting in Sec. 4.7 where we will demonstrate that,
combined with supervised learning, LHS give a very at-
tractive trade-off between performance and speed wrt. the
state-of-the-art methods.

We center crop the 250×250 images, provided in the

5http://www.openu.ac.il/home/hassner/data/lfwa/
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(a) Rectangular sampling (8-pixel neighbourhood)

Brodatz–32 KTH TIPS 2a JAFFE E1 JAFFE E2

LBP baseline 87.2 ± 1.5 69.8 ± 6.9 86.9 ± 2.6 56.5 ± 21.0
LTP baseline 95.0 ± 0.8 69.3 ± 5.3 93.6 ± 1.8 57.2 ± 16.3
LHS (proposed) 99.3 ± 0.3 71.7 ± 5.7 95.6 ± 1.7 64.6 ± 19.2

(b) Circular sampling (bilinear interpolation for diag. neighbproposed)

Brodatz–32 KTH TIPS 2a JAFFE E1 JAFFE E2

LBP baseline 87.3 ± 1.5 69.8 ± 6.7 94.3 ± 2.1 61.8 ± 24.1
LTP baseline 94.9 ± 0.8 71.3 ± 6.3 95.1 ± 1.8 60.6 ± 20.8
LHS (proposed) 99.5 ± 0.2 73.0 ± 4.7 96.3 ± 1.5 63.2 ± 16.5

Table 1: Results (avg. accuracy and std. dev.) on the different datasets.

dataset, to 150×80 and resize them to 70×40 pixels. We
then compute the features with a 7×4 grid, of 10×10 pix-
els cells, overlayed on the image. We compute the LHS
representations for each cell separately and compute the
similarity between image pairs as the mean of L2 distances
between the representations of corresponding cells. We
classify image pairs into same or not same by threshold-
ing on their similarity. We choose the testing threshold
as the one which gives the best classification accuracy on
the training data. We obtain an accuracy of 73.4% with a
standard error on the mean of 0.4%. This is a competitive
performance in the unsupervised setting for the dataset,
while neither using external data e.g. by PAF [50], nor do-
ing specific feature post-processings e.g. by LQP [49]. We
compare with other approaches, including those based on
LBP in Sec. 4.6. Also, we show in Sec. 4.7 that LHS is
among the best performing methods, of comparable com-
plexity, in the supervised face verification setting.

4.5. Effect of sampling and number of components

Tab. 1 gives the results with (a) rectangular 3×3 pixel
neighbourhood and (b) LBP/LTP like circular sampling
of 8 neighbproposed, where the diagonal neighbour val-
ues are obtained by bilinear interpolation. Performance
on the Brodatz dataset is similar for both the samplings
while that for KTH and JAFFE datasets differ. In gen-
eral, the circular sampling seems to be better for all the
methods. We note that the variations and difficulty of
Brodatz dataset are much less than the other two datasets
and hence is possibly well represented by either of the two
samplings. Thus, we conclude that, in general, circular
sampling is to be preferred as it seems to generate more
discriminative statistics.

Fig. 2 shows the performance on the two texture
datasets for different number of mixture model compo-
nents. As this number increases the vector length increases
proportionally. Although lower number of components
lead to a compact representation, larger numbers lead to
better quantization of the space and hence more discrimi-
native representations. We observe that the performance,
for both the datasets, increases with the number of compo-
nents and seems to saturate after a value of 128. Hence, we
report results for 128 components. For Brodatz dataset,

we see that even with only 16 components the method is
able to achieve more than 99% accuracy, highlighting the
fewer variations in the dataset. For the KTH dataset we
gain significantly by going from 16 to 128 components (6.8
points) which suggests that for more challenging tasks a
more descriptive representation is beneficial.

4.6. Comparison with existing methods

Tab. 2 shows the performance of our method along with
existing methods. On the Brodatz dataset we outperform
all methods and to the best of our knowledge report, near
perfect, state-of-the-art performance. Similarly, on the
JAFFE and LFW datasets we achieve the best results re-
ported till date.

On the KTH dataset, Chen et al. [9], for their recently
proposed Weber law based features, report an accuracy
of 64.7% with KNN classifier. Caputo et al. [12] report
71.0% for their 3-scale LBP and non-linear chi-squared
RBF kernel based SVM classifier. In comparison we use
linear classifiers which are not only fast to train but also
need only a vector dot product at test time (cf. kernel
computation with support vectors which is of the order of
number of training features). Note Caputo et al. obtain
their best results with multi scale features and a complex
decision tree (with non-linear classifiers at every node).
We expect our features to outperform their features with
similar complex classification architecture.

Tab. 2 (d) reports accuracy rates of our method
and those of competing unsupervised methods6 on LFW
dataset. Our method not only outperforms the LBP base-
line (LBP with χ2 distance) [47] by 3.9% but also gives
1.2% better performance than current state-of-the-art Lo-
cally Adaptive Regression Kernel (LARK) features of [48].
The better performance of our features, compared to the
LBP baseline and fairly complex LARK features, on this
difficult dataset once again underlines the fact that local
neighbourhood contains a lot of discriminative informa-
tion. It also demonstrates the representational power of
our features which are successful in encoding the infor-
mation which is missed by other methods. More recent

6For more results, see webpage http://vis-www.cs.umass.edu/

lfw/results.html
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(a) Brodatz–32

Method Acc. Remark

Jalba et al. [42] 93.5
Morphological
hat-transform

Urbach et al. [43] 96.5
Connected shape size
pattern spectra

Ojala et al. [44] 96.8
Distributions of signed
gray level differences

Chen et al. [9] 97.5 Weber law feat. + k-NN

LHS (proposed) 99.3

(b) JAFFE

Method Acc. Remark

Shan et al. [37] 81.0 LBP based

Guo et al. [45] 91.0
Gabor filters + feat.
selection

Lyons et al. [46] 92.0
Gabor filters + Linear
Discriminant Analysis

Feng et al. [36] 93.8
LBP + Linear
programming

LHS (proposed) 95.6

(c) KTH TIPS 2a

Method Acc. Remark

Chen et al. [9] 64.7 Weber law feat. + k-NN

Caputo et al. [12] 71.0 3 sc. LBP, nonlin. SVM

LHS (proposed) 73.0

DeCAF [24] 78.4
Large amount of labeled
external data

SIFT-FV [24] 82.2
Higher complexity, see
§ 4.8

(d) LFW (aligned, unsupervised)

Method Acc. Remark

Javier et al. [47] 69.5 ±0.5 LBP with χ2 dist.

Seo et al. [48] 72.2 ±0.5
Locally Adaptive
Regression Kernel

LHS (proposed) 73.4 ±0.4

LQP [49] 75.3 ±0.8 Higher complexity

PAF [50] 87.8 ±0.5
External data for
pose correction

Table 2: Comparison with current methods with comparable experimental setup (reports accuracy, see Sec. 4.6).

works have reported higher performances e.g. Local Quan-
tized Patterns (LQP) [49] achieves 75.3 without any post-
processing and gain even higher when postprocessed with
whitened PCA and compared with cosine similarity. Pose
Adaptive Filters (PAF) [50] use external data to learn pose
robust features using 3D fitting of faces and achieve sub-
stantially more. This underlines the fact that the dataset
has very challenging pose variations, correcting which will
arguably improve the performance of the proposed LHS
features as well.

Thus the proposed method is capable of achieving com-
petitive results while being computationally simple and
efficient.

4.7. LHS with supervised discriminative metric learning

We now provide results of the proposed Local Higher-
order Statistics (LHS) features with supervised discrim-
inative metric learning (ML) on the challenging Labeled
Faces in the Wild (LFW) [14] dataset. We show that when
used with such supervised ML, which can be equivalently
seen as a projection to a lower dimensional discriminative
subspace (see Sec. 3), the LHS features can obtain very
high performance while being much more efficient than
the competition.

We operate in the ‘Supervised, unrestricted, label-free
outside data’ protocol. Tab. 3 gives the performance of
LHS for different values of the parameters. We see that
the increasing the number of gaussian components steadily

increases the performance from k = 4 to k = 24 by a little
less than 2% absolute while beyond that the results seem
to saturate. Similarly, for a fixed number of gaussians,
increasing the projection dimension increases the results
but with a pronounced diminishing returns effect.

It is quite interesting to note these performances in the
context of existing methods. Tab. 4 shows the performance
of LHS wrt. state-of-the-art methods on LFW dataset.
LFW achieves the best results among the features in the
low complexity regime, and competitive results among fea-
tures with high complexity or methods that combine mul-
tiple features. In particular our own implementation of
Local Binary Patterns (LBP) using the (default param-
eters of the) vlfeat library [39] gives 86.2% with a fea-
ture dimension of 7k. Compared to this LHS with only
1k dimensions gives 86.6% (Tab. 3) and that with 10k
dimension gives 88.3%. When combined with LBP the
performance increases to 89.0%. Our implementation of
Fisher vectors with dense SIFT features gives 92.9% (com-
pared to 93.0% reported in [34]), and when combined with
LHS the performance improves to 93.5%, which is a mod-
est improvement in the state-of-the-art in the ‘Supervised,
unrestricted, label-free outside data’ protocol7. Thus, we
conclude that LHS features are competitive in the low com-
plexity domains and are complementary to the high com-

7For more results, see webpage http://vis-www.cs.umass.edu/

lfw/results.html
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Supervised, unrestricted, label free outside data

#Gauss. Dimension ROC-EER
(k) org. (d0) proj. (d) Accuracy

4 1792
32 85.73 ± 0.17
64 86.37 ± 0.19
128 86.60 ± 0.17

8 3584
32 86.47 ± 0.17
64 87.37 ± 0.14
128 87.60 ± 0.14

16 7168
32 87.43 ± 0.17
64 87.57 ± 0.17
128 88.13 ± 0.15

24 10752
32 87.63 ± 0.17
64 87.93 ± 0.20
128 88.27 ± 0.17

32 14336
32 87.47 ± 0.20
64 88.03 ± 0.16
128 87.97 ± 0.14

Table 3: Results of proposed LHS on the Labeled Faces in the Wild
(LFW) [14] dataset for different parameter settings.

Methods with similar complexity
Method Accuracy

LBP + ITML [51] 85.1 ± 0.6
LBP + PLDA [52] 87.3 ± 0.6

LHS + JML (proposed) 88.2 ± 0.2

Methods with multiple feats/higher complexity
Method Accuracy

comb. LDML-MkNN [32] 87.5 ± 0.4
comb. PLDA [52] 90.1 ± 0.5

SIFT-FV [34] 93.0 ± 1.1
High dim LBP [53] 93.2 ± 1.1

LBP + LHS (proposed) 89.0 ± 0.1
SIFT-FV + LHS (proposed) 93.5 ± 0.2

Methods using large amts of external labeled data
Method Accuracy

High dim LBP [53] 95.2 ± 1.1
Deep learning [54, 55] 97.4 ± 0.3

Table 4: Comparison with existing works on the Labeled Faces in
the Wild (LFW) [14] dataset–unrestricted and supervised setting.

Space Time
Method dim. reduction ms speedup

SIFT-FV 67584 Ref. 2400* Ref.

LHS

1792 38× 13 185×
3584 19× 15 160×
7168 9× 19 126×
10752 6× 22 109×
14336 5× 25 96×

Table 5: The space and time complexity comparison between pro-
posed LHS the FV method. (*) The time for the best performing
configuration in [34], i.e. step size 1, is interpolated from the time
reported for step size 2 (0.6s). Our implementation of fisher vectors
takes similar time, see Sec. 4.8

plexity features for supervised face verification on LFW.
In the next section we discuss their time and space benefit
over the high complexity features.

4.8. Time and space complexity of LHS

The poposed LHS features are very compact and effi-
cient to compute. Compared to one of the state-of-the-art
systems for face verification [34] they are about two orders
of magnitude faster and an order of magnitude smaller.
Tab. 5 gives the space and computation time comparison
of the LHS features wrt. Fisher vectors with SIFT features
(SIFT-FV) [34].

The best performing LHS features are 10752 dimen-
sional and take 22 ms to compute compared to 67584
for SIFT-FV which amounts to a space saving of 6× and
speedup of 109×; while the most lightweight LHS config-
uration tested is 38× smaller and 185× faster than SIFT-
FV. Ignoring the offline training time, which is O(d2

0), and

considering only the online testing times, the best perfor-
mance is reached when the image pairs are horizontally
flipped and the distance between the four combinations
are averaged. Hence, for comparing a face pair, features
for 4 images need to be calculated i.e. Fisher vectors take
9.6s while the proposed LHS take only 88ms, both on a
single core of a modern CPU. Such advantages come with
a drop in performance, but might be essential for time and
space critical applications e.g. in embedded systems. They
might also be used in a cascade system where the efficient
LHS features are used to tackle the easy decisions while
delegating the tougher examples to the higher complexity
features, thereby reducing the average time over several
comparisons.

We note that, our implementation of LHS is in unopti-
mized C/C++, called via the MEX interface of MATLAB.
Arguably it can be improved substantially, in particular,
by tuning/approximating the GMM posterior probability
estimation, which involves costly exponential operations.

5. Conclusions

We have presented a model that captures higher-order
statistics of small local neighbourhoods to produce a
highly discriminative representation of the images. Our
experiments, on two challenging texture datasets and two
challenging facial analysis datasets, validate our approach
and show that the proposed model encodes more local in-
formation than the competing methods and achieves com-
petitive results. Further we showed with experiments on
the supervised task of face verification on the challeng-
ing Labeled Faces in the Wild (LFW) dataset that the
proposed method achives best results for low complexity
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features and is complementary to the high dimension fea-
tures. When combine with the state-of-the-art method it
improves the performance to establish a new state-of-the-
art on the LFW dataset when no external labeled data is
used. Compared to the best method the proposed method
is two orders of magnitude faster to compute and an order
of magnitude compact making it a very appropriate choice
for low complexity devices e.g. embedded systems.
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