N
N

N

HAL

open science

Communication-Computation overlap in massively
parallel System on Chip
Hana Krichene, Mouna Baklouti, Mohamed Abid, Philippe Marquet,

Jean-Luc Dekeyser

» To cite this version:

Hana Krichene, Mouna Baklouti, Mohamed Abid, Philippe Marquet, Jean-Luc Dekeyser.
Communication-Computation overlap in massively parallel System on Chip. 2014. hal-01104157

HAL Id: hal-01104157
https://hal.science/hal-01104157
Submitted on 16 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01104157
https://hal.archives-ouvertes.fr

Communication-Computation overlap in massively
parallel System on Chip

Hana Krichene
LIFL - INRIA Lille-North Europe labs
University of Lille 1
Lille, France
National School of Engineers of Sfax
CES lab
University of Sfax
Sfax, Tunisia
Email:hana.krichene @inria.fr

Abstract—This paper presents the concept and the imple-
mentation of a communication-computation overlap in massively
parallel System on Chip (mpSoC). This paradigm allows to
decrease the execution time of parallel programs using specific
strategies in the programming level and partially decoupled
system control in the hardware level. The related experiment
in VHDL language for system design and in assembly language
for case study implementation are described.

I. INTRODUCTION

Many modern application domains are concerned by the
conjunction of parallel algorithms and high computing re-
sources. They include signal and image processing applica-
tions such as software radio receiver, sonar beam forming, or
image encoding/decoding. Furthermore, the implementation of
the system on a single chip will be of prime interest for those
applications that also require some degree of embeddedness.

Nowadays, SoCs, used for massively parallel computing,
consist of many processing units connected by communication
networks where running the data to be processed and the
results of various intermediate calculations. When it comes
to ten thousand of processing units, the network must be
efficient to avoid slowing down the whole system. The main
complaint of these systems against communication networks is
that they consume computation time: they must cut messages
into packets in the sender side and reassemble it in order in
the receiver side, without error on path. A communicating
program on the network will therefore spend time to make
these communications, instead of using that time to calculate.
Given that the cost of power consumption and area occupation,
this mess is unsatisfactory.

Several models of communication-computation overlap,
e.g., Message Passing Interface (MPI) [1], Parallel Virtual
Machine (PVM) [2], multi-threaded MPI [3] and Hybrid
MPI/SMPS [4] were implemented to reduce execution times
and improve speedups. MPI and PVM rely on non-blocking
elementary communications, asynchronous send and receive
primitives as provided by well-known message-passing li-
braries while the multi-threaded MPI model proposes MPI

Mouna Baklouti
and
Mohamed Abid
National School of Engineers of Sfax LIFL - INRIA Lille-North Europe labs
CES lab
University of Sfax
Sfax, Tunisia
Email: mouna.baklouti @enis.rnu.tn
mohamed.abid @enis.rnu.tn

Philippe Marquet
and
Jean-Luc Dekeyser

University of Lille 1
Lille, France
Email: Philippe.Marquet@1ifl.fr
jean-luc.dekeyser @lifl.fr

point-to-point operations in order to overlap communication
and computation. Compared to single-threaded active polling
communication used by most of the implementations, multi-
threaded provides more parallelism. Hybrid MPI/SMPS uses
shared memory programming model to introduce asynchrony
necessary to overlap communication and computation. If the
architecture allows the integration of these high level program
software solutions, the speed of parallel applications could
double. But they still be limited by the hardware complexity
to adopt these approaches.

In this work, we define a new mechanism to amortize the
time spent by the communication phase. In fact, processing
unit should indicate that it wants to send or receive something,
then return directly to his computations while the network
would transfer requested. This is called overlapped communi-
cations by computation.

The objective of this paper is to reconsider the interest
and the feasibility of communication-computation overlap
into massively parallel System on Chip. This model allows
for communications operations in the background while the
program continues to run. It is thus possible to hide a portion
of any communication costs.

The next section presents our proposed overlapping
communication-computation model. Section 3 discusses the
structure implementation and the performance evaluation
through the matrix multiplication case study.

II. COMMUNICATION-COMPUTATION OVERLAP MODEL

Distinguish calculation stages of those communication
needs the separation of these two stages in different blocks.
This repartition should be provided by the designer at pro-
gramming level. Then, the overlapped execution of these
blocks will be done in parallel according to the program de-
scription. Separate communication from computation provides
an opportunity to ensure the autonomy execution in mpSoC.
To ensure this feature while avoiding the centralized control,
we define second hierarchical control level, over than the

master controller, achieved by the slaves controllers. We will
discuss this structure in the next section.

A. Hardware design: Master-Slave control structure

A novel control structure was proposed for the massively
parallel System-on-Chip, referred to as master-slave control
structure [5]. Its concept departs from the centralized config-
uration and instead of a uni-processor master controlling a set
of parallel Processing Elements (PEs), the master cooperates
with a grid of parallel slave controllers which supervises the
activities of cluster of PEs. We define, as shown in fig. 1, the
hardware implementation of this configuration in massively
parallel system:

e The Master Control Unit (MCU), which controls the
order execution in the whole system. It is a simple
processor, which fetches and decodes program instruction
and broadcasts execution orders to Slave Control Unit.
It controls the end execution to establish synchronous
communication.

e The Slave Control Unit (SCU), which controls: local node
and PEs activities, parallel instructions execution and
synchronous communication. It is a crucial component in
the master-slave control structure. The SCUs grid allows
independent parallel execution.

Node Element for interlaced [| (5] [§ L] [eeo | e \‘\
communication/computatiop! (] [] T
° (b= e o]
NCUInst Network (]
oo |« =E | =
NCUData
NE3 m NE4 m NES m
(] L] L]
o] ol ol

Node Element Network

Fig. 1. Hardware prototype of Master-Slave control structure for mpSoC

The hardware architecture is composed of a single MCU
and multiple Slave controllers (SCUs) combined with local
processing element (PE) (or a cluster of 16 PEs), known
collectively as Nodes. The MCU and SCU array are con-
nected through single level hierarchical bus and the SCUs
are connected together through X-net interconnection network.
This network is clocked synchronously with the SCUs and
respectively with the PEs. SCU controllers in the grid care
for the instruction execution activities that involve a large
degree of parallelism and the communication activities that
need to coordinate all the PEs in the grid. Note that the SCU
controllers do not limit performance; they do not become a
sequential bottleneck. They participate only in the controlling

and scheduling of very large groups of PEs execution at a
time.

Using master-slave control structure, the PEs in massively
parallel system can execute independently and then can com-
municate synchronously. Separate communication phase from
computation one, not only allows the programmer to optimize
distinct processors for their intended tasks, but also gives the
ability to overlap these two phases which reduces the system
execution time.

B. Software program: Master-Slave program management

Based to the decoupled control design presented in the pre-
vious section, the programmer can easily manage the master-
slave program to overlap communication by computation
stage. Therefore, the basic idea to implement this paradigm
is to divide the principal program into small blocks of parallel
instructions, called Slave Program (SP), and send these blocks
to the activated PEs of the system. Then, according to a
predefined mask, the SCU sends the order of begin execution.
In parallel to computation, the master manages a synchronous
inter-node communication, and so on until the end of the
program.

To implement this master-slave program we have defined
some instructions as shown in fig. 2:

Master side

o initial.mask: master controller informs the activated
node, using broadcast with mask technique [6], that PEs
must start the parallel execution of SP blocs.

o SP.execution: slave controller orders the parallel execu-
tion of SP blocks. The program in SP blocks is the same
for all PEs, but the control flow may be different in
each node according to the mask. Each SP block starts
with Begin-instruction and finishes with End-instruction.
When SP blocks are executed, the communication is
established. GO signal is activated.

o wait.ortree: master controller waits for the SP execution
end of all the active PEs to start a new parallel cycle.
This end execution is controlled by the ortree signal [5].

Slave Side

« wait.go: slave PE waits for go signal to start SP execu-
tion.

o end.SP: slave PE informs the master that the SP execu-
tion is finish by sending the end signal.

We require also that the SP block code contains only
memory reference of local PE or local register in the relative
node and no reference to the global memory or the local
memory of the neighbor PE.

Referring to these requirements and specifications, it is pos-
sible to perform communication operations in the background
while the slave program continues to run, as it is shown in
fig. 2. However, This feature is allowed only if the execution
time of SP block is higher than time spent for communication
phase.

1

' % -S8lave Pro

: Initial.mask (i)

: SP.execution (i) ——————> Wait.go
|

1

1

1

1

1

1

|

1 1
com . !
1
!

[

1

1

1

Wait.ortree (1) End.SP

Fig. 2. Computation phase overlaps communication

III. CASE STUDY: MATRIX MULTIPLICATION

One of the basic computational kernels in many data parallel
codes is the multiplication of two matrices (C=AxB). For this
application we have implemented two architectures: the first
one is a 64 PEs and the second one is a cluster of a 64
(PE+ muladd_IP). These computation units are arranged in
8x8 node-grid with each PE has a 64bytes data stack . To
perform multiplication, all-to-all row and column broadcasts
are performed by the nodes. The following codes are executed
by the master and all slave-PEs simultaneously (Fig. 3):

Master program_ slave program

Fig. 3. Overview of matrix multiplication program

FPGA ressources and execution time of a matrix
multiplication algorithm

70

60

50

40

30 mPE

20
10

mPEHP

execution time with
overlap (us)

logic element (%)

execution time (ps)

Fig. 4. Experimental results of running a MM algorithm

Fig. 4 shows the Virtex6 ML605 FPGA resource occupa-
tion and the execution time results. We validated that the
architecture based on PE+muladd IP is more efficient but
occupies a large area on the chip. In fact, the multiplication
operation performed in FC16 [7] PE needs 19 clock cycles
but only one clock cycle in muladd_IP. However, the space
on a chip is increased because the additionally area occupied
by muladd_IP other than the PE area. On the other hand,

we see that the execution time when using the overlapping
communication-computation paradigm is decreased in the both
implementations (only PE and PE+muladd_IP). This is due to
the fact that communications are done when the processing
units execute their locally slave program, so that we introduce
a second parallelism level in addition to the massively parallel
execution.

IV. CONCLUSION

This paper presents the paradigm of communication-
computation overlap, not only in the programming level but
also in the architectural level. The decoupled master-slave
control structure allows the independent execution of parallel
slave programs and the globally synchronous communication.
Separating the computation control from the communication
one allows the designer to perform easily programming strate-
gies that overlap these two phases. Using this paradigm, we
save around 5% of the globally execution time. It is thus
possible to hide a portion of any communication costs.

REFERENCES

[1] W.Gropp, S.Huss-Lederman, A.Lumsdaine, E-L.Lusk, B.Nitzberg,
W.Saphir, and M.Snir, “Mpi: The complete reference,” in MIT Press.

[2] A.Geist, A.Beguielin, J.Dongarra, W.Jiang, R.Manchek, and V.Sunderam,

“Pvm parallel virtual machine: a users guide and tutorial for networked

parallel computing,” in MIT Press.

M.Jiayin, S.Bo, W.Yongwei, and Y.Guangwen, “Overlapping communi-

cation and computation in mpi by multithreading,” in Natural Science

Foundation of China.

[4] VMarjanovic, J.Labarta, E.Ayguade, and M.Valero, “Overlapping com-
munication and computation by using a hybrid mpi/smpss approach,” in
24th ACM international confrence on supercomputing, New York, USA.

[S] H. Krichene, M. Baklouti, P. Marquet, J. L. Dekeyser, and M. Abid,
“Master-slave control structure for massively parallel system on chip,” in
Euromicro Conference on Digital System Design (DSD2013), Santander,
Spain, Sep. 2013, pp. 917 — 924.

, “Broadcast with mask on a massively parallel processing on a chip,”

in High Performance Computing and Simulation (HPCS2012), Madrid,

Spain, Jul. 2012, pp. 275 — 280.

R. Haskell and D.M.Hanna, “A VHDL forth core for FPGASs,” Micro-

processors and Microsystems, vol. 28, pp. 115 — 125, Apr. 2004.

3

[t}

(6]

[7

—

