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Abstract

We propose a new image representation for texture categorization and facial analysis, relying on the use of higher-order
local differential statistics as features. It has been recently shown that small local pixel pattern distributions can be
highly discriminative while being extremely efficient to compute, which is in contrast to the models based on the global
structure of images. Motivated by such works, we propose to use higher-order statistics of local non-binarized pixel
patterns for the image description. The proposed model does not require either (i) user specified quantization of the
space (of pixel patterns) or (ii) any heuristics for discarding low occupancy volumes of the space. We propose to use
a data driven soft quantization of the space, with parametric mixture models, combined with higher-order statistics,
based on Fisher scores. We demonstrate that this leads to a more expressive representation which, when combined
with discriminatively learned classifiers and metrics, achieves state-of-the-art performance on challenging texture and
facial analysis datasets, in low complexity setup. Further, it is complementary to higher complexity features and when
combined with them improves performance.

Keywords: local features, texture categorization, face verification, image classification.

1. Introduction

Categorization of textures and analysis of faces under
multiple and difficult sources of variations like illumina-
tion, scale, pose, expression and appearance etc. are chal-
lenging problems in computer vision with many important
applications. Texture recognition is beneficial for applica-
tions such as mobile robot navigation or biomedical im-
age processing. It is also related to facial analysis e.g.
facial expression categorization and face verification (two
faces are of same person or not), as the models developed
for textures are generally found to be competitive for face
analysis. Analysis of faces, similarly, has important appli-
cations especially in human computer interaction and in
security and surveillance scenarios. This paper proposes
a new model for obtaining a powerful and highly efficient
representation for textures and faces, with such applica-
tions in mind.

Initial success on texture recognition was achieved by
the use of filter banks [4, 5, 6, 7, 8], where the distribu-
tions of the filter response coefficients were used for dis-
crimination. The focus was on evaluating appropriate fil-
ters, selective for edge orientation and spatial-frequencies
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of variations, and better capturing the distributions of such
filter responses. However, later works e.g. by Ojala et al.
[9] and Varma and Zisserman [10], showed that it is possi-
ble to discriminate between textures using pixel values di-
rectly (with pixel neighborhoods as small as 3×3 pixels),
discounting the necessity of filter banks. It was demon-
strated that despite the global structure of the textures,
very good discrimination could be achieved by exploit-
ing the distributions of such small pixel neighborhoods.
More recently, exploiting such small pixel neighborhoods
or micro-structures in textures by representing images
with distributions of local descriptors has gained much at-
tention and has led to state-of-the-art performances for
systems with low complexity, e.g. Local Binary Patterns
(LBP) [1, 2], Local Ternary Patterns (LTP) [11] and We-
ber Local Descriptor (WLD) [12]. Most of such local pixel
neighborhood based descriptors were shown to be highly
effective for facial analysis [2, 11] as well. However these
methods suffer from important limitations–the use of fixed
hard quantization of the feature space (the space of small
pixel patterns) and the use of heuristics to prune unin-
teresting regions in the feature space. In addition, they
use histograms to represent the feature distributions. His-
tograms, or count statistics, are zeroth order statistics of
distributions and thus give a quite restrictive representa-
tion.

In contrast, we propose a model that represents images
with higher-order statistics of small local pixel neighbor-
hoods. Fig. 1 shows an illustration of this representation.
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Figure 1: Illustration of the proposed Local Higher-order Statistics (LHS) representation. The left-hand side of the figure represents a collection
of pixel-centered raw pixel intensity values (image patches). For making the figure simple, we consider only horizontal 2-neighborhood (in
practice we use a 3x3 neighborhood). The middle of the figure shows how these patches can be turned into LBP codes [1, 2] – 4 different
codes in this case – and then represented as an histogram of LBP. The proposed representation, illustrated on the right-hand side of the
figure, is much richer, as the distribution of the local patches is represented by a Gaussian Mixture model, encoded as Fisher scores [3].

We obtain a data driven soft partition of the feature space
using parametric mixture models, to represent the distri-
bution of the vectors, with the parameters learnt from
the training data. Hence, in the proposed method, the
coding of vectors is intrinsically adapted to the data and
the computations involved remain very simple despite the
strengths. This helps us avoid the above mentioned lim-
itations of the previous methods – (i) instead of a fixed
quantization, we learn a data driven, and hence, adap-
tive quantization using Gaussian mixture models (GMM),
(ii) quantizing using GMM also avoids any heuristic prun-
ing as any low occupancy region in the feature space will
be automatically ignored by the GMM learning and (iii)
learning GMM allows us to use Fisher vectors [3] which
are higher-order statistics of the feature distribution. We
discuss in more detail on this in the following sections. A
preliminary version of this work appeared in Sharma et al.
[13].

We validate the proposed representation by extensive
experiments on four challenging datasets: (i) Brodatz
32 texture dataset [14, 15], (ii) KTH TIPS 2a mate-
rials dataset [16], (iii) Japanese Female Facial Expres-
sions (JAFFE) dataset [17], and (iv) Labeled Faces in
the Wild (LFW) dataset [18]. Two dataset, Brodatz-
32 and JAFFE, are relatively easier with limited varia-
tions while the other two, KTH TIPS 2a and LFW, are
more challenging with realistic high levels of variation in
illumination, pose, expressions etc. We show that using
higher-order statistics gives a more expressive description
and lead to state-of-the-art performance in low complexity

settings, for the above datasets. Further, with the chal-
lenging LFW dataset as the experimental testbed, we also
show that the proposed representation is complementary
to the recent high complexity state-of-the-art representa-
tions. However, in case of challenging variations, like in
LFW, unsupervised approach is not sufficient and hence we
show that when used with supervised metric learning the
performance of the proposed representation improves sub-
stantially. When combined with higher complexity meth-
ods, the proposed representation achieves the state-of-the-
art performance on the challenging LFW dataset in the
supervised protocol, when no external labeled data is used.

2. Related works

Texture analysis was initially addressed using filter
banks and the statistical distributions of their responses
e.g. [4, 5, 6, 7, 8]. Most of the initial works proposed ap-
propriate directionally and frequency-adapted multiscale
filter banks and/or methods to better capture the statis-
tical distributions of their responses. Later, Ojala et al.
[9] and, more recently, Varma and Zisserman [10] showed
that statistics of small pixel neighborhoods, as small as
3× 3 pixels, are capable of achieving high discrimination.
This was in contrast to first convolving the local patches
with filter banks and then taking their responses. The
success of using raw pixel patches without any processing
discounted the use of filter banks for texture recognition.
Since then many methods working directly with local pixel
neighborhoods have been used successfully in texture and
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face analysis e.g. Local Binary Patterns (LBP) [1, 2], Local
Ternary Patterns (LTP) [11] and Weber Law Descriptor
(WLD) [12].

Local pixel pattern operators, such as Local Binary Pat-
terns (LBP) by Ojala et al. [9], have been very successful
for image description. LBP based image representation
aims to capture the joint distribution of pixel intensities
in a local neighborhood as small as 3×3 pixels. LBP makes
two approximations, (i) it takes the differences between the
center pixel and its eight neighbors and (ii) then considers
just the signs of the differences. The first approximation
lends invariance to gray-scale shifts and the second to in-
tensity scaling. As an extension to LBP, Local Ternary
Patterns (LTP) were introduced by Tan and Triggs [11] to
add resistance to noise. LTP adds an additional parameter
t, which defines a tolerance for similarity between different
gray intensities, allowing for robustness to noise. Doing so
lends an important strength: LTPs are capable of encoding
pixel similarity information modulo noise using the simple
rule that any two pixels within ±t intensity of each other
are considered similar. This is accompanied by a clever
split coding scheme to control the size of the descriptor.
However, LTP (and LBP) coding is still limited due to
its hard and fixed quantization. In addition, both LBP
and LTP representations usually use the so-called uniform
patterns: patterns with at most one 0-1 and at most one
1-0 transition, when seen as circular bit strings. It was
empirically observed that that uniform patterns account
for nearly 90% of all observed pixel patterns in textures,
and hence ignoring the non-uniform patterns leads to large
savings in space at negligible loss of accuracy. Although
uniform patterns are beneficial in practice, their use is still
a heuristic for discarding low occupancy volumes in feature
space. We will discuss this in more detail in Sec. 3.3

Owing to the success of the texton based texture clas-
sification method, e.g. Leung and Malik [6], and the re-
cent success of bag of words representation for image re-
trieval (by Sivic and Zisserman [19]) and classification (by
Csurka et al. [20]) many of the recent methods for texture
and face analysis, e.g. [10, 21, 22, 23, 24, 25, 26, 27, 28],
use histogram based representations. They first compute
a dictionary or codebook of prototypical vectors, so-called
textons or visual words, by clustering large number of ran-
domly sampled vectors from the training data. The images
are then represented as histograms over the learnt code-
book texton assignments. The local vectors are derived
in multiple ways, incorporating different invariances like
rotation, view point etc. E.g. [22, 23] generate an image
specific texton representation from rotation and scale in-
variant descriptors and compare them using Earth Movers
distance, whereas [10, 9, 21, 24] use a dictionary learned
over the complete dataset to represent each image as his-
togram over this dictionary.

In a more recent line of work, Cimpoi et al. [29] show
that traditional image classification methods when applied
to the more challenging textures in the wild scenario give
good performances. They use classic local features such

as the Scale Invariant Feature Transform (SIFT) [30] with
different encoding methods, particularly Fisher scores [3],
similar to those employed in the present work. They
also evaluate deep learning [31] based representation and
demonstrate their usefulness for the task. We note that
while these method give good performances, they are of
much higher complexities than the proposed method. The
proposed method is also complementary to such methods
as we will show empirically later.

We can thus draw a few conclusions from the above men-
tioned previous works. Modeling distributions of small
pixel neighborhoods (as small as 3×3 pixels) can be quite
effective for image representation [9, 10, 11]. However,
using coarse approximations (we discuss more on this in
Sec. 3.3), as done by most of the previous related ap-
proaches, limits their potential. Finally, the previous
methods use low-order statistics, generally zeroth order
counts i.e. histograms. This is also limiting as using high-
order statistics can give a more accurate and expressive
representation. The main contribution of this paper is
motivated by these observations; we describe small neigh-
borhoods with their higher-order statistics, without coarse
approximations, and show with extensive experimental re-
sults that this leads to a more expressive representation
which performs better on challenging benchmark datasets.

In more recent works on facial analysis, deep learning
based methods for face recognition/verification [32, 33, 34,
35, 36, 37, 38, 39, 40, 41] have gained much success. Most
of the deep learning based works aim to leverage large
amount of data along with the impressive model capacity
of deep networks. Taigman et al. [38] showed that learning
a deep convolutional neural network, for predicting thou-
sands of identities using millions of training images, and
then using the output of the penultimate layer of trained
network as features for faces results in very good face ver-
ification performance. Alternatively, Huang et al. [33] and
Schroff et al. [35] proposed deep architectures to perform
metric learning directly. Kan et al. proposed to handle
high variations to pose [40] while Schroff et al. [35] propose
to use the obtained embeddings to cluster faces based on
identities.

The approach of Martinez [42] is also related to the pro-
posed approach, but the two are complementary. Mar-
tinez [42] proposed to divide face images into small number
of (typically six) local regions and then learn a Gaussian
mixture model on PCA compressed pixel representation
of the local face regions. Further, for expression invariant
recognition, Martinez [42] proposed to learn weights on
the local regions of the face corresponding to how impor-
tant (or, in some sense, invariant) the different regions are,
for recognition of expression variant faces. The proposed
method learns the description of an image by the statis-
tics of very local (3×3 pixel) neighborhoods. Hence the
relatively larger in size (six) local regions in Martinez’s
approach can be represented by LHS vectors, instead of
vectorized raw pixels compressed with PCA. LHS vectors
could be seen as one extreme (highly local) representation
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of images, with the PCA based fully global representation
at the other extreme. Martinez’s approach can then be
seen as striking a balance between the two.

3. The Local Higher-order Statistics (LHS) model

We now describe the main contribution of the paper–
Local Higher-order Statistics (LHS) model. LHS intends
to represent images by accurately describing the distribu-
tion of local pixel neighborhoods using higher-order statis-
tics. We start with small pixel neighborhoods of 3×3 pixels
and model the statistics of their local differential vectors.

3.1. Local differential vectors.

Consider all possible 3 × 3 pixel neighborhoods in an
image, i.e.

vn = (vc, v1, . . . , v8) (1)

where vc is the intensity of the center pixel and the rest are
those of its 8-neighbors. We are interested in exploiting the
distribution p(vn|I) of the these vectors to represent the
image. Following LBP [1], to obtain invariance to mono-
tonic changes in gray levels, we subtract the value of the
center pixel from the rest and obtain the local differential
vectors i.e.

v = (v1 − vc, . . . , v8 − vc). (2)

We approximate the distribution of the local pixel patterns
with the distribution of the corresponding differential vec-
tors i.e.

p(vn|I) ≈ p(v|I). (3)

3.2. Higher order statistics.

As the key contribution, we propose to characterize the
images using the higher-order statistics of the differential
vectors. We avoid a hard and/or predefined quantization,
as used in LBP/LTP, and use parametric Gaussian mix-
ture model (GMM) to obtain a probabilistic partitioning
of the differential space (i.e. the space of all differential
vectors). Defining such soft quantization with mixture
model can be equivalently seen as a generative model on
the differential vectors. It allows us to use a character-
ization method which exploits higher-order statistics i.e.
Fisher score method proposed by Jaakkola and Haussler
[3]. Fisher scores enables the use of generative modeling
with discriminative classifiers. The key idea is to obtain
a fixed length representation of set of vectors, of arbitrary
cardinality, by representing each of the vectors with gradi-
ents wrt. the generative model and averaging their repre-
sentations (with an iid assumption). More precisely, given
a parametric generative model, a vector v is characterized
by the gradient of the log likelihood, computed at v, with
respect to the parameters of the model. The Fisher score,
for an observed vector v wrt. a distribution p(v|λ), is given
as,

g(λ,v) = ∇λ log p(v|λ), (4)

where λ is the parameter vector. The Fisher score vector,
thus, has the same dimensions as the parameter vector λ.
In the case of a mixture of Gaussian distribution i.e. when

p(v|λ) =

Nk∑
k=1

αkN (v|µk,Σk), (5)

N (v|µk,Σk) =
1√

(2π)d|Σk|
e−

1
2 (v−µk)Σ−1

k (v−µk), (6)

the Fisher scores can be computed using the following par-
tial derivatives

∂ log p(v|λ)

∂µk
= γkΣ

−1
k (v− µk) (7a)

∂ log p(v|λ)

∂Σ−1
k

=
γk
2

(
Σk − (v− µk)2

)
(7b)

where, γk =
αkp(v|µk,Σk)∑
k αkp(v|µk,Σk)

, (7c)

with the square of a vector being done element-wise. We
have assumed diagonal Σ, to decrease the number of pa-
rameters to be learnt. This amounts to assuming statis-
tical independence between the variables. Thus, coding
vectors using Eq. 7 codes the higher-order, i.e. based on
the first and second power of v, statistics of the local differ-
ential vectors. After obtaining the Fisher scores of differ-
ential vectors corresponding to every pixel neighborhood
in the image, we compute the image representation as the
average of the Fisher scores over all of them. Here we make
an implicit assumption that the vectors were generated iid
from the distribution. This way any image of arbitrary
size or equivalently with arbitrary number of vectors is
represented as a vector of length equal to the number of
parameters.

We then perform the following normalizations; first, we
normalize each dimension of the image vector to zero mean
and unit variance. To perform the normalization we use
training vectors and compute multiplicative and additive
constants to perform whitening per dimension [43]. Sec-
ond, we perform power normalization on the image vector
x,

(x1, . . . , xd)← (sign(x1)
√
|x1|, . . . , sign(xd)

√
|xd|), (8)

and finally we do `2 normalization of x,

(x1, . . . , xd)←

(
x1√∑
x2
i

, . . . ,
xd√∑
x2
i

)
. (9)

Perronnin et al. [44] motivate the power normalization for
obtaining a de-sparsification effect, which makes the use
of `2 distance (and hence the corresponding linear support
vector machine) more appropriate. Similar power normal-
ization has also been shown to be an explicit feature map
by Vedaldi and Zisserman [45] i.e. a mapping which trans-
forms the vectors to a space where the dot product of
the transformed vectors corresponds to the Bhattacharyya
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Algorithm 1 Computing Local Higher-order Statistics

1: Randomly sample 3×3 pixels differential vectors {v ∈
I|I ∈ Itrain}

2: Learn the GMM parameters {αk,µk,Σk|k = 1 . . .K}
with EM algorithm on {v}

3: Compute the higher-order statistics, i.e. Fisher scores,
for {v} using Eq. (7)

4: Compute means Ciµ and variances CiΣ for each coordi-
nate i ∈ {1, . . . , d0}

5: for all images {I} do
6: Compute all differential vectors v ∈ I
7: Compute the Fisher scores for all features {v} using

Eq. (7)
8: Compute the image representation x as the average

score over all features
9: Normalize each coordinate i as xi ← (xi −Ciµ)/CiΣ

10: Apply normalizations, Eq. (8) and (9)
11: end for

kernel between the original vectors. The whole algorithm,
which is remarkably simple, is summarized in Alg. 1.

Finally, we use the vectors obtained as the representa-
tion of the images and employ either discriminative linear
support vector machine (SVM) for supervised classifica-
tion tasks or discriminatively learnt Mahalanobis like met-
rics (detailed below in Sec. 4) for supervised pair matching,
i.e. verification, task.

3.3. Relation to LBP/LTP.

We now discuss how LHS can be considered as a gen-
eralization of local pattern features. Consider the Local
Binary Patterns (LBP) of Ojala et al. [9]–every pixel is
coded as a binary vector of 8 bits corresponding to its 8
immediate neighbors. Each bit of LBP indicates whether
the corresponding neighboring pixels is of greater intensity
than the current pixel or not. We can thus derive LBP [9]
by thresholding each coordinate of our differential vectors
at zero. Hence the LBP space can be seen as a discretiza-
tion of the differential space into two bins per coordinate,
i.e. into the 28 hyperoctants of the 8-dimensional space of
local differential vectors. Similarly, we can discretize the
differential space into more number of bins, with three bins
per coordinate i.e. (−∞,−t), [−t, t], (t,−∞) we arrive at
the local ternary patterns [11] and so on. The use of uni-
form patterns (patterns with exactly one 0-1 and one 1-0
transition), in both LBP/LTP, can be seen as an empiri-
cally derived heuristic for ignoring volumes, in differential
space, which have low occupancies, e.g. more than 75% of
the hyperoctants for LBP2. Thus, the local binary/ternary
patterns are obtained with (i) a hard and hand set quan-
tization of space and (ii) a rejection heuristic derived from

2Out of the total 256 bins for all possible 8d binary patterns, 58
bins for uniform patterns and one bin for all the rest of the patterns,
are usually used in LBP

Algorithm 2 SGD for distance learning

1: Given: Training set (T ), bias (b), margin (m), learning
rate (r)

2: Initialize: L, V ← Whitened PCA of randomly se-
lected training faces {x}

3: for all i = 1, . . . ,niters do
4: Randomly sample a face pair (xi,xj , yij) from T
5: Compute D2

J(xi,xj) using Eq. 10
6: if yij(b−D2

J(xi,xj)) < m then
7: L← L− ryijL(xi − xj)(xi − xj)

>

8: V ← V + ryijV xix
>
j

9: end if
10: end for

empirical observation. While for LHS such quantization of
space is learnt from data using parametric mixture mod-
els, which automatically adapts itself locally according to
the occupancy levels of the space. Hence, in our case the
quantization and rejection is data driven and more general.
Moreover, in LBP/LTP the final representation is based on
zeroth order statistics, i.e. counts/histograms, while using
a data driven soft quantization allows us to exploit higher-
order statistics, as detailed above, for a more expressive
image description.

4. Discriminative metric learning

Recently it has been shown that popular features can be
compressed by orders of magnitude by learning low dimen-
sional projections with a discriminative objective function
for the task of pair matching i.e. verification. Such super-
vised learning also enhances the discrimination capability
of the features upon projection. In the experimental sec-
tion, we show the efficacy of the proposed Local Higher-
order Statistics (LHS) features when used with discrimina-
tive learning for the challenging task of face verification.
In this section, we give the details of the discriminative
metric learning method we use to learn such projection.

Metric learning has recently been a popular topic of re-
search in the machine learning community. While an ex-
haustive review of different metric learning methods is out
of scope of the paper, we encourage the interested reader
to see an excellent review by Bellet et al. [46]. More closely
related to the present work, metric learning has been suc-
cessfully applied to the task of face verification, i.e. to
predict if two images are of the same person or not. This
is different from face recognition, as the faces may be of
person(s) never seen before. The discriminative objectives
used in such methods are based usually on margin maxi-
mizing or probabilistic principles [47, 48, 49, 50]. Inspired
by such works we now present the method we use to learn
a metric using the proposed LHS face representation.

We are interested in learning a ‘distance’ function, for
comparing two faces xi and xj , parameterized by two ma-
trices L and V . Our function DJ(·) is a combination of
two terms, first term DL(·) is the Euclidean distance in

5



the low dimensional space corresponding to the row space
of L and the second DV (·), is the dot product similarity in
another low dimensional space corresponding to the row
space of V i.e.

D2
J(xi,xj) = D2

L(xi,xj)−D2
V (xi,xj) (10)

D2
L(xi,xj) = ‖Lxi − Lxj‖2

= (xi − xj)
>L>L(xi − xj) (11)

D2
V (xi,xj) = x>i V

>V xj , (12)

where we use the subscript ‘J’ to signify joint Euclidean
distance and dot product similarity based distance. Both
the matrices L and V map the original d0 dimensional
LHS features to d � d0

3 dimensional vectors. d is a free
parameter and is chosen on a per-task basis (Sec. 5.7).

We learn the projection matrices L and V by minimizing
the following loss function,

L(T ;L, V ) =
∑
T

max
(
0,m− yij(b−D2

J(xi,xj)
)

(13)

where T = {(xi,xj , yij)} is the provided training set, with
pairs of faces xi,xj ∈ Rd0 annotated to be of the same
person (yij = +1) or not (yij = −1). Minimization of this
margin-maximizing loss encourages the distance, between
pairs of faces of same (different) person, to be less (greater)
than the bias b by a margin of m.

We learn the parameters, i.e. L and V , with a stochastic
gradient descent (SGD) algorithm with easily calculable
analytic gradients outlined in Alg. 2.

5. Experimental results

We now report various experimental results which vali-
date the proposed method. We use four challenging pub-
licly available datasets of textures and faces and address
the challenging tasks of texture recognition, texture cate-
gorization, facial expression categorization and face verifi-
cation.

In the following, we first discuss implementation details
then present the datasets and finally give the experimen-
tal results for each dataset. In the first set of experiments
(upto Sec. 5.6), as our focus is on rich and expressive
representation, we use a standard classification framework
based on linear SVM. As linear SVM works directly in the
input feature space, any improvement in the performance
is directly related to a better encoding of local regions, and
thus helps us gauge the quality of our representation vs.
the competition, with same setup. In the last part of the
experiments (Sec. 5.7), we show results with supervised
metric learning, on the LFW dataset, which can also be
seen as a discriminatively learned embedding of features.

3In general the number of rows of L and V can be different. Here,
we keep them the same.

5.1. Implementation details.

We use only the intensity information of the images and
convert color images, if any, to grayscale. We consider
two neighborhood sampling strategies (i) rectangular sam-
pling, where the 8 neighboring pixels are used, and (ii)
circular sampling, where, like in LBP/LTP [9, 11], we in-
terpolate the diagonal samples to lie on a circle, of radius
one, using bilinear interpolation. We randomly sample at
most one million features from training images to learn
Gaussian mixture model of the vectors, using the EM al-
gorithm initialized with k-means clustering. We keep the
number of components as an experimental parameter (Sec.
5.5). We also use these features to compute the normal-
ization constants, by first computing their Fisher score
vectors and then computing (per coordinate) mean and
variance of those vectors (Alg. 1). We use the average
of all the features from the image as the representation
for the image. However, for the facial expression dataset
we first compute the average vectors for non overlapping
cells of 10×10 pixels and concatenate these for all cells
to obtain the final image representation. Such gridding
helps in capturing spatial information in the image and is
standard in face analysis [51, 52]. We crop the 250×250
face images to a ROI of (66, 96, 186, 226), to focus on the
face, before feature extraction and do not apply any other
pre-processing. Finally, we use linear SVM as the clas-
sifier with the cost parameter C set using five fold cross
validation on the current training set.

In the supervised setting for face verification, we use
the metric learning formulation described above in Sec. 4.
We set the bias b = 1.0, the margin m = 0.2 and rate
r = 0.002 for all the experiments. During testing a face
pair, we horizontally flip the faces and average the dis-
tances between the four possible pairs of flipped and non-
flipped faces. During training, at each SGD iteration, we
randomly select one of the 4 possible flipped/non-flipped
pairs for making an update.

We also combine the proposed LHS with our imple-
mentation of Fisher Vectors based on dense SIFT features
(SIFT-FV) [49, 53, 3]. The implementation is similar to
LHS with the local differential vectors being replaced by
dense SIFT features. We extract SIFT features, using the
vlfeat library [54], with a step size of 1 pixel at 5 scales
i.e. original image and 2 upsampled and 2 downsampled
versions respectively, with a scale difference of

√
2. The

SIFT features are compressed to ds = 64 dimension us-
ing PCA. We use a vocabulary size of k = 16 and use a
spatial grid of Nc = 7 × 4, giving a feature of dimension
2× k × ds ×Nc = 57344.

5.2. Baselines.

As baselines, we give results with single scale LBP/LTP
features generated using the same samplings as our LHS
features, in respective experiments. We use histogram rep-
resentation over bins of uniform patterns and add one bin
for all the rest of the patterns. We L1 normalize the his-
tograms and take their square roots and use them with
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linear SVM. As discussed previously as well, it has been
shown that taking square root of histograms transforms
them to a space where the dot product corresponds to the
non linear Bhattacharyya kernel in the original space [45].
Thus using linear SVM with square root of histograms
is equivalent to SVM with non linear Bhattacharyya ker-
nel. Similar square root (i.e. power normalization) was
also shown to be useful for Fisher scores [53]. We note
here that our baselines are strong baselines.

5.3. Texture categorization

Brodatz – 32 Textures dataset4 [14, 15] is a stan-
dard dataset for texture recognition. It contains 32 tex-
ture classes e.g. bark, beach-sand, water, with 16 images
per class. Each of the image is used to generate 3 more
images by (i) rotating, (ii) scaling and (iii) both rotating
and scaling the original image – note that Brodatz-32 [14]
dataset is more challenging than original Brodatz dataset
and includes both rotation and scale changes. The images
are 64×64 pixels histogram normalized grayscale images.
We use the standard protocol [12], of randomly splitting
the dataset into two halves for training and testing, and
report average performance over 10 random splits.

KTH TIPS 2a dataset5 [16] is a dataset for material
categorization. It contains 11 materials e.g. cork, wool,
linen, with images of four samples for each material. The
samples were photographed at 9 scales, 3 poses and 4 dif-
ferent illumination conditions. All these variations make
it an extremely challenging dataset. We use the standard
protocol [12, 16] and report the average performance over
the 4 runs, where every time all images of one sample are
taken for test while the images of the remaining 3 samples
are used for training.

We now analyze the performance of the proposed LHS
vs. the LBP/LTP based image representations. Tab. 1
(col. 1 and 2) gives the results for the different methods
on the texture datasets. On the texture recognition ex-
periment, i.e. when a sample seen on training is presented
for testing with scale and rotation changes, we achieve a
near perfect accuracy of 99.5%. Our best method outper-
forms the best LBP and LTP baselines by 12.2% and 4.5%
respectively. We thus conclude that data-adaptive encod-
ing, using higher-order statistics, of local neighborhoods
is advantageous when compared to fixed quantization and
heuristics as used in LBP and LTP representations. The
high accuracy achieved on the texture recognition dataset,
Brodatz-32, leads us to conclude that texture recognition,
under the presence of rotation and scale variations, can be
done almost perfectly.

On the more challenging KTH TIPS 2a dataset for tex-
ture categorization, the best performance we obtain is far
from saturated at 73%. LHS performs better than LBP

4http://www.cse.oulu.fi/CMV/TextureClassification
5http://www.nada.kth.se/cvap/datasets/kth-tips/
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Figure 2: The images of the 10 persons in the neutral expression. The
number below is the categorization accuracy for all 7 expressions for
the person (see Sec. 5.4).

and LTP baselines by 3.2% and 1.7% respectively. KTH
TIPS 2a dataset has much stronger variations in scale, il-
lumination conditions, pose, etc. than the Brodatz dataset
and the experiment is of texture categorization of unseen
sample i.e. the test images are of a sample not seen in
training. LHS again outperforms LBP/LTP on the task of
texture categorization. More recently better results have
been reported on the task of texture categorization. It has
been demonstrated that standard object image classifica-
tion pipeline of Fisher Vectors [3, 53] with dense SIFT [30]
when applied to texture categorization [29] achieves excel-
lent results. We note that such features are of much higher
complexity than the proposed LHS. We analyze LHS wrt.
such features in Sec. 5.7, albeit on the task of face verifica-
tion. Also, it has been shown that representations learnt
for image classification tasks, using large amounts of ex-
ternal data, transfer successfully to texture recognition as
well [29]. While such methods are quite interesting, they
are not directly comparable to the proposed method.

5.4. Facial analysis

Japanese Female Facial Expressions (JAFFE)6 [17]
is a dataset for facial expression recognition. It contains 10
different females expressing 7 different emotions e.g. sad,
happy, angry. We perform expression recognition for both
known persons, like earlier works [55], and for unknown
person. In the first (experiment E1), one image per ex-
pression for each person is used for testing while remaining
ones and used for training. Thus, the person being tested
is present (different images) in training. In the second
(experiment E2), all images of one person are held out for
testing while the rest are used for training. Hence, there
are no images of the person being tested in the training
images, making the task more challenging. For both cases,
we report the mean and standard deviation of average ac-
curacies of 10 runs.

Tab. 1 (col. 3 and 4) gives the performance of the dif-
ferent methods on the expression categorization task. On
the first experiment (E1) we obtain very high accuracies

6http://www.kasrl.org/jaffe.html
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(a) Rectangular sampling (8-pixel neighborhood)

Brodatz–32 KTH TIPS 2a JAFFE E1 JAFFE E2

LBP baseline 87.2 ± 1.5 69.8 ± 6.9 86.9 ± 2.6 56.5 ± 21.0
LTP baseline 95.0 ± 0.8 69.3 ± 5.3 93.6 ± 1.8 57.2 ± 16.3
LHS (proposed) 99.3 ± 0.3 71.7 ± 5.7 95.6 ± 1.7 64.6 ± 19.2

(b) Circular sampling (bilinear interpolation for diag. neighbproposed)

Brodatz–32 KTH TIPS 2a JAFFE E1 JAFFE E2

LBP baseline 87.3 ± 1.5 69.8 ± 6.7 94.3 ± 2.1 61.8 ± 24.1
LTP baseline 94.9 ± 0.8 71.3 ± 6.3 95.1 ± 1.8 60.6 ± 20.8
LHS (proposed) 99.5 ± 0.2 73.0 ± 4.7 96.3 ± 1.5 63.2 ± 16.5

Table 1: Results (avg. accuracy and std. dev.) on the different datasets.

as the task is of recognition of expressions, from a never
seen image, of a person who was already seen at train-
ing. The proposed LHS again outperforms LBP and LTP
based representation by 2% and 1.2%, respectively. On
the more challenging second experiment (E2), i.e. when
the test subject was not seen during training, we see that
the accuracies are much less than E1. LHS again outper-
forms the best LBP and LTP accuracies by 2.8% and 4%
respectively. Fig. 2 shows one image of each of the 10 per-
sons in the dataset along with the expression recognition
accuracy for that person. This dataset has highly variable
intra-person differences i.e. for some individuals different
expression images are close while for others they are very
different. This results in very different accuracies for the
different persons and hence high standard deviation, for
all the methods. We conclude that LHS, owing to more
accurate description of local pixel neighborhoods, is able
to perform better than the LBP/LTP based image descrip-
tion for the task of facial expression categorization on the
JAFFE dataset.

Labeled Faces in Wild (LFW) [18] is a popular dataset
for face verification by unconstrained pair matching. Face
verification is the task where two face images are given
and the system has to predict whether they are of the
same person or not, with the possibility that the(those)
person(s) might not have been seen at training. Hence,
it is different from face recognition, where the system has
to recognize a person already seen at training. It stresses
the system to find characteristics which are general and
make the faces similar or not, rather than characteristics
which are specific to a known set of persons. LFW contains
13,233 face images of 5749 different individuals of different
ethnicity, gender, age, etc. It is an extremely challenging
dataset and contains face images with large variations in
pose, lighting, clothing, hairstyles, etc. (Fig. 3 shows ex-
ample pairs from the dataset). LFW dataset is organized
into two parts: ‘View 1’ is used for training and valida-
tion (e.g. for choosing the parameters) while ‘View 2’ is
only for final testing and benchmarking. In our setup, we
follow the specified training and evaluation protocol. We
use the, publicly available, aligned version of the faces as

Figure 3: Example image pairs from the LFW [18, 56] dataset. Note
the large variation in appearance due to different pose, expression,
illumination, accessories etc.

provided by Wolf et al. [56]7.
We first report results in the restricted unsupervised

task of the LFW dataset, i.e. (i) we use strictly the data
provided without any other data from any other source
and (ii) we do not utilize class labels while obtaining the
image representation. This task evaluates the information
contained in the features without help from any supervised
modifications. We will provide results later in the super-
vised setting in Sec. 5.7 where we will demonstrate that,
combined with supervised learning, LHS give a very at-
tractive trade-off between performance and speed wrt. the
state-of-the-art methods.

We center crop the face images to 150×80 and resize
them to 70×40 pixels. We then compute the features with
a 7×4 grid, of 10×10 pixels cells, overlayed on the image.
We compute the LHS representations for each cell sepa-
rately and compute the similarity between image pairs as
the mean of L2 distances between the representations of
corresponding cells. We classify image pairs into same or
not same by thresholding on their similarity. We choose
the testing threshold as the one which gives the best clas-
sification accuracy on the training data.

LHS gives an accuracy of 73.4% with a standard error
on the mean of 0.4%. This is a competitive performance
in the unsupervised setting for the dataset. Unlike other
methods, it neither uses external data e.g. as by PAF [65],

7http://www.openu.ac.il/home/hassner/data/lfwa/
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Figure 4: The accuracies of the method for different number of GMM components for Brodatz (left) and KTH TIPS 2a (right) dataset (see
Sec. 5.5)

nor does it do feature-specific post-processings e.g. as by
LQP [64]. We compare with other existing approaches, in-
cluding those based on LBP in Sec. 5.6. Also, we show in
Sec. 5.7 that LHS is one of the best performing methods,
among methods of similar low complexity, in the super-
vised face verification setting.

5.5. Effect of sampling and number of components

Table 1 shows the results with (a) rectangular 3×3 pixel
neighborhood and (b) LBP/LTP like circular sampling of
8 neighbors with the diagonal neighbor values bilinearly
interpolated. Performance on the Brodatz-32 dataset is
similar for both the samplings while that for KTH and
JAFFE datasets differ. In general, the circular sampling
performs better for all the datasets. We note that the vari-
ations in, and hence difficulty of, the Brodatz-32 dataset
is much less compared to the other two datasets and hence
images in Brodatz-32 dataset are possibly well represented
by either of the two samplings. Thus, we conclude that,
in general, circular sampling is to be preferred as it per-
forms better on most of the datasets and generates more
discriminative statistics.

Fig. 4 shows the performance on the two texture
datasets for different number of mixture model compo-
nents. The length of the vector, and hence the space
and time complexity of the method, varies proportional to
the number of components in the GMM. Relatively higher
number of components leads to a higher likelihood, i.e. a
better fit to the data, and hence a better description of
the space but also leads to vectors which are longer to
compute and store. On this trade-off of size and accu-
racy of description, we observe that the performance, for
both texture datasets, improves with the number of com-
ponents and saturates at 128. On the Brodatz-32 dataset,
LHS is able to give more than 99% accuracy with just
16 components, highlighting the relatively easier nature
of this dataset. While for the KTH dataset, performance
improves significantly when the number of components in-
crease from 16 to 128 (by absolute 6.8%). KTH is sig-
nificantly more challenging than the Brodatz-32 dataset

and hence requires more accurate and costly descriptors
computed from larger number of mixture components.

5.6. Comparison with existing methods

Table 2 shows the performance of the proposed LHS
along with existing methods. On the Brodatz dataset we
outperform all methods and to the best of our knowledge
report, near perfect, state-of-the-art performance. On the
JAFFE dataset, as well, we achieve the best results re-
ported till date. On the KTH dataset, Chen et al. [12]
report an accuracy of 64.7% using their Weber law de-
scriptors (WLD) with KNN classifier. Caputo et al. [16]
report 71.0% for their 3-scale LBP and non-linear chi-
squared radial basis function kernel based SVM classifier.
In comparison we use linear classifiers which are not only
fast to train but also need only a vector dot product at test
time (cf. kernel computation with support vectors which is
of the order of number of training features). Note Caputo
et al. obtain their best results with multi scale features
and a complex decision tree (with non-linear classifiers at
every node). We expect our features to outperform their
features with similar complex classification architecture.
The higher complexity Fisher vectors with SIFT features
(SIFT-FV) [29] achieves substantially better on the KTH
dataset (82.2% vs. 73.0%), however they are orders of mag-
nitude longer and slower than the proposed method. We
provide space and time comparisons with the proposed
method and SIFT-FV method below Sec. 5.8, Tab. 5, with
images from LFW dataset without loss of generality.

Tab. 2(d) reports accuracy rates of our method and
those of competing unsupervised methods8 on LFW
dataset. Our method outperforms the LBP baseline (LBP
with χ2 distance) [62] by 3.9% and gives 1.2% better
performance than Locally Adaptive Regression Kernel
(LARK) features of [63]. The better performance of our
features, compared to the LBP baseline and fairly com-
plex LARK features, on this difficult dataset once again
underlines the fact that local neighborhood contains a lot

8For more results, see webpage http://vis-www.cs.umass.edu/

lfw/results.html
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(a) Brodatz–32

Method Acc. Remark

Jalba et al. [57] 93.5
Morphological
hat-transform

Urbach et al. [58] 96.5
Connected shape size
pattern spectra

Ojala et al. [59] 96.8
Distributions of signed
gray level differences

Chen et al. [12] 97.5 Weber law feat. + k-NN

LHS (proposed) 99.3

(b) JAFFE

Method Acc. Remark

Shan et al. [52] 81.0 LBP based

Guo et al. [60] 91.0
Gabor filters + feat.
selection

Lyons et al. [61] 92.0
Gabor filters + Linear
Discriminant Analysis

Feng et al. [51] 93.8
LBP + Linear
programming

LHS (proposed) 95.6

(c) KTH TIPS 2a

Method Acc. Remark

Chen et al. [12] 64.7 Weber law feat. + k-NN

Caputo et al. [16] 71.0 3 sc. LBP, nonlin. SVM

LHS (proposed) 73.0

DeCAF [29] 78.4
Large amount of labeled
external data

SIFT-FV [29] 82.2
Higher complexity, see
§ 5.8

(d) LFW (aligned, unsupervised)

Method Acc. Remark

Javier et al. [62] 69.5 ±0.5 LBP with χ2 dist.

Seo et al. [63] 72.2 ±0.5
Locally Adaptive
Regression Kernel

LHS (proposed) 73.4 ±0.4

LQP [64] 75.3 ±0.8 Higher complexity

PAF [65] 87.8 ±0.5
External data for
pose correction

Table 2: Comparison with current methods with comparable experimental setup (reports accuracy, see Sec. 5.6).

of discriminative information. It also demonstrates the
representational power of our features, which are success-
ful in encoding the information missed by other methods.
More recent works have reported higher performances e.g.
Local Quantized Patterns (LQP) [64] achieves 75.3% with-
out any postprocessing and gain even higher when post-
processed with whitened PCA and compared with cosine
similarity. However, LQP have higher complexity than
LHS and hence gain 2%. While the current LHS features
are only 3584 dimensional, the LQP features are 36000 di-
mensional i.e. 10× longer. Pose Adaptive Filters (PAF)
[65] use external data to learn pose robust features using
3D fitting of faces and achieve substantially more. This
underlines the fact that the dataset has very challenging
pose variations, correcting which will arguably improve the
performance of the proposed LHS features as well. Since
they use external data while the proposed method does
not, their performance is not directly comparable to that
of the proposed method. Also, adding pose robustness
with additional effort, e.g. 3D fitting of face and using ex-
ternal data, is another challenging problem in itself and
has not been explored further in this work.

Thus, we conclude, the proposed method is capable of
achieving competitive results while being computationally
simple and efficient.

5.7. LHS with supervised discriminative metric learning

We now provide results of the proposed Local Higher-
order Statistics (LHS) features with supervised discrim-
inative metric learning (ML) on the challenging Labeled
Faces in the Wild (LFW) [18] dataset. We show that when
used with such supervised ML, which can be equivalently
seen as a projection to a lower dimensional discriminative
subspace (see Sec. 4), the LHS features can obtain very
high performance while being much more efficient than
the competition.

We operate in the ‘Supervised, unrestricted, label-free
outside data’ protocol. Tab. 3 gives the performance of
LHS for different values of the parameters. We see that the
increasing the number of Gaussian components steadily in-
creases the performance from k = 4 to k = 24 by a little
less than 2% absolute while beyond that the results seem
to saturate. Similarly, for a fixed number of Gaussian com-
ponents, increasing the projection dimension increases the
results but with a pronounced diminishing returns effect.

It is quite interesting to note these performances in the
context of existing methods. Tab. 4 shows the performance
of LHS wrt. state-of-the-art methods on LFW dataset.
LFW achieves the best results among the features in the
low complexity regime, and competitive results among fea-
tures with high complexity or methods that combine mul-
tiple features. In particular our own implementation of
Local Binary Patterns (LBP) using the (default parame-
ters of the) vlfeat library [54] gives 86.2% with a feature
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Supervised, unrestricted, label free outside data

#Gauss. Dimension ROC-EER
(k) org. (d0) proj. (d) Accuracy

4 1792
32 85.73 ± 0.17
64 86.37 ± 0.19
128 86.60 ± 0.17

8 3584
32 86.47 ± 0.17
64 87.37 ± 0.14
128 87.60 ± 0.14

16 7168
32 87.43 ± 0.17
64 87.57 ± 0.17
128 88.13 ± 0.15

24 10752
32 87.63 ± 0.17
64 87.93 ± 0.20
128 88.27 ± 0.17

32 14336
32 87.47 ± 0.20
64 88.03 ± 0.16
128 87.97 ± 0.14

Table 3: Results of proposed LHS on the Labeled Faces in the Wild
(LFW) [18] dataset for different parameter settings.

Methods with similar complexity
Method Accuracy

LBP + ITML [66] 85.1 ± 0.6
LBP + PLDA [67] 87.3 ± 0.6

LHS + JML (proposed) 88.2 ± 0.2

Methods with multiple feats/higher complexity
Method Accuracy

comb. LDML-MkNN [47] 87.5 ± 0.4
comb. PLDA [67] 90.1 ± 0.5

SIFT-FV [49] 93.0 ± 1.1
High dim LBP [68] 93.2 ± 1.1

LBP + LHS (proposed) 89.0 ± 0.1
SIFT-FV + LHS (proposed) 93.5 ± 0.2

Methods using large amts of external labeled data
Method Accuracy

High dim LBP [68] 95.2 ± 1.1
Deep learning [36, 38] 97.4 ± 0.3

Table 4: Comparison with existing works on the Labeled Faces in
the Wild (LFW) [18] dataset–unrestricted and supervised setting.

Space Time
Method dim. reduction ms speedup

SIFT-FV 67584 Ref. 2400* Ref.

LHS

1792 38× 13 185×
3584 19× 15 160×
7168 9× 19 126×
10752 6× 22 109×
14336 5× 25 96×

Table 5: The space and time complexity comparison between pro-
posed LHS the FV method. (*) The time for the best performing
configuration in [49], i.e. step size 1, is interpolated from the time
reported for step size 2 (0.6s). Our implementation of fisher vectors
takes similar time, see Sec. 5.8

dimension of 7k. Compared to this LHS with only 1k
dimensions gives 86.6% (Tab. 3) and that with 10k dimen-
sion gives 88.3%. When combined with LBP the perfor-
mance increases to 89.0%. Our implementation of Fisher
vectors with dense SIFT features gives 92.9% (compared
to 93.0% reported in [49]), and when combined with LHS
the performance improves to 93.5%, which is a modest
improvement over the state-of-the-art in the ‘Supervised,
unrestricted, label-free outside data’ protocol9. Thus, we
conclude that LHS features are competitive in the low com-
plexity domains and are complementary to the high com-
plexity features for supervised face verification on LFW.
In the next section we discuss their time and space benefit
over the high complexity features.

9For more results, see webpage http://vis-www.cs.umass.edu/

lfw/results.html

5.8. Time and space complexity of LHS

The proposed LHS features are very compact and effi-
cient to compute. Compared to one of the state-of-the-art
systems for face verification [49] they are about two orders
of magnitude faster and an order of magnitude smaller.
Tab. 5 gives the space and computation time comparison
of the LHS features wrt. Fisher vectors with SIFT features
(SIFT-FV) [49]. The experiments were run on a server
with 2.67 GHz Intel Xeon processor running Ubuntu 14.04
and all the data was loaded in RAM for timing the com-
putations. The times reported are for a single threaded
program using one core.

The best performing LHS features are 10,752 dimen-
sional and take 22 ms to compute compared to 67,584
for SIFT-FV which amounts to a space saving of 6× and
speedup of 109×; while the most lightweight LHS config-
uration tested is 38× smaller and 185× faster than SIFT-
FV. Ignoring the offline training time, which is O(d2

0), and
considering only the online testing times, the best perfor-
mance is reached when the image pairs are horizontally
flipped and the distance between the four combinations
are averaged. Hence, for comparing a face pair, features
for 4 images need to be calculated i.e. Fisher vectors take
9.6s while the proposed LHS take only 88ms, both on a
single core of a modern CPU. Such advantages come with
a drop in performance, but might be essential for time and
space critical applications e.g. in embedded systems. They
might also be used in a cascade system where the efficient
LHS features are used to tackle the easy decisions while
delegating the tougher examples to the higher complexity
features, thereby reducing the average time over several
comparisons.

We note that, our implementation of LHS is in unopti-
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mized C/C++, called via the MEX interface of MATLAB.
Arguably it can be improved substantially, in particular,
by tuning/approximating the GMM posterior probability
estimation, which involves costly exponential operations.

6. Conclusions

We have presented a model that captures higher-order
statistics of small local neighbohoods to produce a highly
discriminative representation of the images. Our experi-
ments, on two challenging texture datasets and two chal-
lenging facial analysis datasets, validate our approach and
show that the proposed model encodes more local informa-
tion than the competing methods and achieves competi-
tive results. Two of the datasets we used, one each for
textures and faces, were relatively simpler while two other
were more difficult. The results on the simpler datasets
served to demonstrate that the method is capable of hav-
ing a richer appearance descriptor compared to existing
methods. While on the more challenging case, we showed
with experiments on the supervised task of face verifica-
tion on the challenging Labeled Faces in the Wild (LFW)
dataset that the proposed method achieves best results for
low complexity features and is complementary to the high
dimensional features. When combine with the state-of-
the-art method it improves the performance to establish a
new state-of-the-art on the LFW dataset when no exter-
nal labeled data is used. Compared to the best method
the proposed method is two orders of magnitude faster to
compute and an order of magnitude compact making it
a very appropriate choice for low complexity devices e.g.
embedded systems.

While the current state-of-the-art systems, based on
deep networks trained with large amounts of external data
[32, 33, 34, 35, 36, 37, 38, 39, 40, 41] have gained, the pro-
posed method is still relevant due to its speed – we could
use it as an initial low complexity stage of a cascade based
system. Also, in very low complexity/cost systems the size
of the model might also limit the use of deep networks and
make the proposed method relevant.
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