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Abstract We introduce in this document a direct method allowing to solve nu-

merically inverse type problems for linear hyperbolic equations. We first consider

the reconstruction of the full solution of the wave equation posed in Ω × (0, T ) -

Ω a bounded subset of RN - from a partial distributed observation. We employ a

least-squares technic and minimize the L2-norm of the distance from the observa-

tion to any solution. Taking the hyperbolic equation as the main constraint of the

problem, the optimality conditions are reduced to a mixed formulation involving

both the state to reconstruct and a Lagrange multiplier. Under usual geometric

optic conditions, we show the well-posedness of this mixed formulation (in partic-

ular the inf-sup condition) and then introduce a numerical approximation based

on space-time finite elements discretization. We prove the strong convergence of

the approximation and then discussed several example for N = 1 and N = 2.

The problem of the reconstruction of both the state and the source term is also

addressed.
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1 Introduction - Inverse problems for the wave equation

Let Ω be a bounded domain of RN (N ≥ 1) whose boundary ∂Ω is Lipschitz and

let T > 0. We note QT := Ω× (0, T ) and ΣT := ∂Ω× (0, T ). We are concerned in

this work with inverse type problems for linear hyperbolic equation of the following

type 8><>:
ytt −∇ · (c(x)∇y) + d(x, t)y = f, (x, t) ∈ QT
y = 0, (x, t) ∈ ΓT
(y(·, 0), yt(·, 0)) = (y0, y1), x ∈ Ω.

(1)

We assume that c ∈ C1(Ω,R) with c(x) ≥ c0 > 0 in Ω, d ∈ L∞(QT ), (y0, y1) ∈
H := L2(Ω)×H−1(Ω) and f ∈ X := L2(0, T ;H−1(Ω)).

For any (y0, y1) ∈H and any f ∈ X, there exists exactly one solution y to (1),

with y ∈ C0([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)) (see [20]).

In the sequel, for simplicity, we shall use the following notation:

Ly := ytt −∇ · (c(x)∇y) + d(x, t)y. (2)

and X ′ := L2(0, T ;H1
0 (Ω)).

Let now ω be any non empty open subset of Ω and let qT := ω× (0, T ) ⊂ QT .

A typical inverse problem for (1) is the following one : from an observation or

measurement yobs in L2(qT ) on the sub-domain qT , we want to recover a element

y solution of the boundary value problem (1) which coincides with the observation

on qT .

Introducing the operator P : L2(QT ) → X × L2(qT ) defined by P y :=

(Ly, y|qT
), the problem is reformulated as :

(IP) find y ∈ L2(QT ) solution of P y = (f, yobs).

From the unique continuation property for (1), if the set qT satisfies some

geometric conditions and if yobs is a restriction to qT of a solution of (1), then

the problem is well-posed in the sense that the state y corresponding to the pair

(yobs, f) is unique.

In view of the unavoidable uncertainties on the data yobs (coming from mea-

surements, numerical approximations, etc), the problem needs to be relaxed. In

this respect, the most natural (and widely used in practice) approach consists to

introduce the following extremal problem (of least-squares type)

(LS)

8<:minimize over H J(y0, y1) :=
1

2
‖y − yobs‖2L2(qT )

where y solves (1),
(3)

since y is uniquely and fully determined from f and the data (y0, y1). Here the

constraint y − yobs = 0 in L2(qT ) is relaxed; however, if yobs is a restriction

to qT of a solution of (1), then problems (LS) and (IP ) obviously coincide. A

minimizing sequence for J in H is easily defined in term of the solution of an

auxiliary adjoint problem. Apart from a possible low decrease of the sequence near

extrema, the main drawback, when one wants to prove the convergence of a discrete
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approximation is that, it is in general not possible to minimize over a discrete

subspace of {y;Ly− f = 0} subject to the equality (in X) Ly− f = 0. Therefore,

the minimization procedure first requires the discretization of the functional J and

of the system (1); this raised the issue of uniform coercivity property (typically

here some uniform discrete observability inequality for the adjoint solution) of

the discrete functional with respect to the approximation parameter. As far as

we know, this delicate issue has received answers only for specific and somehow

academic situations (uniform cartesian approximation of Ω, constant coefficients

in 1). We refer to [12,17,19,22] and the references therein.

More recently, a different method to solve inverse type problems like (IP ) has

emerged and use so called Luenberger type observers: this consists in defining,

from the observation on qT , an auxiliary boundary value problem whose solution

possesses the same asymptotic behavior in time than the solution of (1): the use

of the reversibility of the hyperbolic equation then allows to reconstruct the initial

data (y0, y1). We refer to [8,24] and the references therein. But, for the same

reasons, on a numerically point of view, these method require to prove uniform

discrete observability properties.

In a series of works, Klibanov and co-workers use different approachs to solve

inverse problems (we refer to [18] and the references therein): they advocate in

particular the quasi-reversibility method which reads as follows : for any ε > 0,

find yε ∈ A the solution of

(QR)ε (Pyε, Py)X×L2(qT ) + ε(yε, y)A =

„
(f, yobs), Py

«
X′×L2(qT ),X×L2(qT )

,

(4)

for all y ∈ A, where A denotes a Hilbert space subset of L2(QT ) so that Py ∈
X × L2(qT ) for all y ∈ A and ε > 0 a Tikhonov like parameter which ensures the

well-posedness. We refer for instance to [13] where the lateral Cauchy problem for

the wave equation with non constant diffusion is addressed within this method.

Remark that (4) can be viewed as a least-squares problem since the solution yε
minimizes overA the functional y → ‖Py−(f, yobs)‖2X×L2(qT )+ε‖y‖

2
A. Eventually,

if yobs is a restriction to qT of a solution of (1), the corresponding yε converges in

L2(QT ) toward to the solution of (IP ) as ε→ 0. There, unlike in Problem (LS),

the unknown is the state variable y itself (as it is natural for elliptic equations)

so that any standard numerical methods based on a conformal approximation of

the space A together with appropriate observability inequalities allow to obtain a

convergent approximation of the solution. In particular, there is no need to prove

discrete observability inequalities. We refer to the book [2]. We also mention [6,

5] where a similar technic has been used recently to solve the inverse obstacle

problem associated to the Laplace equation, which consists in finding an interior

obstacle from boundary Cauchy data.

In the spirit of the works [18,6,13], we explore the direct resolution of the

optimality conditions associated to the extremal problem (LS), without Tikhonov

parameter while keeping y as the unkown of the problem. This strategy, which

avoids any iterative process, has been successfully applied in the closed context of
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the exact controllability of (1) in [12] and [7,10]. The idea is to take into account

the state constraint Ly − f = 0 with a Lagrange multiplier. This allows to derive

explicitly the optimality systems associated to (LS) in term of an elliptic mixed

formulation and therefore reformulate the original problem. Well-posedness of such

new formulation is related to an observability inequality for the homogeneous

solution of the hyperbolic equation.

The outline of this paper is as follow. In Section 2, we consider the least-squares

problem (P) and reconstruct the solution of the wave equation from a partial

observation localized on a subset qT of QT . For that, in Section 2.1, we associate to

(P) the equivalent mixed formulation (10) which relies on the optimality conditions

of the problem. Assuming that qT satisfies the classical geometric optic condition

(Hypothesis 1, see (6)), we then show the well-posedness of this mixed formulation,

in particular, we check the Babuska-Brezzi inf-sup condition (see Theorem 1).

Interestingly, in Section 2.2, we also derive a equivalent dual extremal problem,

which reduces the determination of the state y to the minimization of an elliptic

functional with respect to the lagrange multiplier. In Section 3, we apply the same

procedure to recover from a partial observation both the state and the source term.

Section 4 is devoted to the numerical approximation, through a conformal space-

time finite element discretization. The strong convergence of the approximation

(yh, fh) is shown as the discretization parameter h tends to zero. In particular,

we discuss the discrete inf-sup property of the mixed formulation. We present

numerical experiments in Section 5 for Ω = (0, 1) and Ω ∈ R2, in agreement with

the theoretical part. We consider in particular time dependent observation zone.

Section 6 concludes with some perspectives.

2 Recovering the solution from a partial observation: a mixed

re-formulation of the problem

In this section, assuming that the initial (y0, y1) ∈ H are unknown, we address

the inverse problem (IP ). Without loss of generality, in view of the linearity of

the system (1), we assume that the source term f ≡ 0.

We consider the non empty vectorial space Z defined by

Z := {y : y ∈ C([0, T ], L2(Ω)) ∩ C1([0, T ], H−1(Ω)), Ly ∈ X}. (5)

and then introduce the following hypothesis :

Hypothesis 1 There exists a constant Cobs = C(ω, T, ‖c‖C1(Ω), ‖d‖L∞(Ω)) such

that the following estimate holds :

(H) ‖y(·, 0), yt(·, 0)‖2H ≤ Cobs
„
‖y‖2L2(qT ) + ‖Ly‖2X

«
, ∀y ∈ Z. (6)

Condition (6) is a generalized observability inequality for the solution of the

hyperbolic equation: for constant coefficients, this estimate is known to hold if the

triplet (ω, T,Ω) satisfies a geometric optic condition. We refer to [1]. In particular,
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T should be large enough. Upon the same condition, (6) also holds in the non-

cylindrical situation where the domain ω varies with respect to the time variable:

we refer to [7] for the one dimensional case. For non constant velocity c and

potential d, we refer to [10] and the references therein.

Then, within this hypothesis, for any η > 0, we define on Z the bilinear form

(y, y)Z :=

ZZ
qT

y y dxdt+ η

Z T

0
< Ly, Ly >H−1(Ω) dt ∀y, y ∈ Z. (7)

In view of (6), this bilinear form defines a scalar product over Z. Moreover, en-

dowed to this scalar product, we easily obtain that Z is a Hilbert space (see [7],

Corollary 2.4). We note the corresponding norm by ‖y‖Z :=
p

(y, y)Z .

Then, we consider the following extremal problem :

(P)

8<: inf J(y) :=
1

2
‖y − yobs‖2L2(qT ),

subject to y ∈W

where W is the closed subspace of Z defined by

W := {y ∈ Z; Ly = 0 in X}

and endowed with the norm of Z.

The extremal problem (P) is well posed : the functional J is continuous over

W , is strictly convex and is such that J(y)→ +∞ as ‖y‖W →∞. Note also that

the solution of (P) in W does not depend on η.

Remind that from the definition of Z, Ly belongs to X. Similarly, the unique-

ness of the solution is lost if the hypothesis (H) is not assumed, for instance if

T is not large enough. Eventually, from (6), the solution y in Z of (P) satisfies

(y(·, 0), yt(·, 0)) ∈ H, so that problem (P) is equivalent to the minimization of J

with respect to (y0, y1) ∈H as in problem (IP ), Section 1.

We also recall that for any z ∈ Z there exists a positive constant CΩ,T such

that

‖z‖2L2(QT ) ≤ CΩ,T
„
‖z(·, 0), zt(·, 0)‖2H + ‖Lz‖2X

«
. (8)

This equality and (6) imply that

‖z‖2L2(QT ) ≤ CΩ,T
„
Cobs‖z‖2L2(qT ) + (1 + Cobs)‖Lz‖2X

«
, ∀z ∈ Z. (9)

2.1 Direct approach

In order to solve (P), we have to deal with the constraint equality which appears

in the space W . Proceeding as in [12], we introduce a Lagrangian multiplier λ ∈ X ′

and the following mixed formulation: find (y, λ) ∈ Z ×X ′ solution of8<:a(y, y) + b(y, λ) = l(y), ∀y ∈ Z
b(y, λ) = 0, ∀λ ∈ Λ,

(10)
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where

a : Z × Z → R, a(y, y) :=

ZZ
qT

y y dxdt, (11)

b : Z ×X ′ → R, b(y, λ) :=

Z T

0
< λ, Ly >H1

0 (Ω),H−1(Ω) dt, (12)

l : Z → R, l(y) :=

ZZ
qT

yobs y dxdt. (13)

System (10) is nothing else than the optimality system corresponding to the ex-

tremal problem (P). Precisely, the following result holds :

Theorem 1 Under the hypothesis (H),

1. The mixed formulation (10) is well-posed.

2. The unique solution (y, λ) ∈ Z ×X ′ to (10) is the unique saddle-point of the

Lagrangian L : Z ×X ′ → R defined by

L(y, λ) :=
1

2
a(y, y) + b(y, λ)− l(y).

3. We have the estimate

‖y‖Z = ‖y‖L2(qT ) ≤ ‖yobs‖L2(qT ), ‖λ‖X′ ≤ 2
q
CΩ,T + η‖yobs‖L2(qT ). (14)

Proof- We use classical results for saddle point problems (see [4], chapter 4).

We easily obtain the continuity of the bilinear form a over Z×Z, the continuity

of bilinear b over Z×Λ and the continuity of the linear form l over Z. In particular,

we get

‖l‖Z′ = ‖yobs‖L2(qT ), ‖a‖(Z×Z)′ = 1, ‖b‖(Z×X′)′ = η−1/2. (15)

Moreover, the kernel N (b) = {y ∈ Z; b(y, λ) = 0 ∀λ ∈ X ′} coincides with W :

we easily get

a(y, y) = ‖y‖2Z , ∀y ∈ N (b) = W.

Therefore, in view of [4, Theorem 4.2.2], it remains to check the inf-sup constant

property : ∃δ > 0 such that

inf
λ∈X′

sup
y∈Z

b(y, λ)

‖y‖Z‖λ‖X′
≥ δ. (16)

We proceed as follows. For any fixed λ ∈ X ′, we define y as the unique solution of

Ly = −∆λ in QT , (y(·, 0), yt(·, 0)) = (0, 0) on Ω, y = 0 on ΣT . (17)

We get b(y, λ) = ‖λ‖2X′ and

‖y‖2Z = ‖y‖2L2(qT ) + η‖λ‖2X′ .
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Using (8), the estimate ‖y‖L2(qT ) ≤
p
CΩ,T ‖λ‖X′ implies that y ∈ Z and that

sup
y∈Z

b(y, λ)

‖y‖Z‖λ‖X′
≥ 1p

CΩ,T + η
> 0

leading to the result with δ = (CΩ,T + η)−1/2.

The third point is the consequence of classical estimates (see [4], Theorem

4.2.3.) :

‖y‖Z ≤
1

α0
‖l‖Z′ , ‖λ‖X′ ≤

1

δ

„
1 +
‖a‖
α0

«
‖l‖Z′

where

α0 := inf
y∈N (b)

a(y, y)

‖y‖2Z
. (18)

Estimates (15) and the equality α0 = 1 lead to the results. Eventually, from (15),

we obtain that

‖λ‖X′ ≤
2

δ
‖yobs‖L2(qT )

and that δ ≥ (CΩ,T + η)−1/2 to get (14). 2

In practice, it is very convenient to ”augment” the Lagrangian (see [16]) and

consider instead the Lagrangian Lr defined for any r > 0 by

Lr(y, λ) :=
1

2
ar(y, y) + b(y, λ)− l(y),

ar(y, y) := a(y, y) + r‖Ly‖2L2(QT ).

Since ar(y, y) = a(y, y) on W , the Lagrangien L and Lr share the same saddle-

point. The positive number r is an augmentation parameter.

Remark 1 Assuming additional on regularity on the solution λ, precisely Lλ ∈
L2(QT ) and (λ, λt)|t=0,T ∈ H1

0 (Ω)×L2(Ω), we easily prove, writing the optimality

condition for L, that the multiplier λ satisfies the following relations :(
Lλ = −(y − yobs) 1ω in QT , λ = 0 in ΣT ,

λ = λt = 0 on Ω × {0, T}.
(19)

Therefore, λ (defined in the weak sense) is an exact controlled solution of the wave

equation through the control −(y − yobs) 1ω ∈ L2(qT ).

– If yobs is the restriction to qT of a solution of (1), then the unique multiplier λ

must vanish almost everywhere. In that case, we have supλ∈Λ infy∈Y Lr(y, λ) =

infy∈Y Lr(y, 0) = infy∈Y Jr(y) with

Jr(y) :=
1

2
‖y − yobs‖2L2(QT ) +

r

2
‖Ly‖2X . (20)

The corresponding variational formulation is then : find y ∈ Z such that

ar(y, y) =

ZZ
qT

y y dxdt+ r

Z T

0
< Ly, Ly >H−1(Ω) dt = l(y), ∀y ∈ Z.
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– In the general case, the mixed formulation can be rewritten as follows: find

(z, λ) ∈ Z ×X ′ solution of(
(Pry, Pry)X×L2(qT ) + (Ly, λ)X,X′ = ((0, yobs), Pry)X×L2(qT ), ∀y ∈ Z,

(Ly, λ)X,X′ = 0, ∀λ ∈ X ′

(21)

with Pry := (
√
rL y, y|qT

). This approach may be seen as generalization of the

(QR)ε problem (see (4)), where the variable λ is adjusted automatically (while

the choice of the parameter ε in (4) is in general a delicate issue).

System (19) can be used to define a equivalent saddle-point formulation, very

suitable at the numerical level. Precisely, we introduce - in view of (19) - the spaceeΛ by eΛ := {λ : λ ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)),

Lλ ∈ L2(QT ), λ(·, 0) = λt(·, 0) = 0}.

Endowed with the scalar product 〈λ, λ〉 eΛ :=

ZZ
QT

(λλ+LλLλ) dxdt, we check that

eΛ is a Hilbert space. Then, for any parameter α ∈ (0, 1), we consider the following

mixed formulation : find (y, λ) ∈ Z × eΛ such that8<:ar,α(y, y) + bα(y, λ) = l1,α(y), ∀y ∈ Z
bα(y, λ)− cα(λ, λ) = l2,α(λ), ∀λ ∈ eΛ, (22)

where

ar,α : Z × Z → R, ar,α(y, y) := (1− α)

ZZ
qT

yy dxdt+ r

Z T

0
(Ly,Ly)H−1(Ω)dt,

bα : Z × eΛ→ R, bα(y, λ) :=

Z T

0
< λ,Ly >H1

0 (Ω),H−1(Ω) dt− α
ZZ
qT

y Lλ dxdt,

cα : eΛ× eΛ→ R, cα(λ, λ) := α

ZZ
QT

LλLλ, dxdt

l1,α : Z → R, l1,α(y) := (1− α)

ZZ
qT

yobs y dxdt,

l2,α : eΛ→ R, l2,α(λ) := −α
ZZ
qT

yobs Lλdxdt.

From the symmetry of ar,α and cα, we easily check that this formulation cor-

responds to the saddle point problem :8><>:
sup
λ∈ eΛ inf

y∈Z
Lr,α(y, λ),

Lr,α(y, λ) := Lr(y, λ)− α

2
‖Lλ+ (y − yobs)1ω‖2L2(QT ).
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Proposition 1 Under the hypothesis (H), for any α ∈ (0, 1), the formulation (22)

is well-posed. Moreover, the unique pair (y, λ) in Z × eΛ satisfies

θ1‖y‖2Z + θ2‖λ‖2eΛ ≤
„

(1− α)2

θ1
+
α2

θ2

«
‖yobs‖2L2(qT ). (23)

with

θ1 := min

„
1− α, r

η

«
, θ2 :=

1

2
min

„
α,

1

CΩ,T

«
.

Proof- We easily get the continuity of the bilinear forms ar,α, bα and cα:

|ar,α(y, y)| ≤ max(1− α, r
η

)‖y‖Z‖y‖Z , ∀y, y ∈ Z,

|bα(y, λ)| ≤ max(α,
1
√
η

)‖y‖Z‖λ‖ eΛ, ∀y ∈ Z, ∀λ ∈ eΛ,
|cα(λ, λ) ≤ α‖λ‖ eΛ‖λ‖ eΛ, ∀λ, λ ∈ eΛ

and of the linear form l1 and l2 : ‖l1‖Z′ = (1 − α)‖yobs‖L2(qT ) and ‖l2‖( eΛ)′ =

α‖yobs‖L2(qT ).

Moreover, since α ∈ (0, 1), we also obtain the coercivity of ar,α and of cα:

precisely,

ar,α(y, y) ≥ min

„
1− α, r

η

«
‖y‖2Z , ∀y ∈ Z,

cα(λ, λ) ≥ min

„
αm,

1−m
CΩ,T

«
‖λ‖2eΛ ∀λ ∈ eΛ, ∀m ∈ (0, 1).

[4, Prop 4.3.1] then implies the well-posedness and the estimate (23) taking m =

1/2. 2

The α-term in Lr,α is a stabilization term: it ensures a coercivity property

of Lr,α with respect to the variable λ and automatically the well-posedness. In

particular, there is no need to prove any inf-sup property for the application bα.

Proposition 2 If the solution (y, λ) ∈ Z × Λ of (10) enjoys the property λ ∈ eΛ,

then the solutions of (10) and (22) coincide.

Proof- The hypothesis of regularity and the relation (19) imply that the solution

(y, λ) ∈ Z × Λ of (10) is also a solution of (22). The result then follows from the

uniqueness of the two formulations. 2

2.2 Dual formulation of the extremal problem (10)

As discussed at length in [12], we may also associate to the extremal problem (P)

an equivalent problem involving only the variable λ. Again, this is particularly

interesting at the numerical level. This requires a strictly positive augmentation

parameter r.
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For any r > 0, let us define the linear operator Pr from X ′ into X ′ by

Prλ := −∆−1(Ly), ∀λ ∈ X ′

where y ∈ Z is the unique solution to

ar(y, y) = b(y, λ), ∀y ∈ Z. (24)

The assumption r > 0 is necessary here in order to guarantee the well-posedness

of (24). Precisely, for any r > 0, the form ar defines a norm equivalent to the norm

on Z.

The following important lemma holds:

Lemma 1 For any r > 0, the operator Pr is a strongly elliptic, symmetric iso-

morphism from X ′ into X ′.

Proof- From the definition of ar, we easily get that ‖Prλ‖X′ ≤ r−1‖λ‖X′ and the

continuity of Pr. Next, consider any λ′ ∈ X ′ and denote by y′ the corresponding

unique solution of (24) so that Prλ′ := −∆−1Ly′. Relation (24) with y = y′ then

implies that Z T

0
(Prλ′, λ)H1

0 (Ω),H1
0 (Ω) dt = ar(y, y

′) (25)

and therefore the symmetry and positivity of Pr. The last relation with λ′ = λ

and the observability estimate (6) imply that Pr is also positive definite.

Finally, let us check the strong ellipticity of Pr, equivalently that the bilinear

functional (λ, λ′) →
R T
0 (Prλ, λ′)H1

0 (Ω),H1
0 (Ω) dt is X ′-elliptic. Thus we want to

show that Z T

0
(Prλ, λ)H1

0 (Ω),H1
0 (Ω) dt ≥ C‖λ‖

2
X′ , ∀λ ∈ X ′ (26)

for some positive constant C. Suppose that (26) does not hold; there exists then

a sequence {λn}n≥0 of X ′ such that

‖λn‖X′ = 1, ∀n ≥ 0, lim
n→∞

Z T

0
(Prλn, λn)H1

0 (Ω),H1
0 (Ω) dt = 0.

Let us denote by yn the solution of (24) corresponding to λn. From (25), we then

obtain that

lim
n→∞

r‖Lyn‖2X + ‖yn‖2L2(qT ) = 0. (27)

From (24) with y = yn and λ = λn, we haveZ T

0

„
(r(−∆−1)Lyn−λn), (−∆−1)Ly

«
H1

0 (Ω),H1
0 (Ω)

dt+

ZZ
qT

ynydx dt = 0, ∀y ∈ Z.

(28)

We define the sequence {yn}n≥0 as follows :8>><>>:
Lyn = r Lyn +∆−1λn, in QT ,

yn = 0, in ΣT ,

yn(·, 0) = yn,t(·, 0) = 0, in Ω,
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so that, for all n, yn is the solution of the wave equation with zero initial data and

source term rLyn+∆λn inX. Using again (8), we get ‖yn‖L2(qT ) ≤
p
CΩ,T ‖rLyn+

∆λn‖X , so that yn ∈ Z. Then, using (28) with y = yn we get

‖r(−∆−1)Lyn − λn‖X′ ≤
q
CΩ,T ‖yn‖L2(qT ).

Then, from (27), we conclude that limn→+∞ ‖λn‖X′ = 0 leading to a contradiction

and to the strong ellipticity of the operator Pr. 2

The introduction of the operator Pr is motivated by the following proposition :

Proposition 3 For any r > 0, let y0 ∈ Z be the unique solution of

ar(y0, y) = l(y), ∀y ∈ Z

and let J??r : X ′ → X ′ be the functional defined by

J??r (λ) =
1

2

Z T

0
(Prλ, λ)H1

0 (Ω),H1
0 (Ω)dt− b(y0, λ).

The following equality holds :

sup
λ∈X′

inf
y∈Z
Lr(y, λ) = − inf

λ∈X′
J??r (λ) + Lr(y0, 0).

The proof is classical and we refer for instance to [12] in a similar context. This

proposition reduces the search of y, solution of problem (P), to the minimization

of J??r . The well-posedness is a consequence of the ellipticity of the operator Pr.

Remark 2 The results of this section apply if the distributed observation on qT is

replaced by a Neumann boundary observation on a sufficiently large subset ΣT of

∂Ω × (0, T ) (i.e. assuming ∂y
∂ν = yobs ∈ L2(ΣT ) is known on ΣT ). This is due to

the following generalized observability inequality: there exists a positive constant

Cobs = C(ω, T, ‖c‖C1(Ω), ‖d‖L∞(Ω)) such that the following estimate holds :

‖y(·, 0), yt(·, 0)‖2H1
0 (Ω)×L2(Ω) ≤ Cobs

„‚‚‚‚∂y∂ν
‚‚‚‚2
L2(ΣT )

+‖Ly‖2L2(QT )

«
, ∀y ∈ Z (29)

which holds if the triplet (QT , ΣT , T ) satisfies the geometric condition as be-

fore (we refer to [10] and the references therein). Actually, it suffices to re-define

the form a in (11) by a(y, y) :=
RR
ΣT

∂y
∂ν

∂y
∂ν dσdx and the form l by l(y) :=RR

ΣT

∂y
∂ν yobs dσdx for all y, y ∈ Z.

Remark 3 We emphasize that the mixed formulation (10) has a structure very

closed to the one we get when we address - using the same approach - the null

controllability of (1): more precisely, the control of minimal L2(qT )-norm which

drives to rest the initial data (y0, y1) ∈ H1
0 (Ω) × L2(Ω) is given by v = ϕ 1qT

where (ϕ, λ) ∈ Φ× L2(0, T ;H1
0 (Ω)) solves the mixed formulation8<:a(ϕ,ϕ) + b(ϕ, λ) = l(ϕ), ∀ϕ ∈ Φ

b(ϕ, λ) = 0, ∀λ ∈ L2(0, T ;H1
0 (Ω)),

(30)
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where

a : Φ× Φ→ R, a(ϕ,ϕ) =

ZZ
qT

ϕ(x, t)ϕ(x, t) dx dt

b : Φ× L2(0, T ;H1
0 (Ω))→ R, b(ϕ, λ) =

Z T

0
< Lϕ, λ >H−1,H1

0
dt

l : Φ→ R, l(ϕ) = − < ϕt(·, 0), y0 >H−1(Ω),H1
0 (Ω) +

Z 1

0
ϕ(·, 0) y1 dx.

with Φ =
˘
ϕ ∈ L2(qT ), ϕ = 0 on ΣT such that Lϕ ∈ L2(0, T ;H−1(Ω))

¯
. We refer

to [12].

Remark 4 Reversing the order of priority between the constraint y − yobs = 0 in

L2(qT ) and Ly − f = 0 in X, a possibility could be to minimize the functional

y → ‖Ly−f‖X over y ∈ Z subject to the constraint y−yobs = 0 in L2(qT ) via the

introduction of a Lagrange multiplier in L2(qT ). The proof of the inf-sup property

: there exists δ > 0 such that

inf
λ∈L2(qT )

sup
y∈Z

RR
qT
λy dxdt

‖λ‖L2(qT )‖y‖Y
≥ δ

of the corresponding mixed-formulation is however unclear. If a ε-term is added

as in (4), this difficulty disappears (we refer again to the book [18]).

3 Recovering the source and the solution from a partial observation: a

mixed re-formulation of the problem

Given a partial observation yobs of the solution on the subset qT ⊂ QT , we now

consider the reconstruction of the full solution as well as the source term f assumed

in X. We assume that the initial data (y0, y1) ∈H are unknown.

The situation is different with respect to the previous section, since without

additional assumption on f , the couple (y, f) is not unique. Consider the case of

a source f supported in a set which is near ∂Ω× (0, T ) and disjoint from qT : from

the finite propagation of the solution, the source f will not affect the solution y

in qT . On the other hand, the determination of a couple (y, f) which solves (1)

such that y coincides with yobs is straightforward : it suffices to ”extend” y on

QT \ qT appropriately to preserve the boundary conditions, then compute Ly and

recover a source term. However, we emphasize that, on a practical viewpoint, the

extension of yobs out of qT is not obvious. Moreover, this strategy does not offer

any control on the object f .

We briefly show that we can apply the method developed in Section 2 which

allows a robust reconstruction and then consider the case of uniqueness via addi-

tional condition on f .
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We assume again that (H) holds. We note Y := Z ×X ′ and define on Y the

bilinear form, for any ε, η > 0

((y, f), (y, f))Y :=

ZZ
qT

y y dxdt+ η

Z T

0
(Ly − f, Ly − f)H−1(Ω)dt

+ ε

Z T

0
(f, f)H−1(Ω)dt, ∀(y, f), (y, f) ∈ Y.

(31)

In view of (6), this bilinear form defines a scalar product over Y . Moreover, en-

dowed to this scalar product, we easily obtain that Y is a Hilbert space (we refer

to [7]). We note the corresponding norm by ‖(y, f)‖Y :=
p

((y, f), (y, f))Y .

Then, for any ε > 0, we consider the following extremal problem :

(Pε)

8<: inf Jε(y, f) :=
1

2
‖y − yobs‖2L2(qT ) +

ε

2
‖f‖2X ,

subject to (y, f) ∈W

where W is the closed subspace of Y defined by W := {(y, f) ∈ Y ; Ly − f =

0 in X} and endowed with the norm of Y : precisely, it follows that

‖(y, f)‖W :=
q
‖y‖2L2(qT ) + ε‖f‖2X , ∀(y, f) ∈W.

The extremal problem (Pε) is well posed : the functional Jε is continuous over

W , is strictly convex and is such that Jε(y, f) → +∞ as ‖(y, f)‖W → ∞. Note

also that the solution of (Pε) in W , depends on ε but not on η.

Remark also that if ε = 0, then Jε is a priori only convex leading possibly to

distinct minima. This justifies the introduction of the ε-term in the functional Jε.

We emphasize however that the ε-term is not a regularization term as it does not

improve the regularity of the state y.

Eventually, from (6), the solution (yε, fε) inW of (Pε) satisfies (yε(·, 0), yε,t(·, 0)) ∈
H, so that problem (Pε) is again equivalent to the minimisation of Jε with respect

to (y0, y1, f) ∈H ×X.

Proceeding as in Section 2, we introduce a Lagrangian multiplier λε ∈ X ′ and

the following mixed formulation: find ((yε, fε), λε) ∈ Y ×X ′ solution of8<:aε((yε, fε), (y, f)) + b((y, f), λε) = l(y, f), ∀(y, f) ∈ Y
b((yε, fε), λ) = 0, ∀λ ∈ X ′,

(32)

where

aε : Y × Y → R, aε((y, f), (y, f)) :=

ZZ
qT

yy dxdt+ ε(f, f)X , (33)

b : Y ×X ′ → R, b((y, f), λ) :=

Z T

0
(λ,Ly − f)H1

0 (Ω),H−1(Ω) dt, (34)

l : Y → R, l(y, f) :=

ZZ
qT

yobs y dxdt. (35)
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Theorem 2 Under the hypothesis (H), the following hold :

1. The mixed formulation (32) is well-posed.

2. The unique solution ((yε, fε), λε) ∈ Y ×X ′ is the saddle-point of the Lagrangian

Lε : Y × Λ→ R defined by

Lε((y, f), λ) :=
1

2
aε((y, f), (y, f)) + b((y, f), λ)− l(y, f).

Moreover, the pair (yε, fε) solves the extremal problem (Pε).

3. The following estimates hold :

‖(yε, fε)‖Y =
“
‖yε‖2L2(qT ) + ε‖fε‖2

”1/2
≤ ‖yobs‖L2(qT ) (36)

and

‖λε‖L2(QT ) ≤ 2
q
CΩ,T + η‖yobs‖L2(qT ) (37)

for some constant CΩ,T > 0.

The proof is very closed to the proof of Theorem 1. In particular, the obtention

of the inf-sup property is obtained by taking, for any λ ∈ X ′, f = 0 and y as in

(17) so that the inf-sup constant

δε := inf
λ∈X′

sup
(y,f)∈Y

b((y, f), λ)

‖(y, f)‖Y ‖λ‖X′
(38)

is bounded by above by (CΩ,T + η)−1/2 uniformly with respect to ε.

Remark in particular that the inequality (36) implies that, at the optimality,

since ε > 0, the equality ‖y − yobs‖L2(qT ) = 0 can not hold if fε 6= 0.

Remark 5 We may also prove the inf-sup property using the variable f : for any

λ ∈ X ′, we set y = 0 and f = ∆λ ∈ X. We get

sup
(y,f)∈Y

b((y, f), λ)

‖(y, f)‖Y ‖λ‖X′
≥ b((0,∆λ), λ)

‖(0,∆λ)‖Y ‖λ‖X′
=

1√
ε+ η

so that δε ≥ (ε+ η)−1/2. Therefore, the estimate

‖λε‖X′ ≤
2

δε
‖yobs‖L2(qT )

implies that

‖λε‖X′ ≤ 2
√
ε+ η‖yobs‖L2(qT ). (39)

This argument is valid if and only if f is distributed everywhere in QT . 2

Remark 6 The estimate (39) implies that the multiplier λε vanishes in X ′ as ε+

η → 0+ (recall that ε and η can be chosen arbitrarily small in (31)).

Remark 7
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(a) Assuming enough regularity on the solution λε, precisely that Lλε ∈ L2(QT )

and (λ, λt)t=0,T ∈ H1
0 (Ω) × L2(Ω), we easily check that the multiplier λε

satisfies the following relations :8>><>>:
Lλε = −(yε − yobs)1ω , Lyε − fε = 0, εfε +∆λε = 0 in QT ,

λε = 0 in ΣT ,

λε = λε,t = 0 on Ω × {0, T}.

Therefore, λε is an exact controlled solution of the wave equation through the

control −(yε − yobs) 1ω and from (39) implies that

‖yε − yobs‖L2(qT ) → 0 as ε→ 0+. (40)

Remark however that fε may not be bounded in X ′ uniformly w.r.t. ε (con-

trarily to the sequence (
√
εfε)ε>0).

(b) The equality Lyε = fε becomes εLyε = −∆λε and leads to L(ε∆−1Lyε) =

−Lλε = (yε − yobs)1ω . Finally, yε solves, at least in D′, the boundary value

problem 8>><>>:
L(ε(−∆−1)Lyε) + yε 1ω = yobs 1ω, in QT ,

(εLyε) = (εLyε)t = 0, in Ω × {0, T}
yε = 0, on ΣT

or equivalently the variational formulation: find yε ∈ Z (see (5)) solution of

ε

Z T

0
(Lyε, Ly)H−1(Ω),H−1(Ω)dt+

ZZ
qT

yε y dxdt =

ZZ
qT

yobsy dxdt, ∀y ∈ Z

(41)

which actually can be obtained directly from the cost Jε, replacing from the

beginning f by the term Ly. From the Lax-Milgram lemma, (41) is well-posed

and the following estimates hold :

‖yε‖L2(qT ) ≤ ‖yobs‖L2(qT ),
√
ε‖Lyε‖X′ ≤ ‖yobs‖L2(qT ).

This kind of variational formulation involving the fourth order term LyεLy has

been derived and used in [10] in a controllability context.

For any ε > 0 and any yobs ∈ L2(qT ), the method allows to recover a couple

(yε, fε) such that Lyε = fε in QT and yε is closed to yobs (see (40)). In view of the

loss of uniqueness, we have no information on the limit of the sequence as ε→ 0:

the sequence may be unbounded at the limit in L2(QT )× L2(QT ) even if yobs is

the restriction to qT of a solution of (1).

Remark 8 Contrarily to the inf-sup property, the coercivity of aε over N (b) does

not hold uniformly with respect to ε. Recall that the ε-term has been introduced

to get a norm for Y . This enforces us to add this term in the mixed formulation.
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Remark 9 A fortiori, if the initial condition (y0, y1) ∈H is known, one may recover

the pair (y, f) ∈ Y from yobs and (y0, y1). The procedure is similar; it suffices to

define two additional Lagrange multipliers (λ1, λ2) ∈ L2(Ω)×H1
0 (Ω) to deal with

the constraint y(·, 0) = y0 and yt(·, 0) = y1 respectively. The extremal problem is

now :

inf
(y,f)∈W

Jε(y, f) :=
1

2
‖y − yobs‖2L2(qT ) +

ε

2
‖f‖2X′

where W is the closed subspace of Y defined by

W := {(y, f) ∈ Y ; Ly − f = 0 in X ′, (y(·, 0), yt(·, 0)) = (y0, y1) in H}.

The corresponding mixed formulation is : find ((yε, fε), (λε, λε,1, λε,2)) ∈ Y × Λ
solution of8<:aε((yε, fε), (y, f)) + b((y, f), (λε, λε,1, λε,2)) = l1(y, f), ∀(y, f) ∈ Y

b((yε, fε), (λ, λ1, λ2)) = l2(λ, λ1, λ2), ∀(λ, λ1, λ2) ∈ Λ,
(42)

where aε is given by (33) and

b : Y × Λ→ R, b((y, f), (λ, λ1, λ2)) :=

ZZ
QT

λ(Ly − f) dxdt

+ (y(·, 0), λ1)L2(Ω)+ < yt(·, 0), λ2 >H−1(Ω),H1
0 (Ω)

l1 : Y → R, l1(y, f) :=

ZZ
qT

yobsy dxdt

l2 : Λ→ R, l2(λ, λ1, λ2) := (y0, λ1)L2(Ω) + (y1, λ2)H−1(Ω),H1
0 (Ω)

with Λ := X ′ × L2(Ω)×H1
0 (Ω). Using the estimate (6), we easily show that this

formulation is well-posed. 2

In view of Remark 7 (a), we may also associate to the mixed formulation (32)

a stabilized version, similarly to (22).

Again, it is very convenient to ”augment” the Lagrangian (see [16]) and con-

sider instead the Lagrangian Lε,r defined for any r > 0 by

Lε,r((y, f), λ) :=
1

2
aε,r((y, f), (y, f)) + b(y, λ)− l(y, f),

aε,r((y, f), (y, f)) := aε((y, f), (y, f)) + r‖Ly − f‖2X .

Since aε(y, y) = aε,r(y, y) on W , the Lagrangian Lε and Lε,r share the same

saddle-point. The positive number r is an augmentation parameter. Similarly,

proceeding as in Section 2.2, we may also associate to the saddle-point problem

supλ∈X′ inf(y,f)∈Y Lr,ε((y, f), λ) a dual problem, which again reduces the search

of the couple (yε, fε), solution of problem (Pε), to the minimization of a elliptic

functional in λε.
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Proposition 4 For any r > 0, let (y0, f0) ∈ Y be the unique solution of

aε,r((y0, f0), (y, f)) = l(y, f), ∀(y, f) ∈ Y

and let Pε,r be the strongly elliptic and symmetric operator from X ′ into X ′ defined

by Pε,rλ := −∆−1(Ly − f) where (y, f) ∈ Y is the unique solution to

aε,r((y, f), (y, f)) = b((y, f), λ), ∀(y, f) ∈ Y. (43)

Then, the following equality holds

sup
λ∈X′

inf
(y,f)∈Y

Lε,r((y, f), λ) = − inf
λ∈X′

J??ε,r(λ) + Lε,r((y0, f0), 0).

where J??ε,r : X ′ → X ′ is the functional defined by

J??ε,r(λ) =
1

2

Z T

0
(Pε,rλ, λ)H1

0 (Ω) dt− b((y0, f0), λ).

Compared to the previous section, the additional unknown fε on the problem

guarantees that the term ‖yε − yobs‖L2(qT ) vanishes at the limit in ε, for any

yobs ∈ L2(qT ), be a restriction of a solution of (1) or not. The situation is different

if additional assumption on f enforces the uniqueness of the pair (y, f) (we refer

to [25] and the references therein).

4 Numerical Analysis of the mixed formulations

4.1 Numerical approximation of the mixed formulation (10)

We consider the numerical analysis of the mixed formulation (10), assuming r > 0.

We follow [12], to which we refer for the details.

Let Zh and Λh be two finite dimensional spaces parametrized by the variable h

such that Zh ⊂ Z,Λh ⊂ X ′ for every h > 0. Then, we can introduce the following

approximated problems: find the (yh, λh) ∈ Zh × Λh solution of8<:ar(yh, yh) + b(yh, λh) = l(yh), ∀yh ∈ Zh
b(yh, λh) = 0, ∀λh ∈ Λh.

(44)

The well-posedness of this mixed formulation is again a consequence of two proper-

ties: the coercivity of the bilinear form ar on the subsetNh(b) = {yh ∈ Zh; b(yh, λh) =

0∀λh ∈ Λh}. Actually, from the relation ar(y, y) ≥ (r/η)‖y‖2Z for all y ∈ Z, the

form ar is coercive on the full space Z, and so a fortiori on Nh(b) ⊂ Zh ⊂ Z. The

second property is a discrete inf-sup condition. We note δh > 0 by

δh := inf
λh∈Λh

sup
yh∈Zh

b(yh, λh)

‖λh‖X′‖yh‖Z
. (45)

For any fixed h, the spaces Zh and Λh are of finite dimension so that the infimum

and supremum in (45) are reached: moreover, from the property of the bilinear

form ar, it is standard to check that δh is strictly positive. Consequently, for any

fixed h > 0, there exists a unique couple (yh, λh) solution of (44).

We then have the following estimate.
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Proposition 5 Let h > 0. Let (y, λ) and (yh, λh) be the solution of (10) and of

(44) respectively. Let δh the discrete inf-sup constant defined by (45). Then,

‖y − yh‖Z ≤ 2

„
1 +

1
√
ηδh

«
d(y, Zh) +

1
√
η
d(λ,Λh), (46)

‖λ− λh‖X′ ≤
„

2 +
1
√
ηδh

«
1

δh
d(y, Zh) +

3
√
ηδh

d(λ,Λh) (47)

where d(λ,Λh) := infλh∈Λh
‖λ− λh‖X′ and

d(y, Zh) := inf
yh∈Zh

‖y − yh‖Z

= inf
(yh,fh)∈Yh

„
‖y − yh‖2L2(qT ) + η‖L(y − yh)‖2X

«1/2

.

Proof- From the classical theory of approximation of saddle point problems (see

[4, Theorem 5.2.2]) we have that

‖y−yh‖Z ≤

0B@2‖ar‖(Z×Z)′

α0
+

2‖ar‖
1
2
(Z×Z)′‖b‖(Z×Λ)′

α
1
2
0 δh

1CA d(y, Zh)+
‖b‖(Z×Λ)′

α0
d(λ,Λh)

(48)

and

‖λ−λh‖X′ ≤

0B@2‖ar‖
3
2
(Z×Z)′

α
1
2
0 δh

+
‖ar‖(Z×Z)′‖b‖(Z×Λ)′

δ2h

1CA d(y, Zh)+
3‖ar‖

1
2 ‖b‖(Z×Λ)′

α
1
2
0 δh

d(λ,Λh).

(49)

Since, ‖ar‖(Z×Z)′ = α0 = 1; ‖b‖(Z×Λ)′ = 1√
η , the result follows. 2

Remark 10 For r = 0, the discrete mixed formulation (44) is not well-posed over

Zh × Λh because the form ar=0 is not coercive over the discrete kernel of b: the

equality b(yh, λh) = 0 for all λh ∈ Λh does not imply in general that Lyh vanishes.

Therefore, the term r‖Lyh‖2X , which appears in the Lagrangian Lr, may be un-

derstood as a stabilization term: for any h > 0, it ensures the uniform coercivity

of the form ar and vanishes at the limit in h. We also emphasize that this term is

not a regularization term as it does not add any regularity on the solution yh.

Let nh = dimZh,mh = dimΛh and let the real matrices Ar,h ∈ Rnh,nh ,

Bh ∈ Rmh,nh , Jh ∈ Rmh,mh and Lh ∈ Rnh be defined by8>>>>>>><>>>>>>>:

ar(yh, yh) = 〈Ar,h{yh}, {yh}〉Rnh ,Rnh ∀yh, yh ∈ Zh,
b(yh, λh) = 〈Bh{yh}, {λh}〉Rmh ,Rmh ∀yh ∈ Zh, λh ∈ Λh,ZZ

QT

λhλh dx dt = 〈Jh{λh}, {λh}〉Rmh ,Rmh ∀λh, λh ∈ Λh,

l(yh) = 〈Lh, {yh}〉Rnh ∀yh ∈ Zh,

(50)
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where {yh} ∈ Rnh denotes the vector associated to yh and 〈·, ·〉Rnh ,Rnh the usual

scalar product over Rnh . With these notations, the problem (44) reads as follows:

find {yh} ∈ Rnh and {λh} ∈ Rmh such that 
Ar,h B

T
h

Bh 0

!
Rnh+mh,nh+mh

 
{yh}
{λh}

!
Rnh+mh

=

 
Lh
0

!
Rnh+mh

. (51)

The matrix Ar,h as well as the mass matrix Jh are symmetric and positive definite

for any h > 0 and any r > 0. On the other hand, the matrix of order mh + nh
in (51) is symmetric but not positive definite. We use exact integration methods

developed in [15] for the evaluation of the coefficients of the matrices. The system

(51) is solved using the direct LU decomposition method.

4.1.1 C1-finite elements and order of convergence for N = 1

The finite dimensional and conformal space Zh must be chosen such that Lyh be-

longs to X = L2(0, T ;H−1(Ω)) for any yh ∈ Zh. This is guaranteed, for instance,

as soon as ϕh possesses second-order derivatives in L2
loc(QT ). As in [12], we con-

sider a conformal approximation based on functions continuously differentiable

with respect to both variables x and t.

We introduce a triangulation Th such that QT = ∪K∈Th
K and we assume

that {Th}h>0 is a regular family. We note h := max{diam(K),K ∈ Th}, where

diam(K) denotes the diameter of K. Then, we introduce the space Zh as follows

:

Zh = {yh ∈ Z ⊂ C1(QT ) : zh|K ∈ P(K) ∀K ∈ Th, zh = 0 on ΣT }, (52)

where P(K) denotes an appropriate space of functions in x and t. In this work, we

consider two choices, in the one-dimensional setting (for which Ω ⊂ R, QT ⊂ R2):

1. The Bogner-Fox-Schmit (BFS for short) C1-element defined for rectangles. It

involves 16 degrees of freedom, namely the values of yh, yh,x, yh,t, yh,xt on the

four vertices of each rectangle K. Therefore P(K) = P3,x ⊗ P3,t where Pr,ξ is

by definition the space of polynomial functions of order r in the variable ξ. We

refer to [9, ch. II, sec. 9, p. 94].

2. The reduced Hsieh-Clough-Tocher (HCT for short) C1-element defined for tri-

angles. This is a so-called composite finite element and involves 9 degrees of

freedom, namely, the values of yh, yh,x, yh,t on the three vertices of each tri-

angle K. We refer to [9, ch. VII, sec. 46, p. 285] and to [3,21] where the

implementation is discussed.

We also define the finite dimensional space

Λh = {λh ∈ C0(QT ), λh|K ∈ Q(K) ∀K ∈ Th}.

where Q(K) denotes the space of affine functions both in x and t on the element

K.

For any h > 0, we have Zh ⊂ Z and Λh ⊂ X ′.
We then have the following result:
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Proposition 6 (BFS element for N = 1 - Rate of convergence for the

norm Z) Let h > 0, let k ∈ {1, 2} be a positive integer. Let (y, λ) and (yh, λh)

be the solution of (10) and (44) respectively. If the solution (y, λ) belongs to

Hk+2(QT )×Hk(QT ), then there exists two positives constant Ki = Ki(‖y‖Hk+2(QT ), ‖c‖C1(QT ), ‖d‖L∞(QT )),

i = 1, 2, independent of h, such that

‖y − yh‖Z ≤ K1
hk−1

√
η

„
(
√
η +

1

δh
)(h3 +

√
ηh) + 1

«
, (53)

‖λ− λh‖X′ ≤ K2
hk−1

√
ηδh

„
(
√
η +

1

δh
)(h3 +

√
nh) + 1

«
. (54)

Proof - From [9, ch. III, sec. 17], for any λ ∈ Hk(QT ), k ≤ 2, there exists

C1 = C1(‖λ‖Hk(QT )) such that

‖λ−ΠΛh,Th
(λ)‖X′ ≤ C1h

k−1, ∀h > 0 (55)

where ΠΛh,Th
designates the interpolant operator from X ′ to Λh associated to the

regular mesh Th. Similarly, for any y ∈ Hk+2(QT ), there exist C2 = C2(‖y‖Hk+2(QT ))

such that for every h > 0 we have

‖y −ΠZh,Th
(y)‖L2(QT ) ≤ C2h

k+2, ‖y −ΠZh,Th
(y)‖H2(QT ) ≤ C2h

k. (56)

Then, observing that

‖Ly − Lyh‖X ≤ K(‖c‖C1(QT ), ‖d‖L∞(QT ))‖y − yh‖H2(QT ), (57)

for some positive constant K, we get that

d(y, Zh) = inf
yh∈Zh

“
‖y − yh‖2L2(qT ) + η‖Ly − Lyh‖2X

”2

≤ C2

„
(hk+2)2 + ηK2(hk)2

«1/2

≤ C2(hk+2 +
√
nK hk)

(58)

and then from Proposition 5, we get that

‖y − yh‖Z ≤ 2

„
1 +

1
√
ηδh

«
C2(hk+2 +

√
nK hk) +

1
√
η
C1h

k−1. (59)

Similarly,

‖λ− λh‖X′ ≤
„

2 +
1
√
ηδh

«
1

δh
C2(hk+2 +

√
nK hk) +

3
√
ηδh

C1h
k−1.

From the last two estimates, we obtain the conclusion of the proposition. 2

It remains now to deduce the convergence of the approximated solution yh for

the L2(QT ) norm: this is done using the observability estimate (6). Precisely, we

write that (y − yh) solves8>><>>:
L(y − yh) = −Lyh in QT

((y − yh), (y − yh)t)(0) ∈H

y − yh = 0 on ΣT .
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Therefore using (9), there exists a constant C(CΩ,T , Cobs) such that

‖y − yh‖2L2(QT ) ≤ C(CΩ,T , Cobs)(‖y − yh‖2L2(qT ) + ‖Lyh‖2X)

from which we deduce, in view of the definition of the norm Y , that

‖y − yh‖L2(QT ) ≤ C(CΩ,T , Cobs) max(1,
2
√
η

)‖y − yh‖Z . (60)

Eventually, by coupling (60) and Proposition 6, we obtain the following result :

Theorem 3 (BFS element for N = 1 - Rate of convergence for the norm

L2(QT )) Assume that the hypothesis (H) holds. Let h > 0, let k ∈ {1, 2} be a pos-

itive integer and let η < 1. Let (y, λ) and (yh, λh) be the solution of (10) and (44)

respectively. If the solution (y, λ) belongs to Hk+2(QT )×Hk(QT ), then there exists

two positives constant K = K(‖y‖Hk+2(QT ), ‖c‖C1(QT ), ‖d‖L∞(QT ), CΩ,T , Cobs),

independent of h, such that

‖y − yh‖L2(QT ) ≤ K max(1,
2
√
η

)
hk−1

√
η

„
(
√
η +

1

δh
)(h3 +

√
ηh) + 1

«
. (61)

Remark 11 Estimate (61) is not fully satisfactory as it depends on the constant

δh. In view of the complexity of both the constraint Ly = 0 and of the structure

of the space Zh, the theoretical estimation of the constant δh with respect to h

is a difficult problem. However, as discussed at length in [12, Section 2.1], δh can

be evaluated numerically for any h, as the solution of the following generalized

eigenvalue problem (taking η = r, so that ar(y, y) is exactly ‖y‖2Z):

δh = inf

√
δ : BhA

−1
r,hB

T
h {λh} = δ Jh{λh}, ∀ {λh} ∈ Rmh \ {0}

ff
(62)

where the matrix Ar,h, Bh and Jh are defined in (50).

Table 1 reports the values of δh for r = 1 and r = h−2 for several values of h,

T = 2, ω = (0.1, 0.3) and the BFS element. As in [12] where the boundary situation

is considered with more details, these values suggests that, asymptotically in h,

the constant δr,h behaves like :

δr,h ≈ Cr
1√
r

as h→ 0+ (63)

with Cr > 0, a uniformly bounded constant w.r.t. h.

h 7.01× 10−2 3.53× 10−2 1.76× 10−2 8.83× 10−3

r = 1 3.58 3.48 3.42 3.40

r = h−2 2.53× 10−1 1.23× 10−1 6.05× 10−2 3.01× 10−2

Table 1 ε = 0: T = 2 - δr,h for r = 1 and r = h−2 with respect to h.
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Consequently, in view of 63, the right hand side of the estimate (61) of ‖y −
yh‖L2(QT ) behaves, taking η = r and r > 1 so that max(1, 1√

r
) = 1, like

‖y − yh‖L2(QT ) ≤ Khk−1
„√

rh+
1√
r

«
and reaches its minimum for r = 1/h, leading to ‖y − yh‖L2(QT ) ≤ Khk−1/2.

Eventually, when the space Zh is based on the HCT element, Theorem 3 and

remark 11 still hold for k = 1. From [9, ch. VII, sec. 48, p. 295], we use that, for

k ∈ {0, 1}, there exists a constant C2 > 0 such

‖y −ΠYh,Th
(y)‖L2(QT ) ≤ C2h

k+2, ‖y −ΠYh,Th
(y)‖H2(QT ) ≤ C2h

k. (64)

Then, we use that the error ‖y− yh‖L2(QT ) is again controlled by the error on the

Lagrange multiplier λ through the term d(λ,Λh) in (46) to conclude.

4.2 Numerical approximation of the mixed formulation (22)

We address the numerical approximation of the stabilized mixed formulation (22)

with α ∈ (0, 1) and r > 0. Let h be a real parameter. Let Zh and eΛh be two finite

dimensional spaces such that

Zh ⊂ Z, eΛh ⊂ eΛ, ∀h > 0.

The problem (22) becomes : find (yh, λh) ∈ Zh × eΛh solution of8<:ar,α(yh, yh) + bα(λh, yh) = l1,α(yh), ∀yh ∈ Zh
bα(λh, yh)− cα(λh, λh) = l2,α(λh), ∀λh ∈ eΛh, (65)

Proceeding as in the proof of [4, Theorem 5.5.2], we first easily show that the

following estimate holds .

Lemma 2 Let (y, λ) ∈ Y × eΛ be the solution of (22) and (yh, λh) ∈ Zh × fΛh be

the solution of (65). Then we have,

1

4
θ1‖y − yh‖2Z +

1

4
θ2‖λ− λh‖2eΛ ≤

„
‖ar,α‖2

αa
+
‖bα‖2

αc
+
θ1
2

«
inf

yh∈Zh

‖yh − y‖
2
Z+„

‖bα‖2

θ1
+
α2

θ2
+
θ2
2

«
inf

λh∈fΛh

‖λh − λ‖2eΛ
(66)

with ‖ar,α‖ ≤ max(1 − α, η−1r), ‖bα‖ ≤ max(η−1/2, α). θ1 and θ2 are defined in

(23).

Concerning the space eΛh, since Lλh should belong to L2(QT ), a natural choice is

eΛh = {λ ∈ Zh;λ(·, 0) = λt(·, 0) = 0}. (67)

where Zh ⊂ Z is defined by (52). Then, using Lemma 2 and the estimate (58), we

obtain the following result.
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Proposition 7 (BFS element for N = 1 - Rates of convergence - Stabi-

lized mixed formulation) Let h > 0, let k ≤ 2 be a positive integer and let

α ∈ (0, 1). Let (y, λ) and (yh, λh) be the solution of (22) and (65) respectively.

If (y, λ) belongs to Hk+2(QT ) ×Hk+2(QT ), then there exists a positive constant

K = K(‖y‖Hk+2(QT ), ‖c‖C1(QT ), ‖d‖L∞(QT ), α, r, η) independent of h, such that

‖y − yh‖Z + ‖λ− λh‖ eΛ ≤ Khk. (68)

In particular, arguing as in the previous section, we get

Theorem 4 (BFS element for the N = 1- Rates of convergence for the

norm L2(QT ) - Stabilized version) Assume that the hypothesis (H) holds. Let

h > 0, let an integer k ≤ 2. Let (y, λ) and (yh, λh) be the solution of (22) and (65)

respectively. If the solution (y, λ) belongs to Hk+2(QT )×Hk+2(QT ), then there ex-

ist a positive constant K = K(‖y‖Hk+2(QT ), ‖λ‖Hk+2(QT ), ‖c‖C1(QT ), ‖d‖L∞(QT ), α, r, η)

independent of h such that

‖y − yh‖L2(QT ) ≤ K
hk
√
η
. (69)

5 Numerical experiments

We now report and discuss some numerical experiments corresponding to mixed

formulation (44) and (65) for N = 1 and N = 2.

5.1 One dimensional case (N = 1)

We take Ω = (0, 1). In order to check the convergence of the method, we consider

explicit solutions of (1). We define the smooth initial condition (see [8]):

(EX1)

(
y0(x) = 16x2(1− x)2,

y1(x) = (3x− 4x3) 1(0,0.5)(x) + (4x3 − 12x2 + 9x− 1) 1(0.5,1)(x),
x ∈ (0, 1)

and f = 0. The corresponding solution of (1) with c ≡ 1, d ≡ 0 is given by

y(x, t) =
X
k>0

„
ak cos(kπt) +

bk
kπ

sin(kπt)

«√
2 sin(kπx)

with

ak =
32
√

2(π2k2 − 12)

π5k5
((−1)k − 1), bk =

48
√

2 sin(πk/2)

π4k4
, k > 0.

We also define the initial data in H1
0 (Ω)× L2(Ω)

(EX2) y0(x) = 1− |2x− 1|, y1(x) = 1(1/3,2/3)(x), x ∈ (0, 1)

for which the Fourier coefficients are

ak =
4
√

2

π2k2
sin(πk/2), bk =

1

πk
(cos(πk/3)− cos(2πk/3)), k > 0.
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5.1.1 The cylindrical case: qT = ω × (0, T )

We consider the case ε = 0 described in Section 2. We take ω = (0.1, 0.3) and T = 2

for which the inequality (6) holds true. We consider the BFS finite element with

uniform triangulation (each element K of the triangulation Th is a rectangle of

lengths ∆x and ∆t so that h =
p

(∆x)2 + (∆t)2). We recall that the direct method

amounts to solve, for any h, the linear system (51). We use the LU decomposition

method. Table 2 collects some norms with respect to h for the initial data (EX1)

for r = 1 and for ∆x = ∆t. We observe a linear convergence for the variables yh,

λh for the L2-norm:

‖y − yh‖L2(QT )

‖y‖L2(QT )
= O(h1.03),

‖y − yh‖L2(qT )

‖y‖L2(qT )
= O(h0.98), ‖λh‖L2(QT ) = O(h0.98).

(70)

In agreement with Remark 1, since yobs is by construction the restriction to qT
of a solution of (1), the sequence λh, approximation of λ, vanishes as h→ 0. The

L2-norm of Lyh do also converges to 0 with h, with a lower rate:

‖Lyh‖L2(QT ) = O(h0.71). (71)

h 7.01× 10−2 3.53× 10−2 1.76× 10−2 8.83× 10−3 4.42× 10−3

‖y−yh‖L2(QT )
‖y‖

L2(QT )
9.55× 10−2 4.58× 10−2 2.24× 10−2 1.10× 10−2 5.52× 10−3

‖y−yh‖L2(qT )
‖y‖

L2(qT )
8.35× 10−2 4.28× 10−2 2.16× 10−2 1.09× 10−2 5.51× 10−3

‖Lyh‖L2(QT ) 5.62× 10−3 3.21× 10−3 1.78× 10−3 9.99× 10−4 8.54× 10−4

‖λh‖L2(QT ) 2.67× 10−5 1.37× 10−5 6.89× 10−6 3.44× 10−6 1.76× 10−6

κ 1.4× 1010 4.6× 1011 1.3× 1013 4.2× 1014 1.3× 1016

card({λh}) 861 3 321 13 041 51 681 205 761

] CG iterates 27 42 70 96 90

Table 2 Example EX1 - r = 1 - T = 2 - ‖y‖L2(qT ) = 5.95×10−2 - ‖y‖L2(QT ) = 1.59×10−1.

We also check that the minimization of the functional J??r introduced in Propo-

sition 3 leads exactly to the same result: we recall that the minimization of the

functional J??r corresponds to the resolution of the associate mixed formulation

by an iterative Uzawa type method. The minimization is done using a conjugate

gradient algorithm ( we refer to [12, Section 2.2] for the algorithm). Each iteration

amounts to solve a linear system involving the matrix Ar,h which is sparse, sym-

metric and positive definite. The Cholesky method is used. The performance of

the algorithm depends on the conditioning number of the operator Pr: precisely,

it is known that (see for instance [14]),

‖λn − λ‖L2(QT ) ≤ 2
q
ν(Pr)

„p
ν(Pr)− 1p
ν(Pr) + 1

«n
‖λ0 − λ‖L2(QT ), ∀n ≥ 1



Inverse problems for linear hyperbolic equation via a mixed formulation 25

where λ minimizes J??r . ν(Pr) = ‖Pr‖‖P−1
r ‖ denotes the condition number of

the operator Pr. As discussed in [12, Section 4.4], the conditioning number of Pr
restricted to Λh ⊂ L2(QT ) behaves asymptotically as C−2

r h−2. Table 2 reports

the number of iterations of the algorithm, initiated with λ0 = 0 in QT . We take

ε = 10−10 as a stopping threshold for the algorithm (the algorithm is stopped

as soon as the norm of the residue gn given here by Lyn satisfies ‖gn‖L2(QT ) ≤
10−10‖g0‖L2(QT )).

Table 2 reports the number of iterates to reach convergence, with respect to

h. We observe that this number is sub-linear with respect to h, precisely, with

respect to the dimension mh = card({λh}) of the approximated problems. This

renders this method very attractive from a numerical point of view.

From Remark 6, we also check the convergence w.r.t. h when we assume from

the beginning that the multiplier λ vanishes (see Table 3). This amounts to min-

imize the functional Jr given by (20) or, equivalently, to perform exactly one

iteration of the conjugate gradient algorithm we have just discussed. With r = 1,

we observe a weaker convergence :

‖y − yh‖L2(QT )

‖y‖L2(QT )
= O(h0.574),

‖y − yh‖L2(qT )

‖y‖L2(qT )
= O(h0.94). (72)

This example illustrates that the convergence of Lyh to 0 in the norm L2(0, T,H−1(0, 1))

is enough here to guarantee the convergence of the approximation yh: we get that

h‖Lyh‖L2(QT ) ≈ ‖Lyh‖L2(0,T ;H−1(0,1) = O(h0.3) while ‖Lyh‖L2(QT ) slightly in-

creases. Obviously, in this specific situation, a larger r (acting as a penalty term)

independent of h yields a lower ‖Lyh‖L2(QT ) norm.

h 7.01× 10−2 3.53× 10−2 1.76× 10−2 8.83× 10−3 4.42× 10−3

‖y−yh‖L2(QT )
‖y‖

L2(QT )
9.74× 10−2 4.90× 10−2 2.84× 10−2 2.16× 10−2 2.01× 10−2

‖y−yh‖L2(qT )
‖y‖

L2(qT )
8.35× 10−2 4.28× 10−2 2.18× 10−2 1.12× 10−2 6.21× 10−3

‖Lyh‖L2(QT ) 7.72× 10−3 1.11× 10−2 2.01× 10−2 3.40× 10−2 4.79× 10−2

Table 3 Example EX1 - r = 1 - T = 2 - λ fixed to zero.

On the contrary, we check that the convergence to 0 of ‖y − yh‖L2(QT ) is lost

when the equality (6) is not satisfied: Table 4 collects the norms w.r.t. h for the

same data except the value T = 1 (for which the uniqueness of the solution is

lost): we observe that ‖y− yh‖L2(QT ) increases as h→ 0. As an illustration of the

loss of uniqueness, these value also yields to a larger conditioning number κ of the

matrix Ar,h.

Similar conclusions hold with the less regular initial data (EX2). Numerical

results are reported in Table 5. We still observe a linear convergence w.r.t. h of

‖y−yh‖L2(QT ), ‖y−yh‖L2(qT ) and ‖λh‖L2(QT ). One notable difference is that the

convergence rate is weaker for the norm ‖Lyh‖L2(QT ):

‖Lyh‖L2(QT ) = O(h0.123). (73)
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h 7.01× 10−2 3.53× 10−2 1.76× 10−2 8.83× 10−3 4.42× 10−3

‖y−yh‖L2(QT )
‖y‖

L2(QT )
1.21× 10−1 1.08× 10−1 1.34× 10−1 2.42× 10−1 5.19× 10−1

‖y−yh‖L2(qT )
‖y‖

L2(qT )
8.40× 10−2 4.34× 10−2 2.22× 10−2 1.12× 10−2 5.62× 10−3

‖Lyh‖L2(QT ) 5.62× 10−2 2.77× 10−2 2.63× 10−2 2.25× 10−2 2.15× 10−2

‖λh‖L2(QT ) 1.84× 10−5 9.48× 10−6 4.76× 10−6 2.38× 10−6 1.19× 10−6

κ 1.2× 1011 9.8× 1012 1.1× 1015 1.5× 1017 2.7× 1019

Table 4 Example EX1 - r = 1 - T = 1 - ‖yex‖L2(qT ) = 4.21 × 10−2 - ‖yex‖L2(QT ) =

1.12× 10−1.

Again, this is enough to guarantee the convergence of yh toward a solution of the

wave equation: recall that then ‖Lyh‖L2(0,T ;H−1(0,1)) = O(h1.123). We also observe

that the number of iterates in the CG algorithm remains largely sub-linear but is

slightly larger: precisely, we have ] iter = O(h−0.71). Table 6 illustrates the case

T = 1 while Table 7 illustrates the minimization of Jr (see 20), both for r = 1.

h 7.01× 10−2 3.53× 10−2 1.76× 10−2 8.83× 10−3 4.42× 10−3

‖y−yh‖L2(QT )
‖y‖

L2(QT )
1.01× 10−1 4.81× 10−2 2.34× 10−2 1.15× 10−2 5.68× 10−3

‖y−yh‖L2(qT )
‖y‖

L2(qT )
1.34× 10−1 5.05× 10−2 2.37× 10−2 1.16× 10−2 5.80× 10−3

‖Lyh‖L2(QT ) 7.18× 10−2 6.59× 10−2 6.11× 10−2 5.55× 10−2 5.10× 10−2

‖λh‖L2(QT ) 1.07× 10−4 4.70× 10−5 2.32× 10−5 1.15× 10−5 5.76× 10−6

] CG iterates 29 46 83 133 201

Table 5 Example EX2 - r = 1 - T = 2 - ‖y‖L2(qT ) = 1.56×10−1 - ‖y‖L2(QT ) = 4.14×10−1.

h 7.01× 10−2 3.53× 10−2 1.76× 10−2 8.83× 10−3 4.42× 10−3

‖y−yh‖L2(QT )
‖y‖

L2(QT )
2.74× 10−1 4.15× 10−1 6.30× 10−1 1.21 2.62

‖y−yh‖L2(qT )
‖y‖

L2(qT )
1.37× 10−1 5.76× 10−2 2.89× 10−2 2.41× 10−2 7.76× 10−3

‖Lyh‖L2(QT ) 5.97× 10−2 4.96× 10−2 4.96× 10−2 4.52× 10−2 4.21× 10−2

‖λh‖L2(QT ) 4.97× 10−5 2.32× 10−5 1.15× 10−5 5.76× 10−5 2.87× 10−6

Table 6 Example EX2 - r = 1 - T = 1 - ‖y‖L2(qT ) = 1.104×10−1 - ‖y‖L2(QT ) = 2.93×10−1.

h 7.01× 10−2 3.53× 10−2 1.76× 10−2 8.83× 10−3 4.42× 10−3

‖y−yh‖L2(QT )
‖y‖

L2(QT )
1.02× 10−1 5.27× 10−2 3.18× 10−2 2.48× 10−2 2.25× 10−2

‖y−yh‖L2(qT )
‖y‖

L2(qT )
1.34× 10−1 5.06× 10−2 2.37× 10−2 1.21× 10−2 6.65× 10−3

‖Lyh‖L2(QT ) 7.43× 10−2 7.43× 10−2 8.65× 10−2 1.10× 10−1 1.37× 10−2

Table 7 Example EX2 - r = 1 - T = 2 - λ fixed to zero.
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We end this section with some numerical results for the stabilized mixed for-

mulation (65). The main difference is that the multiplier λ is approximated in a

much richer space eΛh (see 67) leading to larger linear system. Table 8 consider the

case of the example EX2 with T = 2 and α = 1/2. In order to compare with the

formulation (44), we take again r = 1. We observe the convergence w.r.t h and

obtain slightly better rates and constant than in Table 5: in particular, we have

‖y − yh‖L2(QT )/‖y‖L2(QT ) = O(h1.10). This is partially due to the fact that the

space eΛh used for the variable λh in (65) is richer than the space Λh used in (44).

However, for α = 0 leading to the non stabilized mixed formulation, the spaceeΛh is too rich and produce poor result, while we obtain very similar results for

any values of α in (0, 1]. Finally, we also check that - in contrast with the mixed

formulation (44) - the positive parameter r does not affect the numerical results.

h 7.01× 10−2 3.53× 10−2 1.76× 10−2 8.83× 10−3 4.42× 10−3

‖y−yh‖L2(QT )
‖y‖

L2(QT )
8.48× 10−2 4.01× 10−2 1.85× 10−2 8.66× 10−3 4.01× 10−3

‖y−yh‖L2(qT )
‖y‖

L2(qT )
2.80× 10−1 7.26× 10−2 2.61× 10−2 1.12× 10−2 5.05× 10−3

‖Lyh‖L2(QT ) 7.25× 10−2 6.59× 10−2 6.16× 10−2 5.58× 10−2 5.08× 10−2

‖λh‖L2(QT ) 4.11× 10−3 2.04× 10−3 1.49× 10−3 1.01× 10−3 7.37× 10−4

Table 8 Example EX2 - r = 1 - T = 2 - α = 1/2 - ‖y‖L2(qT ) = 5.95× 10−2 - ‖y‖L2(QT ) =

1.59× 10−1.

We also emphasize that this variational method which requires a finite element

discretization of the time-space QT is particularly well-adapted to mesh optimiza-

tion. Still for the example EX2, Figure 1 depicts a sequence of four distinct meshes

of QT = (0, 1) × (0, T ): the sequence is initiated with a coarse and regularly dis-

tributed. The three other meshes are successively obtained by local refinement

based on the norm of the gradient of yh on each triangle of Th. As expected, the

refinement is concentrated around the lines of singularity of yh traveling in QT ,

generated by the singularity of the initial position y0. The four meshes contain

792, 2 108, 7 902 and 14 717 triangles respectively (see 9). The results obtained

using the reduced HCT finite element are reported in Table 9.

Mesh number 1 2 3 4

] elements 792 2 108 7 902 14 717

] points 429 1 101 4 041 7 462
‖y−yh‖L2(QT )
‖y‖

L2(QT )
1.34× 10−2 8.69× 10−3 6.01× 10−3 5.9× 10−3

‖λ‖L2(QT ) 1.14× 10−5 7.99× 10−6 5.02× 10−6 4.79× 10−6

Table 9 Example (EX2) - Information concerning the meshes and approximation errors for

mesh adaptation strategy.
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Fig. 1 Iterative refinement of the triangular mesh over QT with respect to the variable y.

5.1.2 The non-cylindrical case

We numerically illustrate the reconstruction of the state of the wave equation (1)

from measurements yobs which are available in domains qT ⊂ QT non-constant

in time (considered recently in [7] in a controllability context). Time dependent

domains also appears for time under sampled observations (or measurements): we

refer to [11]. In what follows we take T = 2 and qT to be one of the two following

domains:

q1T :=


(x, t) ∈ QT such that

˛̨̨̨
x− 3t

5T
− 1

5

˛̨̨̨
<

1

10
for every t ∈ (0, T )

ff
, (74)
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q2T :=

„
1

10
,

2

10

«
×
„

0,
T

4

«[„
1

2
,

7

10

«
×
„
T

4
,
T

2

«
[„

1

5
,

2

5

«
×
„
T

2
,

3T

4

«[„
7

10
,

9

10

«
×
„

3T

4
, T

«
. (75)

These two pairs (T, qiT ) i = 1, 2 satisfy the standard geometric optic condition:

therefore, using [7], Proposition 2.1, inequality (6) of the hypothesis (H) holds

true. Both domains q1T and q2T are displayed in Figure 2 with the coarsest of the

meshes that are used for the numerical experiments in this section.
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Fig. 2 Domain q1T (a) and domain q2T (b) triangulated using some coarse meshes.

We consider five levels of regular triangular meshes and use the reduced Hsieh-

Clough-Tocher finite element. We illustrate our method on the reconstruction of

the solution of the wave equation corresponding to initial data (EX2) considered

in Section 5.1.1.

Since domains q1T and q2T satisfy the geometric optic condition, we obtain

similar results as in the case qT = ω× (0, T ) studied in the previous section. More

precisely, these results are reported in Table 10 and Table 11 for domain q1T and

q2T respectively.

Remark that the number of iterations needed for the conjugate gradient al-

gorithm in order to achieve a residual smaller than 10−10 when we minimize the

functional J?? over Λh is slightly larger than in the situations described in the

previous section.

The exact solution y corresponding to initial data (EX2) is displayed in Figure

3 (a) using the third mesh of the domain in Figure 2 (b). Figure 3 (b) illustrates the

solution yh of the mixed formulation (44), where the observation yobs is obtained

as the restriction of y to q2T .
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h 7.18× 10−2 3.59× 10−2 1.79× 10−2 9× 10−3 4.5× 10−3

‖y−yh‖L2(QT )
‖y‖

L2(QT )
2.02× 10−2 7.83× 10−3 3.32× 10−3 1.36× 10−3 6.27× 10−4

‖y−yh‖L2(qT )
‖y‖

L2(qT )
1.85× 10−2 6.69× 10−3 2.40× 10−3 1.03× 10−3 4.56× 10−4

‖Lyh‖L2(QT ) 3.41 3.78 4.15 4.47 4.76

‖λh‖L2(QT ) 1.97× 10−5 7.03× 10−6 1.70× 10−6 4.14× 10−7 1.10× 10−7

κ 1.18× 108 1.84× 109 1.61× 1010 1.75× 1011 1.38× 1012

card({λh}) 429 1 633 6 369 25 153 99 969

] CG iterates 108 206 392 954 2 009

Table 10 Observation domain q1T . Example EX2 - r = 1 - T = 2 - ‖y‖L2(qT ) = 2.75× 10−1

- ‖y‖L2(QT ) = 5.87× 10−1.

h 6.24× 10−2 3.12× 10−2 1.56× 10−2 7.8× 10−3 3.9× 10−3

‖y−yh‖L2(QT )
‖y‖

L2(QT )
1.38× 10−2 6.37× 10−3 2.64× 10−3 1.15× 10−3 5.25× 10−4

‖y−yh‖L2(qT )
‖y‖

L2(qT )
1.27× 10−2 4.79× 10−3 2.02× 10−3 9.11× 10−4 4.29× 10−4

‖Lyh‖L2(QT ) 3.86 3.45 3.36 3.85 4.16

‖λh‖L2(QT ) 6.37× 10−6 1.65× 10−6 3.88× 10−7 9.74× 10−8 2.90× 10−8

κ 2.02× 108 2.62× 109 2.05× 1010 1.61× 1011 1.32× 1012

card({λh}) 554 2 135 8 381 33 209 132 209

] CG iterates 141 331 720 1 446 3 318

Table 11 Observation domain q2T . Example EX2 - r = 1 - T = 2 - ‖y‖L2(qT ) = 2.75× 10−1

- ‖y‖L2(QT ) = 5.87× 10−1.

0

0.5

1

0

1

2
−1

−0.5

0

0.5

1

x
t

0

0.5

1

0

1

2
−1

−0.5

0

0.5

1

x
t

(a) (b)

Fig. 3 Example (EX2) (a) Reference solution. (b) Solution reconstructed from the observa-

tion yobs = y|q2
T

.

5.2 Two-dimensional space case (N = 2)

We now illustrate the method introduced in Section 2 in the two-dimensional case.

The procedure is similar but a bit more involved on a computational point of view,

since QT is now a subset of R3.



Inverse problems for linear hyperbolic equation via a mixed formulation 31

In order to approach the mixed-formulation (10), we consider a mesh Th of the

domain QT = Ω × (0, T ) formed by triangular prisms. This mesh is obtained by

extrapolating along the time axis a triangulation of the spatial domain Ω. For an

example in the case Ω = (0, 1)2 and T = 2 see Figure 4 (b) and for an example in

the case of non-rectangular domains Ω ⊂ R2 see Figure 5 (b). For both examples,

the extrapolation along the the time axis is uniform : the height of the prismatic

elements ∆t is constant.

ω

Ω

(a) (b)

Fig. 4 (a) Example of sets Ω and ω. (b) Example of mesh for Ω = (0, 1)2 and T = 2.

Let Yh be the finite dimensional space defined as follows

Yh =

(
ϕh = ψ(x1, x2)θ(t) ∈ C1(QT ) ψ|Kx1x2

∈ P(Kxy), θ|Kt
∈ Q(Kt)

ϕh = 0 on ΣT for every K = Kx1x2 ×Kt ∈ Th.

)
, (76)

P(Kx1x2) is the space of functions corresponding to the reduced Hsieh-Clough-

Tocher (HCT for short) C1-element recalled in Section 4.1.1; Q(Kt) is a space of

degree three polynomials on the interval Kt of the form [tj , tj+1] defined uniquely

by their value and the value of their first derivative at the point tj and tj+1. In other

words, Yh is the finite element space obtained as a tensorial product between the re-

duced HCT finite element and cubic Hermite finite element. We check that on each

element K = Kx1x2 ×Kt, the function ϕh is determined uniquely in term of the

values of ΣK := {ϕ(ai), ϕx1(ai), ϕx2(ai), ϕt(ai), ϕx1,t(ai), ϕx2,t(ai), i = 1, · · · , 6}
at the six nodes ai of K. Therefore, dimΣK = 36.

Similarly, let Λh be the finite dimensional space defined by

Λh =

(
ϕh = ψ(x1, x2)θ(t) ∈ C0(QT ) ψ|Kx1x2

∈ P1(Kx1x2), θ|Kt
∈ Q1(Kt)

ϕh = 0 on ΣT for every K = Kx1x2 ×Kt ∈ Th

)
,

(77)

where P1(Kx1x2) and Q1(Kt) are the spaces of degree one polynomials on the

triangle Kx1x2 and interval Kt respectively.

For any h, we check that Yh ⊂ Y and that Λh ⊂ Λ.
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5.2.1 Wave equation in a square

We first consider the case Ω defined by the unit square and again some explicit

solutions used in [8]. Precisely, we define the following smooth initial condition:

(EX1–2D)

(
y0(x1, x2) = 256x2

1x
2
2(1− x1)2(1− x2)2

y1(x1, x2) = (1− |2x1 − 1|)(1− |2x2 − 1|) (x1, x2) ∈ Ω (78)

The corresponding solution of (1) with c ≡ 1, d ≡ 0 and f ≡ 0 is given by :

y(x1, x2, t) =
X
k,l>0

„
akl cos(µklt) +

bkl
µkl

sin(µklt)

«
sin(kπx) sin(lπy), (79)

where µkl = π
√
k2 + l2 for every k, l ∈ Z∗ and

akl = 210 (π2k2 − 12)(π2l2 − 12)

π10k5l5
((−1)k − 1)((−1)l − 1)

bkl =
25

π4k2l2
sin

πk

2
sin

πl

2
.

We also define the following initial data (y0, y1) ∈ H1
0 (Ω)× L2(Ω):

(EX2–2D)

(
y0(x1, x2) = (1− |2x1 − 1|)(1− |2x2 − 1|)
y1(x1, x2) = 1( 1

3 ,
2
3 )2(x1, x2)

(x1, x2) ∈ Ω. (80)

The Fourier coefficients of the corresponding solution are

akl =
25

π4k2l2
sin

πk

2
sin

πl

2

bkl =
1

π2kl

„
cos

πk

3
− cos

2πk

3

«„
cos

πl

3
− cos

2πl

3

«
.

In what follows, we consider ω the subset of Ω described in Figure 4 (a) and

given by:

ω = ((0, 0.2)× (0, 1)) ∪ ((0, 1)× (0, 0.2)) . (81)

It is easy to see that this choice of ω and T = 2 provide a domain qT = ω×(0, T )

which satisfies the geometric optic condition, and, hence, inequality (6) holds. We

consider 3 levels of meshes of QT , labeled from 1 to 3 and containing the number

of elements (prisms) and nodes listed in Table 12.

Mesh Number 1 2 3

Number of elements 5 320 15 320 42 230

Number of nodes 3 234 8 799 23 370

∆t 0.2 0.1 0.05

Table 12 Characteristics of the meshes used for QT = (0, 1)2 × (0, 2).

For each of these meshes we solve the mixed formulation (10) with the term yobs
appearing in the right-hand side obtained as the restriction to qT of the solution

computed by (79) for initial data EX1–2D and EX2–2D.
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Table 13 concerns the example EX1–2D. In this table we list the norm of the

relative error between the exact solution y given by (79) and the solution yh of

the mixed formulation (10), the L2 norm of Lyh and the L2 norm of the Lagrange

multiplier λh.

Mesh number 1 2 3
‖y−yh‖L2(QT )
‖y‖

L2(QT )
4.58× 10−2 3.18× 10−2 1.38× 10−2

‖Lyh‖L2(QT ) 1.44 1.05 1.05

‖λh‖L2(QT ) 2.87× 10−5 1.36× 10−5 7.34× 10−6

] CG iterates 121 180 168

Table 13 ε = 0: Example EX1–2D - r = 1.

As theoretically stated in Remark 1 and observed in numerical experiments in

the case N = 1 (see, for instance, Table 13), the Lagrange multiplier λh vanishes

as h → 0. In Table 14 we display the results obtained by numerically solving the

variational problem (10) obtained from the mixed formulation when λh = 0.

Mesh number 1 2 3
‖y−yh‖L2(QT )
‖y‖

L2(QT )
7.05× 10−2 4.44× 10−2 2.37× 10−2

‖Lyh‖L2(QT ) 1.31 0.97 0.97

Table 14 Example EX1–2D – r = 1 – λ fixed to zero.

Tables 15 and 16 display the results obtained for the initial data specified by

EX2–2D, for the solutions (yh, λh) of the mixed formulation and for the varia-

tional problem obtained when λh = 0 respectively.

Mesh number 1 2 3
‖y−yh‖L2(QT )
‖y‖

L2(QT )
4.74× 10−2 3.72× 10−2 2.09× 10−2

‖Lyh‖L2(QT ) 1.18 0.89 1.06

‖λh‖L2(QT ) 3.21× 10−5 1.46× 10−5 1.17× 10−5

] CG iterates 128 191 168

Table 15 Example EX2–2D – r = 1.

The results are similar for both examples. In both cases we observe a linear

convergence of yh to y in the norm L2 over QT when h goes to zero. Similarly, the

norm ‖λh‖L2(QT ) linearly decreases as h goes to zero.

5.2.2 Wave equation in a non-rectangular domain of R2

Let Ω ⊂ R2 be a domain with a regular boundary and ω a non-empty subset with

regular boundary. An example of such a configuration is illustrated in Figure 5
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Mesh number 1 2 3
‖y−yh‖L2(QT )
‖y‖

L2(QT )
6.75× 10−2 4.93× 10−2 3.37× 10−2

‖Lyh‖L2(QT ) 1.07 0.82 0.97

Table 16 Example EX2–2D – r = 1 – λ fixed to zero.

(a). As in the previous section, we take T = 2 and we build a mesh formed by

triangular prisms of the domain QT = Ω × (0, T ). An example of such a mesh

associated to the domain Ω is displayed in Figure 5 (b). This mesh is composed

by 17 934 nodes distributed in 32 140 prismatic elements (this mesh corresponds

to the mesh number 1 described in Table 17).

-0.2 0.33 0.85 1.4 1.9

0

0.5

1

1.5

ω

Ω

(a) (b)

Fig. 5 (a) Example of sets Ω and ω. (b) Example of mesh of the domain QT .

We consider three levels of meshes of the domain QT formed by the number

of prisms and containing the number of nodes reported in Table 17.

Mesh number 1 2 3

Number of elements 5 730 32 1400 130 280

Number of nodes 3 432 17 934 69 864

Height of elements (∆t) 0.2 0.1 0.05

Table 17 Characteristics of the three meshes associated with QT .

Comparing to the situation described in Subsection 5.2.1, the eigenfunctions

and eigenvectors of the Dirichlet Laplace operator defined on Ω are not explicitly

available here. Consequently, from a given set of initial data, we numerically solve

the wave equation (1) using a standard time-marching method, from which we

can extract an observation on qT . Precisely, we use a P1 finite elements method

in space coupled with a Newmark unconditionally stable scheme for the time



Inverse problems for linear hyperbolic equation via a mixed formulation 35

discretization. Hence, we solve the wave equation on the same mesh which was

extrapolated in time in order to obtain the mesh number 2 of QT . This two-

dimensional mesh contains 1 704 nodes and 3 257 triangles. The time discretization

step is ∆t = 10−2. We denote yh the solution obtained in this way for the initial

data (y0, y1) ∈ H1
0 (Ω)× L2(Ω) given by

(
−∆y0 = 10, in Ω

y0 = 0, on ∂Ω,
y1 = 0. (82)

From yh we generate the observation yobs as the restriction of yh to qT . Finally,

from this observation we reconstruct yh as the solution of the mixed formulation

(32) on each of the three meshes described in Table 17. Table 18 display some norms

of yh and λh obtained for the three meshes and illustrates again the convergence

of the method.

Mesh number 1 2 3
‖yh−yh‖L2(QT )
‖yh‖L2(QT )

1.88× 10−1 8.04× 10−2 7.11× 10−2

‖Lyh‖L2(QT ) 3.21 2.01 1.57

‖λh‖L2(QT ) 8.26× 10−5 3.62× 10−5 2.84× 10−5

] CG iterates 52 167 400

Table 18 Initial data (y0, y1) given by (82) - r = 1.

Figure 6 (a) displays the solution y0 of (82) and Figure 6 (b) displays the initial

position yh(·, 0) corresponding to the solution of our inverse problem. The error

between these two functions is given by ‖y0 − yh(·, 0)‖L2(Ω) = 2.05× 10−2 which

is consistent with the results reported in Table 18.
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Fig. 6 (a) Initial data y0 given by (82). (b) Reconstructed initial data yh(·, 0).
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6 Concluding remarks and perspectives

The mixed formulations we have introduced here in order to address inverse prob-

lems for the wave equation seems original. These formulations are nothing else

than the Euler systems associated to least-squares type functionals and depend

on both the state to be reconstruct and a Lagrange multiplier. This Lagrange

multiplier is introduced to take into account the state constraint Ly − f = 0 and

turns out to be the controlled solution of a wave equation with the source term

(y − yobs) 1qT . This approach, recently used in a controllability context in [12],

leads to a variational problem defined over time-space functional Hilbert spaces,

without distinction between the time and the space variable. The main ingredient

allowing to prove the well-posedness of the mixed formulation and therefore the

reconstruction of the solution, is a generalized observability inequality, assuming

here some geometric conditions on the observation zone.

At the practical level, the discrete mixed time-space formulation is solved in a

systematic way in the framework of the finite element theory. The approximation is

conformal allowing to obtain the strong convergence of the approximation as the

discretization parameters tends to zero. In particular, we emphasize that there

is no need, contrarily to the classical approach, to prove some uniform discrete

observability inequality: we simply use the observability equality on the finite

dimensional discrete space. The resolution amounts to solve a sparse symmetric

linear system : the corresponding matrix can be preconditioned if necessary, and

may be computed once for all as it does not depend on the observation yobs.

Eventually, the space-time discretization of the domain allows an adaptation of

the mesh so as to reduce the computational cost and capture the main features

of the solutions. Similarly, this space-time formulation is very appropriate to the

non-cylindrical situation.

In agreement with the theoretical convergence, the numerical experiments re-

ported here display a very good behavior and robustness of the approach: the

reconstructed approximate solution converges strongly to the solution of the wave

equation associated to the available observation. Remark that from the continuous

dependence of the solution with respect to the observation, the method is robust

with respect to the possible noise on the data.

As mentioned at the end of Section 3, additional assumption on the source

term allows to determine uniquely the pair (y, f) from a partial measurement on

qT or on a part ΣT sufficiently large of the boundary. For instance, from [25,

Theorem 2.1], assuming that the source term takes the form f(x, t) = σ(t)µ(x)

with σ ∈ C1([0, T ]), σ(0) 6= 0 and µ ∈ H−1(Ω), then the following holds: there

exists a positive constant C such that

‖µ‖2H−1(Ω) ≤ C
„‚‚‚‚∂y∂ν

‚‚‚‚2
L2(ΣT )

+ ‖Ly − σ(t)µ(x)‖2L2(QT )

«
, ∀(y, µ) ∈ S (83)

where y solves (1) with (y0, y1) ≡ 0, c = 1 and (ΣT , T,QT ) satisfies a geometric

condition and S denotes an appropriate functional space. Using this inequality
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(similar to 6), we can study the mixed formulation associated to the Lagrangien

from S × L2(QT )→ R defined by

L((y, µ), λ) :=
1

2

‚‚‚‚∂y∂ν − yobs
‚‚‚‚2
L2(ΣT )

+

Z
QT

λ(Ly − σµ) dx dt

to fully reconstruct y and µ from yobs and σ.

Eventually, since the mixed formulations rely essentially on a generalized ob-

servability inequality, it may be employed to any other observable systems for

which such property is available : we mention notably the parabolic case usually

- in view of regularization property - badly conditioned and for which direct and

robust methods are certainly very advantageous. We refer to [23] where this issue

is investigated.
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