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Introduction

A key idea of mathematical morphology is the extension and the reduction of the surface of the dierent objects of an image over their neighbors. This idea leads naturally to the two basic morphological operators in binary images.

Binary images. In such images, there are only two kinds of objects: black or white objects. Two dual and adjoint operators have been dened: the erosion and the dilation. The erosion extends the black objects over the white objects, the dilation extend the white objects over the black objects. Formally, a binary image can be seen as a support set Ω, and X a subset of Ω. Let B be a subset of Ω called the structuring element. We assume that Ω disposes of a translation operation. The erosion ε B (X) and the dilation δ B (X) of X according to a structuring element are dened as follows [START_REF] Matheron | Random Sets and Integral Geometry[END_REF][START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF]:

ε B (X) = y∈B X -y = {p ∈ Ω : B p ⊂ X} = x : ∀p ∈ B, x ∈ X p , (1) 
δ B (X) = y∈B X y = {x + y : x ∈ X, y ∈ B} = p ∈ Ω : X ∩ Bp = ∅ . [START_REF] Hanbury | Morphological operators on the unit circle[END_REF] where X = {-x : x ∈ X} is the transpose of X (or symmetrical set with respect to the origin O) and X p = {x + p : x ∈ X} the translate of X by p. For the sake of simplicity, we limit the rest of our notation to symmetric structuring elements: B = B.

Grey-scale images. With the apparition of grey-scale images, mathematical morphology was reformulated in terms of inf and sup convolution where the kernel is the structuring element B [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF]. An image is now considered as a function I dened as

I : Ω → V p → I(p)
where V is the set of grey-levels, which can be generally assumed as a subset of the real line V ⊂ R. Grey-scale at erosion and dilation of I by structuring element B are now dened as follows:

ε B (I)(p) = inf q∈Bp {f (q)} , δ B (I)(p) = sup q∈Bp {f (q)} .

In this framework, each grey-level is not fully considered as an independent color (i.e., a dierent category) but simply as an intermediary level between black and white. This point of view is actually justied when interesting objects of the images are local extrema. In the current example, it is not possible to remove the central grey spot using erosion and dilation with B larger than the spot size. This grey spot is not considered as an interesting object in itself but simply as an intermediary value between the black object and the white object. If this assumption is often coherent, this is not always the case.

Let consider the grey-scale image in Fig. 2 color, see Fig. 2(b). We would like then to process both images using the same approach.

Multivariate images. For multivariate images, no canonical framework has yet appeared. Most processing consist in endowing the structure with a partial order relationship. The structure has to be a complete lattice in order to dene erosion and dilation in terms of inf and sup. The notion of order induces the notion of intermediary level as in the precedent framework. However, the notion of intermediary levels often leads to non-intuitive situations, see example in Fig. 2(c). As the red usually has a real signication in terms of a particular class of objects, it is very natural to try to remove the red spot, which is not possible using generic classical morphology. The more the image has a complex semantic structure, such as a color image, the more it is dicult to nd a lattice structure which makes every interesting object an extremum.

Aim and paper organization. Historically, mathematical morphology has been generalized from binary to grey scale, and then to multi-variate images.

However, the gap between grey-scale and color is much more signicant than the gap between binary and grey-scale. As we discussed previously, the greyscale structure only enables to dene intermediary colors between two references.

This structure is obviously too weak to describe color information. Note that to simplify the vocabulary, we use the notion of color for any non-scalar valuation of the pixels on the image.

Before extending mathematical morphology to color images, we might want to dene a coherent approach for mathematical morphology with n independent unordered colors, without considering them as intermediary levels. This is the aim of this paper. Then only, we might try in the future to dene mathematical morphology for the full color space. The dierence between the frameworks can be interpreted in term of a change of metric on the value space: grey-scale framework: ∀(i, j), d(color i , color j ) = |i -j|; n-ary framework: ∀(i, j), d(color i , color j ) = 1.

Our paper is not the rst to consider the problems of classical mathematical morphology for images composed of independents categories. Authors of [START_REF] Busch | Morphological Operations for Color-Coded Images[END_REF] have very similar motivations but the development we propose is dierent. In contrast to operators proposed in [START_REF] Busch | Morphological Operations for Color-Coded Images[END_REF] or labelled openings from [START_REF] Hanbury | Morphological operators on the unit circle[END_REF], we are interested in lling gaps left by anti-extensive operators. We note that the theory of morphological operators for partitions [START_REF] Ronse | Ordering Partial Partition for Image Segmentation and Filtering: Merging, Creating and Inating Blocks[END_REF] and hierarchies of partitions [START_REF] Meyer | Adjunctions on the lattice of hierarchies[END_REF] is not compatible with our framework.

The rest of the paper is organized as follows. A proposition of n-ary morphological operators and a study of their theoretical properties in Sections 2 and 3. Some applications to image ltering are discussed in Section 4. Section 5 of conclusions closes the paper.

n-ary morphological operators

Let us come back to the key idea of mathematical morphology is to reduce and extend objects over their neighbors. In the case of binary images, two operations where introduced: the erosion extends the black over the white and the dilation extends the white over the black. In a general way, we would like to allow to reduce and extend the surface of each category of object. This makes four theoretic operations in the binary case, reduced to two in practice due to the coincidence of certain operations: reducing the black is the same as extending the white and conversely. This duality is one of the basic principle of binary morphology.

Dilation and erosion of color i

Let I be an n-ary image dened as

I : Ω → {1, 2, • • • , n} p → I(p)
In the n-ary case, it seems natural to try to introduce the corresponding pair (ε i , δ i ) of operators for each color i. Erosion ε i is the operator that reduces the surface of the objets of color i, and dilation δ i the operator that extends the color i. Above n > 2, we unfortunately lose the duality between operations, such that the number of elementary operators is then equal to 2n. Let us formulate more precisely these operators.

The dilation of color i on image I by structuring element B presents no diculty:

δ i (I; B)(x) = I(x) if ∀p ∈ B x , I(p) = i i if ∃p ∈ B x , I(p) = i (3) 
δ i (I; B) extends objects of color i over their neighbors. The case of the erosion presents more theoretical diculties. Indeed, if we want to reduce the objects of color i, we need to decide how to ll the gaps after the reduction.

Let us rst dene the erosion for pixels where there are no ambiguities. Thus the erosion of color i on image I by structuring element B is given by

ε i (I; B)(x) =    I(x) if I(x) = i i if ∀p ∈ B x , I(p) = i θ(x, I) otherwise (4)
We will address later denition of θ(x, I). Sections 2.2 and 2.3 are independent of θ. Although the image is a partition of Ω the proposed framework diers from [START_REF] Ronse | Ordering Partial Partition for Image Segmentation and Filtering: Merging, Creating and Inating Blocks[END_REF].

Opening and closing of color i

Once the dilation and erosion have been dened, we can introduce by composition of these two operators the opening and the closing on I by B of color i respectively as

γ i (I; B) = δ i • ε i = δ i (ε i (I; B); B) , (5) 
ϕ i (I; B) = ε i • δ i = ε i (δ i (I; B); B) . (6)
Let us set a few notations used in the following. If φ is an operator, let φ k be φ • .... • φ the iteration of φ, k times. Let φ |A be the restriction of φ to the subset A. Let us set E I i = I -1 (i). To simplify, 1 E I i will be noted 1 I i .

We have the following property of stability.

Proposition 1. Opening and closing of color i are idempotent operators, i.e.,

γ i (I; B) = γ 2 i (I; B), ϕ i (I; B) = ϕ 2 i (I; B).
Proof. Since the binary opening is idempotent, one has

E γi(I) i = E γ 2 i (I) i . Fur- thermore we have that E γi(I) j ⊂ E γ 2 i (I) j , for all j = i. Since sets (E i ) i from a partition of the support space, necessarily E γi(I) j = E γ 2 i (I) j
, ∀j. Indeed, if all the elements of a partition are extensive, then they all remain stable. Then γ i = γ 2 i .

Properties cannot directly be transported by duality, as in binary morphology, however the property remains true for the closing. We rst show the binary property εδε = ε. The binary erosion and opening can be written as

ε B (X) = ∪ Bx⊂X {x}, and γ B (X) = ∪ Bx⊂X B x . Then ε(γ(X)) = ∪ Bx⊂γ(X) {x}. Since {B x ⊂ γ(X)} = {B x ⊂ ∪ Bx⊂X B x } = {B x ⊂ X}, then ε(γ(X)) = ε(X). Thus, εδε = ε and by duality, δεδ = δ. Then E δi i = E δiεiδi i .
It can be shown that E δi j ⊂ E δiεiδi j for all j = i. Using the same reasoning as in the proof for the opening, we have that for all j, E δi j = E δiεiδi j .

In other words, 

δ i ε i δ i = δ i . Thus ε i δ i ε i δ i = ε i δ i , or equivalently ϕ i = ϕ 2 i . (a) (b) (c)

Composed n-ary lters

We can now try to dene color lters from the openings and the closings of color i. In binary morphology, the simplest lters are of the following form: γ • φ and φ • γ. In the n-ary framework, with n = 2, they can be rewritten as

γ 1 • γ 2 = φ 2 • φ 1 , and γ 2 • γ 1 = φ 1 • φ 2 .
The opening removes peaks smaller than the structuring element and the closing removes holes, which are dual notions in binary morphology. However, peaks and holes are no longer a dual notion in n-ary morphology with n > 2. Fig. 3 illustrates the dierence between openings and closings on a 3-ary image: three colors, black, white and red. The structuring element is a square whose size is half of the width of the red line. Removing the red line using ϕ black requires a structuring element twice bigger than with γ red . As a good candidate to lter out small object of a color image I, independently of the color of the objects, we introduce the operator ψ, named composed n-ary lter by structuring element B, dened as

ψ(I; B) = γ n (I; B) • γ n-1 (I; B) • • • • • γ 1 (I; B). (7) 
Unfortunately on the contrary to γ • φ in binary morphology, ψ is generally not idempotent. Worst, the sequence ψ k do not necessarily converge. However we still have a stability property for relevant objects. Let us be more precise.

Proposition 2. Let Ω be a nite set. Given a structuring element B, the interior with respect to B of the composed n-ary lter ψ(I; B) converges for any image I, i.e., ∀i, ε(E

ψ k i ) converges . Proof. Since ε = ε • δε, ∀i, ε(E ψ k i ) = ε(E γi•ψ k i ). Furthermore, since ε(E ψ k i ) ⊂ ε(E γj •ψ k i ), we have that ∀i, ε(E ψ k i ) ⊂ ε(E ψ k+1 i ). Since Ω is a nite set, ε(E ψ k i ) converges.
This property ensures that the variations between ψ k and ψ k+1 do not aect the interior of objects and is only limited to boundaries. Nevertheless, as we shown in section 4, ψ k is almost always stable after a few iterations.

n-ary geodesic reconstruction

The binary reconstruction can be transposed in the n-ary framework as follows.

Given two color images R and M , for each color i, Perform a binarisation of the reference R and the marker M between i and i, which correspond respectively to binary images X i and Y i .

Compute γ rec (X i ; Y i ), that is the binary geodesic reconstruction of the marker in the reference.

Then, the n-ary geodesic reconstruction of color reference R by color marker M is given by The aim of this denition is to symmetrize colors. In Fig. 4 (d), the grey object is considered as an object in itself. The proposed reconstruction is a connected operator in the sense of [START_REF] Salembier | Serra Flat Zones Filtering, Connected Operators, and Filters by reconstruction[END_REF] 3 On the choice of an erosion of color i Before any application, we need to come back to the erosion problem. More precisely, we need to dene a consistent rule to ll the space created by the erosion operation.

γ rec (R; M )(x) = i if x ∈ γ rec (X i ; Y i ) M (x) if ∀i, x / ∈ γ rec (X i ; Y i )
First of all, we note that the denition in Eq. ( 8) of the erosion of color i ε i

does not indicate how to behave on the following set:

A = {x | I(x) = i and ∃p ∈ B x such that I(p) = i} .
For points x ∈ A we have to decide by which color to replace color i and therefore to dene ε i on A, i.e.,

ε i (I; B)(x) =    I(x) if I(x) = i i if ∀p ∈ B x , I(p) = i ? if x ∈ A (8) 
Many alternatives are possible. Two criteria have to be taken into account: (i) the direct coherence in terms of image processing, and (ii) the number of morphological properties veried by the erosion, such as ε i (I; kB) = ε k i (I; B) where kB = {kx | x ∈ B} (i.e., homothetic of size k). Let us consider in particular the three following rules for x ∈ A: Let us formalize the iterative behavior of the distance-based erosion by the following result on isotropic structuring elements.

Proposition 3. Let (Ω, d) be a compact geodesic space and I a n-ary image on Ω. For any R 1 , R 2 > 0 the distance-based erosion of color i satises:

ε i (I; B R1+R2 ) = ε i (I; B R2 ) • ε i (I; B R1 ).
where B R is the open ball of radius R.

Proof. For the sake of notation, let X = E I i and

X j = E I j , for j = i. Let X = {x ∈ X|d(x, X) ≥ R 1 }, X is the binary eroded of X. Let proj X (a) = {b|b ∈ X, d(a, b) = d(a, X)} with A the closure of A. Let P = {X j } and for a ∈ Ω, I P a = {j|∃b ∈ proj X (a) ∩ X j }. Let X j = {a / ∈ X |proj X (a)
∩ X j = ∅} and P = {X j }. Using the property of the min function, min(A ∪ B) = min({min(A), min(B)}), it can be shown that I P a = I P a for all a ∈ X implies proposition 3.

Let j ∈ I P a . Thus, ∃b ∈ proj X (a) ∩ X j . Let γ be a geodesic joining a and b with γ(0

) = b and γ(d(a, b)) = a. Let c = γ(R 1 ). For all x ∈ γ([0, R 1 [), x /
∈ X and b ∈ proj X (x). Hence x ∈ X j and c ∈ X j . The triangle inequality gives c ∈ proj X (a). Indeed, assuming that c / ∈ proj X (a) easily leads to b / ∈ b ∈ proj X (x). Thus, j ∈ I P a .

Let j ∈ I P a . Thus, ∃c ∈ proj X (a) ∩ X j . By denition of the closure,

∃c n → c, c n ∈ X j . c n ∈ X j ⇒ (∃d n ∈ proj X (c n ), d n ∈ X j ). The com- pact assumption enables us to consider that d n → d (it is at least valid for a sub-sequence). d ∈ X j . By continuity, d(d, c) = lim(d n , c n ) = lim( X, c n ) = d( X, c). Thus, d ∈ proj X (c). Proposition 4 tells us that d ∈ proj X (a). Hence j ∈ I P a .
Thus, I P a = I P a .

Proposition 4. Using the notation introduced in the demonstration of proposition 3: Note that in a compact subset of a vector space, since proposition 3 is valid for any norm, the property holds for any convex structuring element. Note also that 3 is based on a metric denition of the erosion. For vector spaces norms, this erosion is identical to the translation based erosion. According to this discussion, in all what follows we adopt distance-based erosion.

∀a ∈ X , ∀c ∈ proj X (a), ∀d ∈ proj X (c), d ∈ proj X (a). Proof. Let a ∈ X , c ∈ proj X (a), d ∈ proj X (c).

Applications to image ltering

In the rst case study, depicted in Fig. 6 and Fig. which correspond to dierent permutations of the composition of openings of color i. On the one hand, note that in all the cases, the iterated lter converges rather fast to a stable (idempotent) result ant that the dierence between the rst iteration and the nal result are rather similar. On the other hand, the dierent permutations produce dierent results, however in all the cases, the small objects seems better removed than in the case of the classical color order operators.

The second example, given in Fig. 8 attempts to regularize the 3-ary image, by removing small objects without deforming the contours of the remaining objects. More precisely, Fig. 8(a) represents the electron microscopy image of a ceramic eutectic, with three dierent phases after segmentation. The ltering process is composed of two steps: morphological size lter followed by geodesic reconstruction. We compare the result of ltering the color image according to two pipelines: (i) color total order framework, Fig. 8(b), where the lter is an opening by reconstruction composed with a closing by reconstruction; (ii) n-ary framework, Fig. 8(d), where the marker is a n-ary lter ψ(I; B) followed by a n-ary geodesic reconstruction. In the case of the color ordering, black and blue are extreme color whereas red is the intermediary color. As we can observe, using the order-based approach all red objects that lay between black and blue objects are not extracted. Both n-ary and color total order frameworks give the same results for the blue grains. This corresponds to the fact that, in the color order, blue is an extreme color whereas red is an intermediary. Therefore the n-ary framework provides a more symmetric processing of all the colors.

The last example is a classication image from the brain. 

Conclusions and perspectives

We proposed here an approach to extend mathematical morphology to images composed of n independent levels. The approach presents two key particularities:

rst, the increase of the number of elementary operators, second, the absence of a notion of background or an indeterminate class. The absence of background or indeterminate class transforms the problem into a problem of gap lling.

We prove that some of the elementary properties of standard morphological operators are preserved, such as the idempotence of openings and closings per color. Despite its quasi experimental validity, the main lost property is the gran- 
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 1 Fig. 1. Grey-level morphological processing: (a) original image I, (b) closing ϕB(I), (c) opening γB(I).

Fig. 2 .

 2 Fig. 2. (a) A three independent grey-scale image and (b) the same image where the grey values has been replaced by colors. (c) Example of multivariate (color) image.

Fig. 3 .

 3 Fig. 3. Opening and closing on a 3-ary image: (a) original image I, (b) opening of red color γ red (I; B), (c) closing of black color ϕ black (I; B).

Fig. 4 Fig. 4 .

 44 Fig.4 illustrates the dierence between classical geodesic reconstruction and the proposed n-ary reconstruction. For the classical reconstruction, the 3 colors image is simply viewed as a grey-scale image.

1 .

 1 Fixed-color erosion: Erosion always lls the gaps with color 1 (or any other xed color):ε i (I; B)(x) = 1.

  -based erosion: Erosion takes the value of the major color different from i in the structuring element B: ε i (I; B)(x) = min(arg max j =i (Card {p ∈ B x |I(p) = j})).

Fig. 5 .

 5 Fig. 5. Comparison of erosions of black color: (a) original image I, (b) erosion ε black (I; B) using majority-based formulation (10), (c) erosion ε black (I; B) using distance-based formulation (11). Let l be the width of the red line, the structuring element B is a square whose size is now between l and 2l. (d) iterated black erosion ε 2 black (I; B) using majority-based formulation, (e) erosion ε black (I; 2B) using majoritybased formulation.

Since

  X is closed, X is open and the existence of geodesics implies that c / ∈ X . Hence c ∈ X and d(c, X) ≥ R 1 . Since c is a projection on X , we have c ∈ X , d(c, X) ≤ R 1 . Hence d(c, X) = R 1 and d(c, d) = R 1 . Let b ∈ proj X (a) and γ a geodesic such that γ(0) = a and γ(d(a, b)) = b. Let c = γ(sup{t|γ(t) ∈ X }). Since X is closed, c ∈ X . We have d(c , X) ≥ R 1 . Since c ∈ X , d(a, c ) ≥ d(a, X ) = d(a, c). Thus, d(a, b) = d(a, c ) + d(c , b) ≥ d(a, c) + d(c , X) = d(a, c) + d(c , X) ≥ d(a, c) + R 1 = d(a, c) + d(c, d) ≥ d(a, d). Hence d ∈ proj X (a).

7 ,Fig. 6 .

 76 Fig. 6. Morphological ltering a 4-ary image: (a) original color image I and structuring element B, (b) color operator γB • ϕB using a color order (c) color operator ϕB • γB using same order.

Fig. 9 (Fig. 7 .

 97 Fig. 7. n-ary processing of Fig. 6 (a). rst row: composed n-ary lter ψ(I; B), second row: iterated composed n-ary lter ψ k (I; B) until convergence, third row: convergence speed w.r.t. to k. Column (a) ψ(I; B) = γ1 • γ2 • γ3 • γ4, (b) ψ(I; B) = γ2 • γ1 • γ3 • γ4, (c) ψ(I; B) = γ3 • γ4 • γ1 • γ2, (d) ψ(I; B) = γ4 • γ3 • γ2 • γ1.

Fig. 8 .Fig. 9 .

 89 Fig. 8. Image size-regularization: (a) original image I, (b) classical order-based ltering, (c) residue between (a) and (b), (d) n-ary based ltering, (e) residue between (a) and (d). See the text for details.
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