
HAL Id: hal-01104191
https://hal.science/hal-01104191

Submitted on 16 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

N-ary Mathematical Morphology
Emmanuel Chevallier, Augustin Chevallier, Jesus Angulo

To cite this version:
Emmanuel Chevallier, Augustin Chevallier, Jesus Angulo. N-ary Mathematical Morphology. Interna-
tional Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing,
2015, Re, Iceland. pp.339-350, �10.1007/978-3-319-18720-4_29�. �hal-01104191�

https://hal.science/hal-01104191
https://hal.archives-ouvertes.fr


N-ary Mathematical Morphology

Emmanuel Chevalliera, Augustin Chevallierb, Jesús Anguloa

a MINES ParisTech, PSL-Research University,
CMM-Centre de Morphologie Mathématique, France

b Ecole Normale Supérieur de Cachan, France
emmanuel.chevallier@mines-paristech.fr

Abstract. Mathematical morphology on binary images can be fully de-
scribed by set theory. However, it is not su�cient to formulate mathe-
matical morphology for grey scale images. This type of images requires
the introduction of the notion of partial order of grey levels, together
with the de�nition of sup and inf operators. More generally, mathemati-
cal morphology is now described within the context of the lattice theory.
For a few decades, attempts are made to use mathematical morphology
on multivariate images, such as color images, mainly based on the no-
tion of vector order. However, none of these attempts has given fully
satisfying results. Instead of aiming directly at the multivariate case we
propose an extension of mathematical morphology to an intermediary
situation: images composed of a �nite number of independent unordered
categories.

1 Introduction

A key idea of mathematical morphology is the extension and the reduction of
the surface of the di�erent objects of an image over their neighbors. This idea
leads naturally to the two basic morphological operators in binary images.

Binary images. In such images, there are only two kinds of objects: black or
white objects. Two dual and adjoint operators have been de�ned: the erosion and
the dilation. The erosion extends the black objects over the white objects, the
dilation extend the white objects over the black objects. Formally, a binary image
can be seen as a support set Ω, andX a subset of Ω. Let B be a subset of Ω called
the structuring element. We assume that Ω disposes of a translation operation.
The erosion εB(X) and the dilation δB(X) of X according to a structuring
element are de�ned as follows [4,6]:

εB(X) =
⋂
y∈B

X−y = {p ∈ Ω : Bp ⊂ X} =
{
x : ∀p ∈ B̌, x ∈ Xp

}
, (1)

δB(X) =
⋃
y∈B

Xy = {x+ y : x ∈ X, y ∈ B} =
{
p ∈ Ω : X ∩ B̌p 6= ∅

}
. (2)

where X̌ = {−x : x ∈ X} is the transpose of X (or symmetrical set with respect
to the origin O) and Xp = {x+ p : x ∈ X} the translate of X by p. For the



sake of simplicity, we limit the rest of our notation to symmetric structuring
elements: B = B̌.

Grey-scale images.With the apparition of grey-scale images, mathematical
morphology was reformulated in terms of inf and sup convolution where the
kernel is the structuring element B [6]. An image is now considered as a function
I de�ned as

I :

{
Ω → V
p 7→ I(p)

where V is the set of grey-levels, which can be generally assumed as a subset
of the real line V ⊂ R. Grey-scale �at erosion and dilation of I by structuring
element B are now de�ned as follows:

εB(I)(p) = inf
q∈Bp

{f(q)} , δB(I)(p) = supq∈Bp
{f(q)} .

In this framework, each grey-level is not fully considered as an independent color
(i.e., a di�erent category) but simply as an intermediary level between black and
white. This point of view is actually justi�ed when interesting objects of the
images are local extrema.

(a) (b) (c)

Fig. 1. Grey-level morphological processing: (a) original image I, (b) closing ϕB(I),
(c) opening γB(I).

Let us see what happens in the situation depicted in Fig. 1. It corresponds
to process a rather simple grey-level by a closing and an opening. We recall that
the closing of I by B is the composition of a dilation followed by a erosion;
i.e., ϕB(I) = εB (δB(I)). The opening is just the dual operator; i.e., γB(I) =
δB (εB(I)). Closing (resp. opening) is appropriate to remove dark (resp. bright)
structures smaller than the structuring element B. This behavior is based on the
fact that the dilation �reduces� dark structures by B while the erosion �restores�
the dark structures which are still present.

In the current example, it is not possible to remove the central grey spot
using erosion and dilation with B larger than the spot size. This grey spot is
not considered as an interesting object in itself but simply as an intermediary
value between the black object and the white object. If this assumption is often
coherent, this is not always the case.

Let consider the grey-scale image in Fig. 2(a). In this image, each grey level
has the same semantic level: each represents a di�erent component, sometimes
called a phase. However, in the morphological grey-scale framework, the grey is
processed as an intermediary level. It is possible to replace each grey level by a



(a) (b) (c)

Fig. 2. (a) A three independent grey-scale image and (b) the same image where the
grey values has been replaced by colors. (c) Example of multivariate (color) image.

color, see Fig. 2(b). We would like then to process both images using the same
approach.

Multivariate images. For multivariate images, no canonical framework has
yet appeared. Most processing consist in endowing the structure with a partial
order relationship. The structure has to be a complete lattice in order to de�ne
erosion and dilation in terms of inf and sup. The notion of order induces the
notion of intermediary level as in the precedent framework. However, the notion
of intermediary levels often leads to non-intuitive situations, see example in
Fig. 2(c). As the red usually has a real signi�cation in terms of a particular class
of objects, it is very natural to try to remove the red spot, which is not possible
using generic classical morphology. The more the image has a complex semantic
structure, such as a color image, the more it is di�cult to �nd a lattice structure
which makes every interesting object an extremum.

Aim and paper organization. Historically, mathematical morphology has
been generalized from binary to grey scale, and then to multi-variate images.
However, the gap between grey-scale and color is much more signi�cant than
the gap between binary and grey-scale. As we discussed previously, the grey-
scale structure only enables to de�ne intermediary colors between two references.
This structure is obviously too weak to describe color information. Note that to
simplify the vocabulary, we use the notion of color for any non-scalar valuation
of the pixels on the image.

Before extending mathematical morphology to color images, we might want
to de�ne a coherent approach for mathematical morphology with n independent
unordered colors, without considering them as intermediary levels. This is the
aim of this paper. Then only, we might try in the future to de�ne mathematical
morphology for the full color space. The di�erence between the frameworks can
be interpreted in term of a change of metric on the value space:

� grey-scale framework: ∀(i, j), d(colori, colorj) = |i− j|;
� n−ary framework: ∀(i, j), d(colori, colorj) = 1.

Our paper is not the �rst to consider the problems of classical mathemati-
cal morphology for images composed of independents categories. Authors of [1]
have very similar motivations but the development we propose is di�erent. In
contrast to operators proposed in [1] or labelled openings from [2], we are inter-
ested in �lling gaps left by anti-extensive operators. We note that the theory of



morphological operators for partitions [8] and hierarchies of partitions [5] is not
compatible with our framework.

The rest of the paper is organized as follows. A proposition of n-ary morpho-
logical operators and a study of their theoretical properties in Sections 2 and
3. Some applications to image �ltering are discussed in Section 4. Section 5 of
conclusions closes the paper.

2 n-ary morphological operators

Let us come back to the key idea of mathematical morphology is to reduce and
extend objects over their neighbors. In the case of binary images, two operations
where introduced: the erosion extends the black over the white and the dilation
extends the white over the black. In a general way, we would like to allow to re-
duce and extend the surface of each category of object. This makes four theoretic
operations in the binary case, reduced to two in practice due to the coincidence
of certain operations: reducing the black is the same as extending the white and
conversely. This duality is one of the basic principle of binary morphology.

2.1 Dilation and erosion of color i

Let I be an n-ary image de�ned as

I :

{
Ω → {1, 2, · · · , n}
p 7→ I(p)

In the n−ary case, it seems natural to try to introduce the corresponding pair
(εi, δi) of operators for each color i. Erosion εi is the operator that reduces the
surface of the objets of color i, and dilation δi the operator that extends the
color i. Above n > 2, we unfortunately lose the duality between operations, such
that the number of elementary operators is then equal to 2n. Let us formulate
more precisely these operators.

The dilation of color i on image I by structuring element B presents no
di�culty:

δi(I;B)(x) =

{
I(x) if ∀p ∈ Bx, I(p) 6= i
i if ∃p ∈ Bx, I(p) = i

(3)

δi(I;B) extends objects of color i over their neighbors. The case of the erosion
presents more theoretical di�culties. Indeed, if we want to reduce the objects of
color i, we need to decide how to �ll the gaps after the reduction.

Let us �rst de�ne the erosion for pixels where there are no ambiguities. Thus
the erosion of color i on image I by structuring element B is given by

εi(I;B)(x) =

 I(x) if I(x) 6= i
i if ∀p ∈ Bx, I(p) = i
θ(x, I) otherwise

(4)

We will address later de�nition of θ(x, I). Sections 2.2 and 2.3 are independent
of θ. Although the image is a partition of Ω the proposed framework di�ers from
[8].



2.2 Opening and closing of color i

Once the dilation and erosion have been de�ned, we can introduce by compo-
sition of these two operators the opening and the closing on I by B of color i
respectively as

γi(I;B) = δi ◦ εi = δi (εi(I;B);B) , (5)

ϕi(I;B) = εi ◦ δi = εi (δi(I;B);B) . (6)

Let us set a few notations used in the following. If φ is an operator, let φk

be φ ◦ .... ◦ φ the iteration of φ, k times. Let φ|A be the restriction of φ to the
subset A. Let us set EIi = I−1(i). To simplify, 1EI

i
will be noted 1Ii .

We have the following property of stability.

Proposition 1. Opening and closing of color i are idempotent operators, i.e.,

γi(I;B) = γ2i (I;B),

ϕi(I;B) = ϕ2
i (I;B).

Proof. Since the binary opening is idempotent, one has E
γi(I)
i = E

γ2
i (I)
i . Fur-

thermore we have that E
γi(I)
j ⊂ E

γ2
i (I)
j , for all j 6= i. Since sets (Ei)i from a

partition of the support space, necessarily E
γi(I)
j = E

γ2
i (I)
j , ∀j. Indeed, if all the

elements of a partition are extensive, then they all remain stable. Then γi = γ2i .
Properties cannot directly be transported by duality, as in binary morphol-

ogy, however the property remains true for the closing. We �rst show the binary
property εδε = ε. The binary erosion and opening can be written as

εB(X) = ∪Bx⊂X{x}, and γB(X) = ∪Bx⊂XBx.

Then ε(γ(X)) = ∪Bx⊂γ(X){x}. Since {Bx ⊂ γ(X)} = {Bx ⊂ ∪Bx⊂XBx} =
{Bx ⊂ X}, then ε(γ(X)) = ε(X). Thus, εδε = ε and by duality, δεδ = δ. Then
Eδii = Eδiεiδii . It can be shown that Eδij ⊂ Eδiεiδij for all j 6= i. Using the same

reasoning as in the proof for the opening, we have that for all j, Eδij = Eδiεiδij .

In other words, δiεiδi = δi. Thus εiδiεiδi = εiδi, or equivalently ϕi = ϕ2
i .

(a) (b) (c)

Fig. 3. Opening and closing on a 3-ary image: (a) original image I, (b) opening of red
color γred(I;B), (c) closing of black color ϕblack(I;B).



2.3 Composed n-ary �lters

We can now try to de�ne color �lters from the openings and the closings of color
i. In binary morphology, the simplest �lters are of the following form: γ ◦ φ and
φ ◦ γ. In the n-ary framework, with n = 2, they can be rewritten as

γ1 ◦ γ2 = φ2 ◦ φ1, and γ2 ◦ γ1 = φ1 ◦ φ2.

The opening removes peaks smaller than the structuring element and the closing
removes holes, which are dual notions in binary morphology. However, peaks
and holes are no longer a dual notion in n-ary morphology with n > 2. Fig. 3
illustrates the di�erence between openings and closings on a 3-ary image: three
colors, black, white and red. The structuring element is a square whose size is
half of the width of the red line. Removing the red line using ϕblack requires a
structuring element twice bigger than with γred.

As a good candidate to �lter out small object of a color image I, indepen-
dently of the color of the objects, we introduce the operator ψ, named composed

n-ary �lter by structuring element B, de�ned as

ψ(I;B) = γn(I;B) ◦ γn−1(I;B) ◦ · · · ◦ γ1(I;B). (7)

Unfortunately on the contrary to γ ◦ φ in binary morphology, ψ is generally not
idempotent. Worst, the sequence ψk do not necessarily converge. However we
still have a stability property for relevant objects. Let us be more precise.

Proposition 2. Let Ω be a �nite set. Given a structuring element B, the in-

terior with respect to B of the composed n-ary �lter ψ(I;B) converges for any

image I, i.e.,

∀i, ε(Eψ
k

i ) converges .

Proof. Since ε = ε ◦ δε, ∀i, ε(Eψ
k

i ) = ε(Eγi◦ψ
k

i ). Furthermore, since ε(Eψ
k

i ) ⊂
ε(E

γj◦ψk

i ), we have that ∀i, ε(Eψ
k

i ) ⊂ ε(Eψ
k+1

i ). Since Ω is a �nite set, ε(Eψ
k

i )
converges.

This property ensures that the variations between ψk and ψk+1 do not a�ect
the interior of objects and is only limited to boundaries. Nevertheless, as we
shown in section 4, ψk is almost always stable after a few iterations.

2.4 n-ary geodesic reconstruction

The binary reconstruction can be transposed in the n-ary framework as follows.
Given two color images R and M , for each color i,

� Perform a binarisation of the reference R and the marker M between i and
{i, which correspond respectively to binary images Xi and Yi.

� Compute γrec(Xi;Yi), that is the binary geodesic reconstruction of the marker
in the reference.



Then, the n-ary geodesic reconstruction of color reference R by color marker M
is given by

γrec(R;M)(x) =

{
i if x ∈ γrec(Xi;Yi)
M(x) if ∀i, x /∈ γrec(Xi;Yi)

Fig.4 illustrates the di�erence between classical geodesic reconstruction and
the proposed n-ary reconstruction. For the classical reconstruction, the 3 colors
image is simply viewed as a grey-scale image.

(a) (b) (c) (d)

Fig. 4. Geodesic reconstruction of a 3-ary image: (a) reference image R, (b) marker
image M , (c) classical grey-scale reconstruction, (d) n-ary reconstruction γrec(R;M).

The aim of this de�nition is to symmetrize colors. In Fig.4 (d), the grey object
is considered as an object in itself. The proposed reconstruction is a connected
operator in the sense of [9]

3 On the choice of an erosion of color i

Before any application, we need to come back to the erosion problem. More
precisely, we need to de�ne a consistent rule to �ll the space created by the
erosion operation.

First of all, we note that the de�nition in Eq. (8) of the erosion of color i εi
does not indicate how to behave on the following set:

A = {x | I(x) = i and ∃p ∈ Bx such that I(p) 6= i} .

For points x ∈ A we have to decide by which color to replace color i and therefore
to de�ne εi on A, i.e.,

εi(I;B)(x) =

 I(x) if I(x) 6= i
i if ∀p ∈ Bx, I(p) = i
? if x ∈ A

(8)

Many alternatives are possible. Two criteria have to be taken into account: (i)
the direct coherence in terms of image processing, and (ii) the number of mor-
phological properties veri�ed by the erosion, such as εi(I; kB) = εki (I;B) where
kB = {kx | x ∈ B} (i.e., homothetic of size k). Let us consider in particular the
three following rules for x ∈ A:
1. Fixed-color erosion: Erosion always �lls the gaps with color 1 (or any

other �xed color):
εi(I;B)(x) = 1. (9)



2. Majority-based erosion: Erosion takes the value of the major color dif-
ferent from i in the structuring element B:

εi(I;B)(x) = min(argmax
j 6=i

(Card {p ∈ Bx|I(p) = j})). (10)

3. Distance-based erosion: Erosion replaces color i by the closest color on
the support space Ω:

εi(I;B)(x) = min(argmin
j 6=i

djx). (11)

where djx = inf {‖x− p‖Ω | p ∈ Ω, I(p) = j}

The majority-based erosion (10) and distance-based erosion (11) are initially not
de�ned in case of equality. Hence the apparition of the min. Obviously, �xed-
color erosion (9) satis�es εi(I; kB) = εki (I;B), but is not coherent in terms of
image processing.

(a) (b) (c) (d) (e)

Fig. 5. Comparison of erosions of black color: (a) original image I, (b) erosion
εblack(I;B) using majority-based formulation (10), (c) erosion εblack(I;B) using
distance-based formulation (11). Let l be the width of the red line, the structuring
element B is a square whose size is now between l and 2l. (d) iterated black erosion
ε2black(I;B) using majority-based formulation, (e) erosion εblack(I; 2B) using majority-
based formulation.

Majority-based erosion and distance-based erosion both look potentially in-
teresting in terms of image processing; however, as shown in the basic example
of Fig. 5, majority-based erosion (to compare Fig. 5(b) to Fig. 5(c)) can produce
unexpected results. The same example, now Fig. 5(d) and Fig. 5(e), shows that
majority-based erosion do not satis�es εi(I; kB) = εki (I;B).

Let us formalize the iterative behavior of the distance-based erosion by the
following result on isotropic structuring elements.

Proposition 3. Let (Ω, d) be a compact geodesic space and I a n-ary image on

Ω. For any R1, R2 > 0 the distance-based erosion of color i satis�es:

εi(I;BR1+R2
) = εi(I;BR2

) ◦ εi(I;BR1
).

where BR is the open ball of radius R.

Proof. For the sake of notation, let X = EIi and Xj = EIj , for j 6= i. Let

X ′ = {x ∈ X|d(x, {X) ≥ R1}, X ′ is the binary eroded of X. Let projX(a) =



{b|b ∈ {X, d(a, b) = d(a, {X)} with A the closure of A. Let P = {Xj} and for
a ∈ Ω, IPa = {j|∃b ∈ projX(a) ∩ Xj}. Let X ′j = {a /∈ X ′|projX(a) ∩ Xj 6=
∅} and P ′ = {X ′j}. Using the property of the min function, min(A ∪ B) =

min({min(A),min(B)}), it can be shown that IPa = IP
′

a for all a ∈ X ′ implies
proposition 3.

� Let j ∈ IPa . Thus, ∃b ∈ projX(a) ∩ Xj . Let γ be a geodesic joining a and
b with γ(0) = b and γ(d(a, b)) = a. Let c = γ(R1). For all x ∈ γ([0, R1[),
x /∈ X ′ and b ∈ projX(x). Hence x ∈ X ′j and c ∈ X ′j . The triangle inequality
gives c ∈ projX′(a). Indeed, assuming that c /∈ projX′(a) easily leads to
b /∈ b ∈ projX(x). Thus, j ∈ IP′

a .
� Let j ∈ IP

′

a . Thus, ∃c ∈ projX′(a) ∩ X ′j . By de�nition of the closure,

∃cn → c, cn ∈ X ′j . cn ∈ X ′j ⇒ (∃dn ∈ projX(cn), dn ∈ Xj). The com-
pact assumption enables us to consider that dn → d (it is at least valid for a
sub-sequence). d ∈ Xj . By continuity, d(d, c) = lim(dn, cn) = lim({X, cn) =
d({X, c). Thus, d ∈ projX(c). Proposition 4 tells us that d ∈ projX(a). Hence
j ∈ IPa .

Thus, IPa = IP
′

a .

Proposition 4. Using the notation introduced in the demonstration of proposi-

tion 3:

∀a ∈ X ′,∀c ∈ projX′(a),∀d ∈ projX(c), d ∈ projX(a).

Proof. Let a ∈ X ′, c ∈ projX′(a), d ∈ projX(c).

� Since X ′ is closed, {X ′ is open and the existence of geodesics implies that
c /∈ {X ′. Hence c ∈ X ′ and d(c, {X) ≥ R1. Since c is a projection on {X ′,

we have c ∈ {X ′, d(c, {X) ≤ R1. Hence d(c, {X) = R1 and d(c, d) = R1.
� Let b ∈ projX(a) and γ a geodesic such that γ(0) = a and γ(d(a, b)) =
b. Let c′ = γ(sup{t|γ(t) ∈ X ′}). Since X ′ is closed, c′ ∈ X ′. We have

d(c′, {X) ≥ R1. Since c
′ ∈ {X ′, d(a, c′) ≥ d(a, {X ′) = d(a, c). Thus, d(a, b) =

d(a, c′) + d(c′, b) ≥ d(a, c) + d(c′, {X) = d(a, c) + d(c′, {X) ≥ d(a, c) + R1 =
d(a, c) + d(c, d) ≥ d(a, d). Hence d ∈ projX(a).

Note that in a compact subset of a vector space, since proposition 3 is valid
for any norm, the property holds for any convex structuring element. Note also
that 3 is based on a metric de�nition of the erosion. For vector spaces norms, this
erosion is identical to the translation based erosion. According to this discussion,
in all what follows we adopt distance-based erosion.

4 Applications to image �ltering

In the �rst case study, depicted in Fig. 6 and Fig. 7, we consider the behavior
and interest of the composed n-ary �lter ψ(I;B). The aim is to �lter out objects
smaller than the structuring element B of the 4-ary (color) image Fig. 6(a). Re-
sults in Fig. 6(b) and (c) are respectively the classical color operator γB ◦ϕB and



(a) (b) (c)

Fig. 6. Morphological �ltering of a 4-ary image: (a) original color image I and struc-
turing element B, (b) color operator γB ◦ ϕB using a color order (c) color operator
ϕB ◦ γB using same order.

ϕB ◦ γB based on an arbitrary order. Alternative composed n-ary �lter ψ(I;B),
which correspond to di�erent permutations of the composition of openings of
color i. On the one hand, note that in all the cases, the iterated �lter converges
rather fast to a stable (idempotent) result ant that the di�erence between the
�rst iteration and the �nal result are rather similar. On the other hand, the
di�erent permutations produce di�erent results, however in all the cases, the
small objects seems better removed than in the case of the classical color order
operators.

The second example, given in Fig. 8 attempts to regularize the 3-ary image,
by removing small objects without deforming the contours of the remaining
objects. More precisely, Fig. 8(a) represents the electron microscopy image of
a ceramic eutectic, with three di�erent phases after segmentation. The �ltering
process is composed of two steps: morphological size �lter followed by geodesic
reconstruction. We compare the result of �ltering the color image according to
two pipelines: (i) color total order framework, Fig. 8(b), where the �lter is an
opening by reconstruction composed with a closing by reconstruction; (ii) n-ary
framework, Fig. 8(d), where the marker is a n-ary �lter ψ(I;B) followed by a
n-ary geodesic reconstruction. In the case of the color ordering, black and blue
are extreme color whereas red is the intermediary color. As we can observe, using
the order-based approach all red objects that lay between black and blue objects
are not extracted. Both n-ary and color total order frameworks give the same
results for the blue grains. This corresponds to the fact that, in the color order,
blue is an extreme color whereas red is an intermediary. Therefore the n-ary
framework provides a more symmetric processing of all the colors.

The last example is a classi�cation image from the brain. Fig. 9 (a) is a result
of a classi�cation where the red represents the grey matter, the green represents
the white matter and the blue represents the cerebrospinal �uid. The processing
is same as for the second example. The miss-classi�ed white matter around the
brain and some miss-classi�ed grey matter spots around the cerebrospinal �uid
are successfully removed by the n-ary framework, whereas they remain after the
classical processing.



(a) (b) (c) (d)

Fig. 7. n-ary processing of Fig. 6 (a). �rst row: composed n-ary �lter ψ(I;B), second
row: iterated composed n-ary �lter ψk(I;B) until convergence, third row: convergence
speed w.r.t. to k. Column (a) ψ(I;B) = γ1 ◦ γ2 ◦ γ3 ◦ γ4, (b) ψ(I;B) = γ2 ◦ γ1 ◦ γ3 ◦ γ4,
(c) ψ(I;B) = γ3 ◦ γ4 ◦ γ1 ◦ γ2, (d) ψ(I;B) = γ4 ◦ γ3 ◦ γ2 ◦ γ1.

5 Conclusions and perspectives

We proposed here an approach to extend mathematical morphology to images
composed of n independent levels. The approach presents two key particularities:
�rst, the increase of the number of elementary operators, second, the absence of
a notion of background or an indeterminate class. The absence of background
or indeterminate class transforms the problem into a problem of gap �lling.
We prove that some of the elementary properties of standard morphological
operators are preserved, such as the idempotence of openings and closings per
color. Despite its quasi experimental validity, the main lost property is the gran-
ulometric semigroup. Beyond the mathematical properties, one of the natural
consequences of this n-ary framework is the de�nition of a new reconstruction
operator. The main application of the proposed operators is the �ltering of small
objects, the presented examples demonstrate the relevance of the n-ary opera-
tors. Our immediate research will focus on the recovery of the �granulometry
property�. In a second step, we plan to extend our applications to other classi-
�cation images such as classi�ed satellite images. Then in a third step, we will
investigate the extension of the de�ned operators to the case of a fuzzy mixture
between independent unordered categories.
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Fig. 8. Image size-regularization: (a) original image I, (b) classical order-based �lter-
ing, (c) residue between (a) and (b), (d) n-ary based �ltering, (e) residue between (a)
and (d). See the text for details.

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Fig. 9. Image size-regularization: (a) original image I, (b) classical order-based �lter-
ing, (c) n-ary based �ltering, (d) zoom-in (a), (e) zoom-in (b), (f) zoom-in (c), (g)
zoom-in (a), (h) zoom-in (b),(i) zoom-in (c). See the text for details.
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