
HAL Id: hal-01104138
https://hal.science/hal-01104138

Submitted on 16 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

On the boundary value problem for the Schrödinger
equation: compatibility conditions and global existence

Corentin Audiard

To cite this version:
Corentin Audiard. On the boundary value problem for the Schrödinger equation: compatibility con-
ditions and global existence. Analysis & PDE, 2015, 8 (5), pp.1113-1143. �10.2140/apde.2015.8.1113�.
�hal-01104138�

https://hal.science/hal-01104138
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


On the boundary value problem for the Schrödinger equation:

compatibility conditions and global existence

Corentin Audiard ∗†

Abstract

We consider linear and nonlinear Schrödinger equations on a domain Ω with non zero
Dirichlet boundary conditions and initial data. In a first part we study the linear boundary
value problem with boundary data of optimal regularity (in anisotropic Sobolev spaces)
with respect to the initial data. We prove well-posedness under natural compatibility
conditions. This is essential for the second part where we prove the existence and uniqueness
of maximal solutions for nonlinear Schrödinger equations. Despite the non conservation of
energy, we also obtain global existence in several (defocusing) cases.

Résumé

On étudie des équations de Schrödinger linéaires et non linéaires sur un domaine Ω
avec donnée initiale et condition au bord de Dirichlet non nulles. Dans une première partie
on étudie le problème linéaire pour des données au bord dans des espaces de Sobolev
anisotropes de régularité optimale par rapport aux données de Cauchy. On démontre la
nature bien posée du problème avec les conditions de compatibilité naturelles à tout ordre de
régularité. Ces résultats sont essentiels pour établir des résultats de type Cauchy-Lipschitz
pour le problème non linéaire, ceux ci font l’objet de la deuxième partie. Malgré la non
conservation de l’énergie, on obtient des solutions globales en dimension 2.

Introduction

This article is a continuation of our work [5] on the initial boundary value problem for the
(linear and nonlinear) Schrödinger equation

i∂tu+ ∆u = f, (x, t) ∈ Ω× [0, T [,
u|t=0 = u0, x ∈ Ω,
u|∂Ω×[0,T ] = g, (x, t) ∈ ∂Ω× [0, T [.

(IBVP)
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Ω ⊂ Rd, d ≥ 2, is a smooth open set. Our main purpose is to deal with boundary data of
arguably optimal regularity, and in particular too rough to be dealt with by lifting arguments.
When f depends on u we generically refer to the nonlinear Schrödinger equation as NLS. We
will study nonlinearities that are essentially similar to λ|u|αu.
A classical tool to deal with the well-posedness of NLS is Strichartz estimates. It is well known
that if Ω = Rd, the semi-group eit∆ satisfies

‖eit∆u0‖Lp(R, Lq(Rd)) . ‖u0‖L2 ,
2

p
+
d

q
=
d

2
,

for p, q ≥ 2, q <∞ for d = 2 (see [10] and [16] for the endpoint), and more generally the scale
invariant estimates

‖eit∆u0‖Lp(R, Lq(Rd)) . ‖u0‖Hs ,
2

p
+
d

q
=
d

2
− s.

Similar estimates with 2/p+d/q ≥ d/2−s are true on bounded time intervals and simple scaling
considerations show that the condition 2/p+d/q ≥ d/2− s is necessary. When 2

p + d
q −

d
2 + s =

r > 0, they are often called Strichartz estimates with loss of r derivatives. The derivation
of such estimates (and the associated well-posedness results) for NLS on a domain with the
Dirichlet (or Neuman) Laplacian has been intensively studied over the last decade in various
geometric settings. We will only cite results in the case where Ω is the exterior of a non
trapping obstacle since it is the one studied here. Roughly speaking, a non-trapping obstacle
is an obstacle such that any ray propagating according to the laws of geometric optic leaves
any compact set in finite time (for a a mathematical definition of the rays, see [21]). In their
seminal work [9], Burq, Gérard and Tzvetkov proved a local smoothing property similar to the
one on Rd (see [12]) and deduced Strichartz estimates with loss of 1/p derivative. Since then
numerous improvements were obtained [2][3][8] and eventually led to scale invariant Strichartz
estimates : see Blair-Smith-Sogge [7] in the general non-trapping case (s > 0 and limited
range of exponents), Ivanovici [15] for the exterior of a convex obstacle (s = 0, all exponents
except endpoints). The methods used relied heavily on spectral localization and construction of
parametrices. As such they are not very convenient for the study of non homogeneous boundary
value problems when the boundary data are not smooth enough to reduce the problem to a
homogeneous one.
On the other hand Morawetz and virial identities have proved to be very robust tools to
study linear and nonlinear Schrödinger equations. One of their first applicatoin goes back to
Glassey[13], and it has since been massively refined (as a tool of a much larger machinery) to
the point where exhaustive quotation is now impossible (we may cite at least [17][22] [11]).
Such tools only rely on differentiation and integration by parts, this makes them flexible enough
to be used even with non zero boundary data and part of our results rely on this approach.
As already mentioned, our aim is to treat Schödinger equations on a domain with non zero
Dirichlet conditions. The case of dimension one is by now relatively well understood : the local
Cauchy theory on intervals is essentially on par with the theory on R (see [14] for local existence
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in Hs, 0 ≤ s ≤ 1, subcritical and critical nonlinearities). For d ≥ 2, there are much less results.
We might mention the classical linear results of Lions-Magenes [20], that were based on lifting
arguments and thus prevented boundary data of very low regularity. Later, Bu and Strauss
[25] obtained the existence of global weak H1 solutions for defocusing nonlinear Schrödinger
equations with smooth (C3) boundary data. In the important field of control theory linear
well-posedness and controllability in H−1 was obtained for Dirichlet data in L2 when Ω is a
smooth bounded domain. While optimal on bounded domains, this “loss” of one derivative
on the boundary data is not natural in general. On the half line, it is generally believed that
for initial data u0 ∈ Hs(R+), then optimally g ∈ Hs/2+1/4(R+) (see [14] for a discussion on
this). This pair of spaces is considered to be optimal for at least two reasons : if one rescales
solutions as u(λx, λ2t) both spaces scale as λs−1/2, and the space also appears in the famous
Kato smoothing property for the Cauchy problem : ‖eit∂2

xu0‖L∞x Hs/2+1/4
t

. ‖u0‖Hs (see [18]),

which can be read as a trace estimate.
The natural generalization of Hs/2+1/4(R+) in larger dimension is the anisotropic Sobolev

space Hs+1/2,2(∂Ω× [0, T ]) = L2
TH

s+1/2∩Hs/2+1/4
T L2 of functions that, roughly speaking have

twice more regularity in space than in time. We obtained in [4] well-posedness for the linear
Schrödinger equation on the half space with boundary conditions having this regularity (and
satisfying some Kreiss-Lopatinskii condition). However the method relied quite heavily on the
simple geometry of Ω. When Ω is the exterior of a nontrapping obstacle, a simple duality
argument was used in [5] to obtain the following linear result :

Theorem 0.1. [5]

For f ∈ L2
TH

s−1/2 compactly supported, g ∈ Hs+1/2,2
0 (∂Ω× [0, T ]), u0 ∈ Hs

D, −1/2 < s ≤ 3/2,
the initial boundary value problem (IBV P ) has a unique transposition solution. It satisfies

‖u‖CTHs . ‖f‖L2
TH

s−1/2 + ‖g‖
H
s+1/2
0

+ ‖u0‖Hs
0
.

In the case s = −1/2, the result is true if H−1/2 is replaced by (H
1/2
D )′.

Thanks to a virial identity, we also obtained a local smoothing property similar to the one
in [9] which allowed to derive Strichartz estimates with a loss of 1/p derivative. Well-posedness
in H1/2 for the expected range of nonlinearities followed by the usual fixed point argument.
This work contained however a number of important limitations :

• The virial estimate was derived when Ω is the exterior of a strictly convex obstacle.

• Since the natural space for our virial estimate is H1/2, the local well-posedness theorem

was stated for u0 ∈ H1/2
D rather than the energy space H1.

• The linear well-posedness theorem was obtained for trivial compatibility conditions,

namely u0 ∈ H1/2
D (Ω), g ∈ H1,2

0 (∂Ω× [0, T ]).
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• Since such conditions are certainly not preserved by the flow, continuation arguments
were not available, so the existence of maximal solution (let alone global solution) was
out of reach.

The main purpose of this article is to lift most of the previous limitations to provide a good
local and global Cauchy theory in the energy space. Rather than the exterior of a convex
compact obstacle we will only assume that Ω is the exterior of a compact star shaped obstacle.
On the other hand we do not improve the loss in the Strichartz estimates so that we obtain
local well-posedness for a range of nonlinearities essentially similar to |u|αu with the limitation
α < 2/(d− 2) (the whole subcritical range is α < 4/(d− 2) ). In the case where Ωc is strictly
convex however, we improve it to α < 3/(d− 2). These results are true for boundary data in
the almost optimal space H3/2+ε,2 and a discussion is included on the possibility to replace it
by the optimal space. If one takes sligthly smoother boundary data in H2+ε,2(∂Ω× [0, T ]), we
obtain global well-posedness for α < 2/(d−2) if Ωc is star shaped, and for the whole subcritical
range α < 4/(d− 2) if Ωc is strictly convex. The existence of global solutions for g ∈ H3/2+ε,2

is much more intricate, and is only obtained in dimension 2 with a quite techical limitation on
α.
The presence of ε in the trace spaces can most likely be avoided up to lengthier computations
that we chose to avoid for simplicity of the proofs (see Remarks 3.4, 3.6, 4.1).

Structure of the article

• The functional spaces that we use are defined in section 1, which also provide some useful
trace and interpolation results.

• In section 2 we define the natural compatibility conditions and we prove well-posedness
for the linear IBVP when such conditions are met.

• In section 3 we provide the basic modifications to the proof in [5] that give local smoothing
through a virial estimate when Ω is star shaped. The boundary data is assumed to be
in the almost optimal space H3/2+ε,2. We deduce Strichartz estimates at the H1 level
thanks to an interpolation argument, this section also includes a smoothing property on
∂nu that is essential for global existence issues.

• In section 4 we prove the nonlinear well posedness results stated above.

• The appendix contains two elementary interpolation results.

1 Functional spaces and Strichartz estimates

Functional spaces For p ≥ 1 we denote Lp(Ω) the usual Lebesgue spaces. If there is no
ambiguity, when X is a Banach space we write

Lp([0, T ], X) = LpTX, L
p(R+, X) = LptX.
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For m integer we denote Wm,p(Ω) the usual Sobolev spaces, Wm,p
0 is the closure of C∞c (Ω) for

the Wm,p topology.
For s ≥ 0, the space W s,p(Ω) is defined by real interpolation, see [26] sections 32 and 34. When
p = 2, the Sobolev spaces are denoted Hs, Hs

0 . For s > 0, we set H−s(Ω) = (Hs
0(Ω))′.

For s ≥ 0 and ∆D the Dirichlet laplacian on Ω, the space Hs
D is the domain of (1 −∆D)s/2.

When 1/2 < s ≤ 1, Hs
D = Hs

0 , when 0 ≤ s < 1/2, Hs
D = Hs. The space H

1/2
D does not coincide

with H
1/2
0 = H1/2 (it is the Lions-Magenes space H

1/2
00 but we will use the notation H

1/2
D ).

The Besov spaces Bs
p,q(Ω) are the restrictions to Ω of functions in Bs

p,q(Rd) ([26], sections 32
and 34). For s ≥ 0, s /∈ N, we have Bs

p,p = W s,p (see [6],[26]). The spaces Bs
p,q,0 are defined as

the closure of C∞c (Ω) in Bs
p,q.

The anisotropic Sobolev spaces on [0, T ]× Ω are defined as

Hs,2 = L2([0, T ], Hs(Ω) ∩Hs/2([0, T ], L2(Ω)).

Anisotropic Besov spaces can be defined in a similar way (see [1]):

Bs,2
p,q,0 = LpTB

s
p,q,0 ∩Bs/2

p,q ([0, T ], Lp(Ω)).

Finally, we use the same definitions for functions defined on ∂Ω or ∂Ω× [0, T ] using local maps.

We recall in the following proposition the classical rules on embeddings and traces of functional
spaces.

Proposition 1.1. (Sobolev embeddings and traces [20],[27])

• If 0 ≤ sp < d, t ≥ 0 we have Bt+s
p,q (Ω) ↪→ Bs

p1,q, 1/p1 = 1/p− s/d.

• If sp > d, W s,p ↪→ C0(Ω), sp < d then W s,p ↪→ Lq(Ω), 1/q = 1/p− s/d.

• If sp > 1, the trace operator C∞(Ω) 7→ C∞(∂Ω) extends continuously W s,p(Ω) 7→
W s−1/p,p(∂Ω).

• For 0 ≤ s′ ≤ s/2, the anisotropic spaces Hs,2(Ω× [0, T ]) are embedded in Hs′
T H

s−2s′.

• For s > 1/2, the trace operator is continuous Hs,2(Ω× [0, T ]) 7→ Hs−1/2,2(∂Ω× [0, T ]).

• For s > 1, O = Ω or ∂Ω, there is a time-trace operator from the embedding Hs,2([0, T ]×
O) ↪→ C([0, T ], Hs−1(O)).

For s0, s1 ≥ 0 we have the interpolation identity (see [27])

[Bs0
p,q0 , B

s1
p,q1 ]θ,q = Bθs0+(1−θ)s1

p,q .

Similar interpolation results are true for anisotropic Sobolev spaces. In [20] it is proved that
for s > 0, O = Ω or ∂Ω, 0 ≤ θ ≤ 1, t = θs, Ht,2([0, T ]×O) = [L2, Hs,2]θ.
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In addition to their nice interpolation properties, composition rules in Besov spaces are rela-

tively simple : if |∇F (z)| . |z|α, for 0 < s < 1, 1 ≤ q ≤ ∞, 1 ≤ p ≤ r ≤ ∞,
1

σ
+

1

r
=

1

p
, we

have
‖u‖Bsp,q . ‖u‖

α
Lασ‖u‖Bsr,q , (1.1)

this is proposition 4.9.4 in [10] when Ω = Rd, and it follows from the existence of an (universal)
extension operator when Ω is an exterior domain, see [1] sections 4.1, 4.4.
Since anisotropic Besov spaces are more intricate and scarcely used in the article, we will cite
their needed properties only at the point where it will be needed, pointing to the reference [1]).

Finally, we recall some Strichartz estimates known for the boundary value problem with ho-
mogeneous boundary condition.

Theorem 1.1. [9],[15]
If Ω is the exterior of a non-trapping obstacle, then for any T > 0,

‖eit∆Du0‖LptLq . ‖u0‖L2 ,
1

p
+
d

q
=
d

2
, p ≥ 2. (1.2)

If Ω is the exterior of a strictly convex obstacle then

‖eit∆Du0‖LpTLq . ‖u0‖L2 ,
2

p
+
d

q
=
d

2
, p > 2. (1.3)

2 Linear well-posedness

In this section, we assume that Ω is the exterior of a compact non trapping obstacle. We recall
what we mean by “transposition solution” in theorem 0.1:

Definition 2.1. Let χ ∈ C∞c (Rd), f ∈ L2
TH
−1(Ω). We say that u is a transposition solution

of the problem 
i∂tu+ ∆u = χf ∈ L2

TH
−1,

u|t=0 = u0 ∈
(
H

1/2
D (Ω)

)′
,

u|∂Ω×[0,T ] = g ∈ L2([0, T ]× ∂Ω),

(2.1)

when u ∈ CT (H
1/2
D )′, and for any f1 ∈ L1

TH
1/2
D , if v is the solution of

i∂tv + ∆v = f1,
v|t=T = 0,
v|∂Ω×[0,T ] = 0,

(2.2)

we have the identity∫ T

0
〈u, f1〉(H1/2

D )′,H
1/2
D

dt =

∫ T

0
〈f, χv〉H−1,H1

0
dt+

∫ T

0
(g, ∂nv)L2(∂Ω)dt+ i〈u0, v(0)〉

(H
1/2
D )′,H

1/2
D

,

(2.3)
(where 〈·, ·〉X,X′ is the duality product).
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In our previous work [5] we obtained by derivation/interpolation arguments well-posedness

for (u0, g) ∈ Hs
D×H

s+1/2,2
0 , the aim of this section is to extend it to (u0, f, g) ∈ Hs×Hs−1/2,2×

Hs+1/2,2 for any s ≥ −1/2, and natural compatibility conditions that we derive now.

Compatibility conditions: We consider the linear initial boundary value problem (IBV P )
i∂tu+ ∆u = f, (x, t) ∈ Ω× [0, T [,
u|t=0 = u0, x ∈ Ω,
u|∂Ω×[0,T ] = g, (x, t) ∈ ∂Ω× [0, T [.

(2.4)

Local compatibility If u0 ∈ Hs, g ∈ Hs+1/2,2, s > 1/2, then u0 has a trace on ∂Ω and
g has a trace at t = 0, the identity u|t=0|∂Ω = u|∂Ω|t=0 imposes the zeroth order compatibility
condition

u0|∂Ω = g|t=0. (CC0)

The next compatibility conditions are defined inductively: set ϕ0 = u0, ϕn+1 = 1
i

(
∂nt f |t=0 −

∆ϕn), the k-th order compatibility condition is

∂kt g|t=0 = ϕk|∂Ω, (CCk)

which must be satisfied if u0 ∈ Hs(Ω), g ∈ Hs+1/2,2(∂Ω × [0, T ]), f ∈ Hs−1/2,2(Ω × [0, T ]),
s > 2k + 1/2.

Global compatiblity If s = 1/2, there is a more subtle compatibility condition, the
so-called “global compatibility condition”: thanks to local maps, we can assume that u0, g
are defined by a collection of (uj0, f

jgj)1≤j≤J defined on Rd−1 × R+ (R+ corresponds to the

t-variable for gj and normal space variable for uj0, f
j ), we say that (u0, g) satisfy the zeroth

order global compatibility condition when

∀ 1 ≤ j ≤ J,
∫ ∞

0

∫
Rd−1

|uj0(x′, h)− gj(x′, h2)|2dx′dh
h
<∞, (CCG0)

similarly we define the global compatibility conditions of order k for s = 1/2 + 2k as

∀ 1 ≤ j ≤ J,
∫ ∞

0

∫
Rd−1

|ϕjk(x
′, h)− ∂kt gj(x′, h2)|2dx′dh

h
<∞, (CCGk)

It is standard ([19]) that (CCk) is stronger than (CCGk).
In the rest of the article, we say that (u0, f, g) ∈ Hs ×Hs−1/2,2 ×Hs+1/2,2 “satisfy the com-
patibility conditions” when all conditions that make sense are satisfied, namely (CCk) holds
for k < s/2− 1/4, and also (CCGk) if s = 1/2 + 2k.
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Theorem 2.1. For −1/2 < s ≤ 3/2, let (u0, f, g) ∈ Hs × L2
TH

s−1/2 × Hs+1/2,2 such that f
is compactly supported and (u0, f, g) satisfy the compatibility conditions, then the solution of
(IBV P ) is in CTH

s.
For s > 3/2, (u0, f, g) ∈ Hs×Hs−1/2,2×Hs+1/2,2 satisfying the compatibility conditions, then
u ∈ CTHs.

The spirit of the proof is relatively similar to the classical argument of Rauch-Massey[23] for
hyperbolic boundary value problems. Let us describe it and where the difficulty lies: the natural
idea is to consider ∆u, which is formally solution of a similar boundary value problem, the low

regularity theorem implies ∆u ∈ CT (H
1/2
D )′, and we conclude by an elliptic regularity argument

that u ∈ CTH3/2. However due to the weak settings it is not clear that ∆u is actually solution
of the expected boundary value problem. For “trivial” compatibility conditions it is sufficient
to approximate the initial data by (u0,n, gn, fn) ∈ C∞c (Ω) × C∞c (∂Ω×]0, T ]) × C∞c (Ω×]0, T ])
which automatically satisfy the compatibility conditions at any order. In general the existence
of smooth data that satisfy the compatibility conditions at a sufficient order will be done in
lemma 2.2.

Lemma 2.1. If (u0, f, g) ∈ H3/2 × L2
TH

1 ×H2,2, f compactly supported and (CC0) satisfied,
the unique transposition solution of (IBV P ) belongs to CTH

3/2.
For k ≥ 2, if (u0, f, g) ∈ H2k−1/2 ×H2k−1,2 ×H2k,2, f compactly supported and (CCj), 0 ≤
j ≤ k − 1) satisfied, the unique transposition solution of (IBV P ) belongs to CTH

2k−1/2.

The proof is postponed after the following approximation lemma:

Lemma 2.2. For (u0, f, g) ∈ H3/2(Ω)×L2([0, T ], H1(Ω))×H2,2([0, T ]×∂Ω) satisfying (CC0),
there exists a sequence (u0,k, fk, gk) ∈ H2 ×H2,2 ×H5/2,2 satisfying (CC0) such that

‖(u0, f, g)− (u0,k, fk, gk)‖H3/2×L2
TH

1×H2,2 −→k 0.

Proof. By density of smooth functions in Sobolev spaces, there exists (vk, fk, gk) smooth such
that (vk, fk, gk) −→k (u0, f, g) (H3/2 × L2

TH
1 ×H2,2), however the sequence a priori does not

satisfy (CC0). Let us modify u0,k = vk +ϕk, it is sufficient to construct ϕk ∈ H2(Ω) such that
‖ϕk‖H3/2 −→k 0 and

ϕk|∂Ω = gk|t=0 − vk|∂Ω, (2.5)

This is an underdetermined system on (∂jnϕk)0≤j≤1 that we close by imposing ∂kϕk = 0 : we
define ϕk ∈ H2 as the lifting of (gk|t=0 − vk|∂Ω, 0). From standard trace theory there exists a
lifting operator

L : H3/2(∂Ω) 7→ H2(Ω)

b 7→ v such that v|∂Ω = b, ∂nv = 0,

such that it extends continuously as a lifting operator H1 → H3/2 (on the half space in Fourier

variables ξ = (ξ′, ξd) one may take L̂b = b̂(ξ′)h(ξd/
√

1 + |ξ′|2)/
√

1 + |ξ′|2) with h smooth
compactly supported,

∫
hdξ1 = 1,

∫
ξ1hdξ1 = 0, see [19] for more details). In particular we

have ‖gk|t=0 − vk|∂Ω‖H1 → ‖g|t=0 − u0|∂Ω‖H1 = 0 which implies ‖ϕk‖H3/2 → 0.
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Proof of lemma 2.1
We first detail the case s = 3/2 and will deal with s = −1/2+2k, k ∈ N by induction. Let u be
the solution of (IBV P ). If (CC0) is satisfied, then there exists (u0,k, gk, fk) as in lemma 2.2,
and we note uk the associated solutions. Since ‖uk−u‖CT (H

1/2
D )′
−→k 0, it is sufficient to prove

the convergence of uk in CTH
3/2. We first check that uk ∈ CTH2. Let g̃k ∈ H3,2(Ω × [0, T ])

be a lifting such that (for its existence, see [20], chapter 4 section 2){
g̃k|∂Ω×[0,T ] = gk,

∆g̃k|∂Ω×[0,T ] = fk|∂Ω×[0,T ] − i∂tgk,

We define

wk = eit∆D(u0,k − g̃k|t=0) +

∫ t

0
ei(t−s)∆D(fk − i∂tg̃k −∆g̃k)ds,

the solution of the homogeneous IBVP with initial data u0,k − g̃k|t=0 and forcing term fk −
i∂tg̃k − ∆g̃k, so that uk = wk + g̃k. The embedding H3,2 ↪→ CTH

2 and (CC0) then implies
u0,k − g̃k|t=0 ∈ H2

D, fk − i∂tg̃k −∆g̃k ∈ L1
TH

2
D thus wk ∈ CTH2

D and uk = wk + g̃k ∈ CTH2.
In particular ∆uk ∈ CTL2 and we can now check that it is the transposition solution of the
following IBVP 

i∂tvk + ∆vk = ∆fk, (x, t) ∈ Ω× [0, T [,
vk|t=0 = ∆u0,k, x ∈ Ω,
vk|∂Ω×[0,T ] = −i∂tgk + fk|∂Ω×[0,T ].

(2.6)

that is to say (2.3) is satisfied with data (∆u0,k,∆fk,−i∂tgk + fk|∂Ω×[0,T ]).

Let ϕ ∈ C∞([0, T ], C∞c (Ω)), we set w =
∫ t
T e

i(t−s)∆D∆ϕds the solution of the dual boundary
value problem with data ∆ϕ . By definition of uk∫∫

Ω×[0,T ]
∆ukϕdxdt =

∫∫
Ω×[0,T ]

uk∆ϕdxdt

=

∫∫
Ω×[0,T ]

fkwdxdt+ i

∫
Ω
u0,kw(0)dx+

∫∫
∂Ω×[0,T ]

gk∂nwdSdt.
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Now since w = ∆
∫ t
T e

i(t−s)∆Dϕds := ∆v, where v ∈ C1H2
D, we can write:∫∫

Ω×[0,T ]
∆ukϕdxdt =

∫∫
[0,T ]×Ω

fk∆vdxdt+ i

∫
Ω
u0,n∆v(0)dx+

∫∫
∂Ω×[0,T ]

gk∂n∆vdSdt

=

∫∫
Ω×[0,T ]

∆fkvdxdt+ i

∫
Ω

∆u0,kv(0)dx+ i

∫
∂Ω
u0,k∂nv(0)dx

+

∫∫
∂Ω×[0,T ]

gk∂n(−i∂tv + ϕ) + fk∂nvdSdt

=

∫∫
Ω×[0,T ]

∆fkvdxdt+

∫∫
∂Ω×[0,T ]

(fk − i∂tgk)∂nvdSdt

+i

∫
Ω

∆u0,kv(0)dx+ i

∫
∂Ω
u0,k∂nv(0)dS + i[

∫
∂Ω
gk∂nvdS]T0

=

∫∫
Ω×[0,T ]

∆fkvdxdt+

∫∫
∂Ω×[0,T ]

(fk − i∂tgk)∂nvdSdt

+i

∫
Ω

∆u0,kv(0)dx,

where in the last equality we used (CC0) and the cancellation of v|t=T . Since the equality is

true for arbitrary ϕ, by density of C∞([0, T ], C∞c (Ω)) in L1
TH

1/2
D , we obtain that ∆uk is the

transposition solution of (2.6), and ∆uk converges in CT (H
1/2
D )′ since ∆u0,k, ∆fk, i∂tgk −

fk|∂Ω×[0,T ] converge in (H1/2)′D×L2
TH
−1×L2. Arguing as in the end of proof of proposition 6

in [5], we obtain the convergence of uk in CTH
3/2 and its limit is u by uniqueness of the limit.

This settles the case s = 3/2.
For s = −1/2 + 2k, k ≥ 2 we argue by induction. Let us introduce the boundary value
problems 

i∂tv + ∆v = ∆mf, (x, t) ∈ Ω× [0, T [,
v|t=0 = ∆mu0, x ∈ Ω,
v|∂Ω×[0,T ] = ψm|∂Ω×[0,T ],

(IBVPm)

where ψm is defined inductively by ψ0 = g, ψj+1 = ∆jf |∂Ω×[0,T ] − i∂tψj . We assume that

(u0, f, g) ∈ H−1/2+2k ×H−1+2k,2 ×H2k,2 satisfy (CCj), 0 ≤ j ≤ k− 1, and ∆ju is solution of
(IBVPj) for 0 ≤ j ≤ k − 1. In particular ∆k−1u is solution of (IBVPk − 1) and the previous
argument implies that ∆k−1u ∈ CTH3/2 if (∆k−1u0,∆

k−1f, ψk−1) belong toH3/2×L2
TH

1×H2,2

and satisfy the compatibility condition ψk−1|t=0 = ∆k−1u0|∂Ω. The first condition is clear
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since1 ψj ∈ H2k−j(∂Ω× [0, T ]) and for the compatibility condition we may note that

∀ j ≥ 1, ψj = (−i∂t)jg +

j−1∑
p=0

(−i∂t)p∆j−1−p f

i

∣∣∣∣
∂Ω×[0,T ]

,

ϕj = (i∆)ju0 +

j−1∑
p=0

∂j−1−p
t (i∆)pf |t=0,

so that ψk−1|t=0 = ∆k−1u0 is equivalent to (CCk − 1). Thus ∆k−1u ∈ CTH3/2 and ∆ju|∂Ω =
ψj ∈ H2(k−j) ↪→ CTH

2(k−j)−1, 0 ≤ j ≤ k − 2, so that by elliptic regularity u ∈ CTH2k−1/2.

�

We can now conclude this section :

Proof of theorem 2.1:
We have obtained well-posedness for s = −1/2, 3/2. The case −1/2 ≤ s ≤ 3/2 follows by
interpolation if we check that Hs × Hs+1/2,2 × L2

TH
s−1/2 with compatiblity condition is the

interpolated space between (H
1/2
D )′×L2×L2

TH
−1/2 and H3/2×H2,2×L2

TH
1 with compatibility

condition, this is proved in lemma A.1 in the appendix.
For s ≥ 3/2, let m ∈ N such that −1/2 + 2m ≤ s < −1/2 + 2(m+ 1). The case of equality is
lemma 2.1, in the case of strict inequality we recall that ∆mu is solution of (IBV Pm), where it
is easily seen that if (f, g) ∈ Hs−1/2,2(Ω× [0, T ])×Hs+1/2(∂Ω× [0, T ]) then ψm ∈ Hs+1/2−2m.
Since −1/2 ≤ s− 2m ≤ 3/2 we have from the previous case ∆mu ∈ CTHs−2m, the regularity
of u follows by elliptic regularity.

�

3 Dispersive estimates

From now on we assume that Ωc is star shaped, up to translation we can assume also that it
is star shaped with respect to 0.

Local smoothing

Let us first recall the key virial identity:

1Actually, the careful reader may note that the regularity of the boundary data only requires f ∈
H2m−3/2+ε,2, ε > 0 rather than H2m−1,2. This is not important as the dispersive estimates in next section
require the full regularity f ∈ H2m−1,2.
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Proposition 3.1. [5] If u is a smooth solution of (IBV P ), h ∈ Ck(Ω), ∇kh bounded for
1 ≤ k ≤ 4, I(u) = 2Im

∫
Ω∇h · ∇uudx, then setting ∇τ = ∇− n∂n

d

dt
I(u(t)) = 4Re

∫
Ω

Hess(h)(∇u,∇u)− 1

4
|u|2∆2h+∇h · ∇uf +

1

2
u∆hf dx

+Re

∫
∂Ω

2∂nh|∇τu|2 − 2∂nh|∂nu|2 − 2i∂nh∂tuudS

+Re

∫
∂Ω
−2u∆h∂nu+ |u|2∂n∆hdS.

For the choice h(x) =
√

1 + |x|2, we have Hess(h) ≥ 1/(1 + |x|2)3/2, ∂nh ≤ 0 (because Ω is
star shaped), this leads to the following result:

Proposition 3.2. For any ε > 0, (u0, f, g) ∈ H1/2(Ω)×L2(Ω×[0, T ])×H1+ε,(1+ε)/2(∂Ω×[0, T ])
that satisfy (CCG0), f compactly supported, we have

‖∇u/(1 + |x|2)3/4‖L2([0,T ],L2(Ω) + ‖∂nu‖L2(∂Ω×[0,T ]) .
(
‖u0‖H1/2 + ‖f‖L2 + ‖g‖H1+ε,2

)
Remark 3.3. The constant in . depend on ε, T and the size of supp(f) and blows up if ε→ 0,
T → ∞ or supp(f) → Ω. We chose not to emphasize this as it will not matter in the rest of
the article.

Proof. The proof was essentially done in [5] for a strictly convex obstacle, we write it since it
must be slightly modified for the case of a star shaped obstacle. We use that f is compactly
supported to absorb the term

∫
∇h∇ufdx in

∫
Hess(h)(∇u∇u)dx, and Ωc is star shaped thus

∂nh ≤ 0 (n is the outer normal of Ω), integration in time gives

‖∇u/(1 + |x|2)3/4‖2L2(Ω×[0,T ]) . ‖u‖2L2(Ω×[0,T ]) + ‖f‖2L2(Ω×[0,T ]) + ‖g‖2H1+ε,2(∂Ω×[0,T ]).

+|I(u(T ))|+ |Iu0|

To estimate |I(u(T ))|+ |I(u(0))| the main issue is that ∇u ∈ (H
1/2
D )′, which is slightly larger

than H−1/2. Following the notations of lemma A.1, we first remark that the assumptions
of the lemma imply (u0, g) ∈ X1/2 and we use the lifting operator g ∈ Hs,s/2 7→ R1g ∈
Hs+1/2,s/2+1/4(Ω × [0, T ]). If (u0, g) ∈ X3/4 then (u0 − R1g|t=0, u(T ) − R1g|t=T ) ∈

(
H1

0 (Ω)
)2

while if (u0, g) ∈ X1/3, (u0 −R1g|t=0, u(T )−R1g|t=T ) ∈
(
H1/6(Ω)

)2
, thus by interpolation

(u0, g) ∈ X1/2 ⇒ (u0 − g̃|t=0, u(T )− g̃|t=T ) ∈
(
H

1/2
D (Ω)

)2
.

This implies for t ∈ [0, T ]∣∣ ∫
Ω
u(t)−R1g(t)∇u · ∇hdx

∣∣ . ‖u‖C([0,T ], H1/2)‖g‖H1,2
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On the other hand, an integration by part formally gives∣∣ ∫
Ω
R1g(t)∇u · ∇hdx

∣∣ ≤ ∣∣ ∫
Ω
udiv

(
R1g(t)∇h

)
dx
∣∣+
∣∣ ∫

Ω
gR1g(t)∂nhdx

∣∣
≤ Cε

(
‖u(t)‖H1/2−ε‖‖R1g(t)‖H1/2+ε + ‖g(t)‖2L2

)
≤ Cε

(
‖u‖CT , H1/2‖g‖H1+ε,2 + ‖g‖2H1+ε,2

)
,

so that by a density argument we obtain

‖∇u/(1 + |x|2)3/4‖L2(Ω×[0,T ]) ≤ Cε,T
(
‖u‖CT H1/2 + ‖g‖H1+ε,2 + ‖f‖L2

)
≤ Cε,T

(
‖u0‖H1/2 + ‖f‖L2 + ‖g‖H1+ε,2

)
. (3.1)

The estimate on ‖∂nu‖L2 can not in general be obtained directly through the virial identity
with h =

√
1 + |x|2 since we may have for some x ∈ ∂Ω, ∂nh = x · n/

√
1 + |x|2 = 0. However

once local smoothing has been obtained it is quite simple to derive an estimate on ∂nu. The
argument that we give now is essentially the same than the one from [22] for the homogeneous
case. Using the identity from proposition 3.1 with some h smooth, compactly supported such
that ∂nh < 0, we obtain

‖∂nu‖2L2 . |I(u(T ))|+ |I(u0)|+ ‖u‖2L2 + ‖f‖2L2 + ‖g‖H1+ε,2 +

∫ T

0

∫
Ω

Hess(h)(∇u,∇u)dxdt,

the integral of Hess(h)(∇u,∇u)dx is no longer positive, however since h is compactly supported
it is controlled thanks (3.1).

We can now state the local smoothing property for more general regularity:

Corollary 3.1. Let ε > 0, 1/2 ≤ s < 2, (u0, f, g) ∈ Hs(Ω) × Hs−1/2,2(Ω × [0, T ]) ×
Hs+1/2+ε,2(∂Ω × [0, T ]) satisfying the compatibility conditions, f compactly supported, ε > 0,
the solution u ∈ CTHs of (IBV P ) has the local smoothing property:

‖u/(1 + |x|2)3/4‖L2
TH

s+1/2 + ‖∂nu‖Hs−1/2,2 . ‖u0‖Hs + ‖g‖Hs+ε+1/2,2 + ‖f‖Hs−1/2,2 .

Proof. The case s = 1/2 is proposition 3.2. For s = 5/2, we have already seen that ∆u
is solution of the IBVP with forcing term ∆f , initial conditions ∆u0 and boundary data
−i∂tg + f |∂Ω×[0,T ], thus the local smoothing implies

‖∇∆u/(1 + |x|2)3/4‖L2(Ω×[0,T ]) . ‖u0‖H5/2 + ‖f‖L2
TH

2 + ‖g‖H3+ε,2 + ‖f‖H1+ε,2(∂Ω×[0,T ])

. ‖u0‖H5/2 + ‖f‖L2
TH

2 + ‖g‖H3+ε,2 + ‖f‖H3/2+ε,2(Ω×[0,T ])

. ‖u0‖H5/2 + ‖f‖H2,2(Ω×[0,T ]) + ‖g‖H3+ε,(3+ε)/2 .

Elliptic regularity then implies the estimate on ‖u/(1 + |x|2)3/4‖H3 . The control of ‖∂nu‖H2,2

requires a bit more care since we can not use directly the estimate on ∂n∆u: for x0 ∈ ∂Ω, we
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use local coordinates (y1, · · · , yd) such that on a neighbourhood U of x0, ∂Ω ∩ U = {yd = 0},
Ω ∩ U ⊂ {yd > 0} and we define the differential operators Dk = ϕ(y1, · · · , yd−1)ψ(yd)∂yk , 1 ≤
k ≤ d− 1, ϕ,ψ such that supp(ϕψ) ⊂ U and ψ = 1 on a neighbourhood of 0. Setting Dk = 0
outside U , the Dks define second order differential operators on Ω and by restriction on ∂Ω.
For 1 ≤ k, p ≤ d − 1, it can be checked as for ∆u that ukp = DkDpu is the transposition
solution of 

i∂tw + ∆w = DkDpf + [∆, DkDp]u,
w|t=0 = DkDpu0,
w|∂Ω = DkDpg,

where the commutator [∆, DkDp] is a third order differential operator. The virial identity
gives

dI(ukp)

dt
=4Re

∫
Ω

Hess(h)(∇ukp,∇ukp)−
1

4
|ukp|2∆2h+∇h · ∇ukp

(
DkDpf + [∆, DkDp]u

)
dx

+ 2Re

∫
Ω
ukp∆h(DkDpf + [∆, DkDp]u)dx

+ Re

∫
∂Ω

2∂nh|∇τukp|2 − 2∂nh|∂nukp|2 − 2i∂nh∂tukpukpdS

+ Re

∫
∂Ω
−2ukp∆h∂nukp + |ukp|2∂n∆hdS,

Chosing h compactly supported such that ∂nh < 0 on suppDk as in the proof of proposition
3.2 gives an estimate on ‖∂nukp‖L2(∂Ω×[0,T ]) provided the new terms induced by [∆, DkDp]u
are controlled, this last point is consequence of the local smoothing∣∣∣∣4∫ T

0

∫
Ω
∇h · ∇ukp[∆, DkDp]u+

1

2
ukp∆h[∆, DkDp]udx

∣∣∣∣dt . ‖ukp‖L2
TH

1‖u‖L2
TH

3

. ‖u0‖2H5/2 + ‖f‖2H2,2

+‖g‖2H3+ε,2 .

This gives ‖∂nukp‖L2 . ‖u0‖H5/2 + ‖f‖H2,2 + ‖g‖H3+ε,2 . Since ψ = 1 on a neighbourhood of 0
and on U , ∂n = ∂yd , we have ∂nDkDp = DkDp∂n so that

‖DkDp∂nu‖L2(∂Ω×[0,T ]) . ‖u0‖H5/2 + ‖f‖H2,2 + ‖g‖H3+ε,2 ,

Finally, since ‖∂nu(t)‖H1 . ‖u(t)‖H5/2 and using a partition of unity we get

‖∂nu‖L2
TH

2 . ‖u0‖H5/2 + ‖f‖H2,2 + ‖g‖H3+ε,2 .

The time regularity of ∂nu can be obtained in a similar way by considering the IBVP satisfied by
∂tu, the application of proposition 3.2 requires ∂tf ∈ L2(Ω× [0, T ]), ∂tu|t=0 = i∆u0− if |t=0 ∈
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H1/2, both conditions are ensured by f ∈ H2,2. Since ∂t∂n = ∂n∂t the local smoothing property
gives directly

‖∂t∂nu‖L2(∂Ω×[0,T ]) . ‖u0‖H5/2 + ‖f‖H2,2 + ‖g‖H3,2 .

The result for 1/2 ≤ s < 2 then follows by a (non trivial) interpolation argument similar to
lemma A.1 that we sketch now: setting

Y α = {(u0, f, g) ∈ Hα ×Hα−1/2,2 ×Hα+1/2,2 that satisfy the compatibility conditions},

it is sufficient to prove [Y 1/2, Y 5/2]θ ⊃ Y 2θ+1/2 for θ < 3/4. To get rid of the link between
u0, f, g, let us define H2,2

(0) (Ω× [0, T ]) = {f ∈ H2,2, f |∂Ω×{0} = 0}. Clearly

Y 5/2 ⊃ {(u0, f, g) ∈ H5/2 ×H2,2
(0) ×H

3,2 with (CC0), (CCG1)} := Y
5/2

(0) .

The key point of Y
5/2

(0) is that f |t=0 ∈ H1
0 so that the (f j)1≤j≤J introduced in the descrip-

tion of global compatibility conditions automatically satisfy
∫∞

0

∫
Rd−1 |f j(x′, h)|2dx′dh/h <∞.

Therefore the conditions (CC0), (CCG1) only involve u0 and g and

Y
5/2

(0) = {(u0, g) ∈ H5/2 ×H3,2 with (CC0), (CCG1)} ×H2,2
(0) .

For θ < 3/4, we have from proposition A.2 in the appendix [L2, H2,2
(0)}]θ = H2θ,2(Ω× [0, T ]). As

a consequence, setting (as in lemma A.1) X3/2 = {(u0, g) ∈ H5/2×H3,2 with (CC0), (CCG1)},
we are reduced to check that [X1/2, X3/2]θ = X1/2+θ, this can be done as in lemma A.1.

Remark 3.4. The loss of regularity on the boundary data can be avoided up to an arbitrary
loss on the local smoothing. Indeed for (u0, f, g) ∈ H1/2+ε×Hε,2×H1+ε,2, the virial estimate
implies u ∈ L2

TH
1, and from an argument similar to corollary 3.1 we find that for 1/2 + ε ≤

s < 2, (u0, f, g) ∈ Hs ×Hs−1/2,2 ×Hs+1/2,2, then u ∈ L2
TH

s+1/2−ε.
We chose to focus on the case where we lose some regularity on the boundary data because it
avoids the use of peculiar numerology for the Strichartz estimates and well-posedness theorems
in the rest of the article, however we will continue to discuss this alternative approach in
remarks 3.6 and 4.1.

The estimate is restricted to functions f compactly supported near ∂Ω. For the well-
posedness results of next section we will also need smoothing of the normal derivative when f
is supported “away from ∂Ω” :

Proposition 3.5. Let w be the solution of the homogeneous boundary value problem
i∂tw + ∆Dw = f,
w|t=0 = 0,
w|∂Ω = 0,

then w satisfies the estimate

‖∂nw‖H1/2,2(∂Ω×[0,T ]) . ‖f‖B1,2
3/2,2,0

.
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Proof. From the Strichartz estimate in [9], we have

‖w‖
CTH

1/2
D ∩L3W

1/2,3
0

. ‖f‖
L

3/2
T W

1/2,3/2
0

,

The virial identity gives

‖∂nw‖2L2(∂Ω×[0,T ]) . ‖u‖CTH1/2
D

+ ‖u‖
L3
TW

1/2,3
0

‖f‖
L3/2W

1/2,3/2
0

. ‖f‖2
L3/2W

1/2,3/2
0

.

and similarly using the same differentiation arguments as in corollary 3.1, we get 2

‖∂nw‖H2,2(∂Ω×[0,T ]) . ‖f‖L3/2
T W

5/2,3/2,2
0 ∩W 5/4,3/2

T L3/2 .

Let us recall that for s ≥ 0, s /∈ N, Bs,2
3/2,3/2,0(Ω × [0, T ]) = W

s/2,3/2
T L3/2 ∩ L3/2

T W
s,3/2
0 . Using

real interpolation with parameter θ = 1/4 and q = 2 gives the expected result, as a consequence
of

[L3/2W
1/2,3/2
0 , L

3/2
T W

5/2,3/2
0 ∩W 5/4,3/2

T L3/2]1/4,2 ⊃ [B
1/2,2
3/2,3/2,0, B

5/2,2
3/2,3/2,0]1/4,2 = B1,2

3/2,2,0.

The first inclusion is clear, next the equality follows from the interpolation of anisotropic
Sobolev spaces, see the book of H. Amann [1], section 3.3 for the interpolation of anisotropic
spaces on Rd, and 4.4 for domains with corner.

Strichartz estimates

We deduce in this paragraph Strichartz estimates (with loss of derivatives) from the local
smoothing. Following the terminology of admissible pair (the (p, q) such that 2/p+d/q = d/2),
we say that (p, q) is a weakly admissible pair if

1

p
+
d

q
=
d

2
. (3.2)

Theorem 3.1. Let Ω ⊂ Rd, d ≥ 2 such that Ωc is star shaped with respect to 0. For ε > 0,
T < ∞, 1/2 ≤ s < 2, (u0, f, g) ∈ Hs × Hs−1/2,1/4 × Hs+1/2+ε,2 satisfying the compability
conditions, f compactly supported, then for any weakly admissible (p, q), the solution u ∈ CTH1

satisfies

∀ p, q ≥ 2,
1

p
+
d

q
=
d

2
, ‖u‖Lp([0,T ],W s,q(Ω) . ‖u0‖Hs + ‖g‖Hs+1/2+ε + ‖f‖Hs−1/2,1/4 .

2When differentiating in time, we obtain ∂tu|t=0 = −if |t=0 ∈W
7/6,3/2
0 ↪→ H1

0 ↪→ H
1/2
D , thus the initial data

for the problem satisfied by ∂tu is smooth enough to use the virial identity.
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Proof. The argument from [9], proposition 2.14 can be used with no meaningful modification
(see also [5], corollary 1). Let us sketch it briefly : we decompose u = χu + (1 − χu), χ
compactly supported, χ = 1 near ∂Ω ∪ supp(f). From the local smoothing property, χu ∈
L2
TH

s+1/2∩L∞T Hs, we have by (complex) interpolation u ∈ LpTHs+1/p. The Sobolev embedding
Hs+1/p ↪→ W s,q with 1

q = 1
2 −

1
dp and the local smoothing property from corollary 3.1 imply

χu ∈ LpTW s,q.
The function (1 − χ)u extended by 0 outside supp(1 − χ) satisfies a Schrödinger equation on
Rd, and the usual Strichartz estimates on Rd imply (by a standard but non trivial argument
that originates to [24])

‖(1− χ)u‖L2p([0,T ],W s,q . ‖u0‖Hs + ‖g‖Hs+1/2+ε,2 + ‖f‖Hs−1/2,1/4 .

From L2p([0, T ]) ⊂ Lp([0, T ]) we obtain the expected estimate.

Remark 3.6. Following the observations of remark 3.4, we could also prove an alternate

Strichartz estimate with optimal boundary data in Hs+1/2,2, but
1

p
+
d

q
=

d

2
+

2ε

p
, simply

by using the embedding Hs+1/2−ε ↪→W s,q1 , 1/q1 = 1/2− (1/2− ε)/d.

4 Non linear well-posedness

We consider here non linear IBVPs of the form
i∂tu+ ∆u = F (u), (x, t) ∈ Ω× [0, T [,
u|t=0 = u0, x ∈ Ω,
u|∂Ω×[0,T ] = g, (x, t) ∈ ∂Ω× [0, T [,

(NLS)

with the following assumptions on F ∈ C1(C): there exists α > 0 such that

|F (z)| . |z|(1 + |z|α), (4.1)

|∇F (z)| . (1 + |z|)α. (4.2)

For the smoothness of the flow we will assume F ∈ C2(C) and

|∇2F (z)| . (1 + |z|)max(α−1,0) (4.3)

Local well-posedness

Since our first result is local in time, we define

H
3/2+ε,2
loc (R+ × ∂Ω) = {g : ∀χ ∈ C∞c (R+), χ(t)g ∈ H3/2+ε,2(R+

t × ∂Ω)}.

We say that u ∈ CTH1 is a local solution to (NLS) if it satisfies i∂tu + ∆u = F (u) in the
sense of distributions (for u ∈ CTH1 all quantities in the equality make sense), u|∂Ω×[0,T ] = g
in the usual sense of traces and u|t=0 = u0.
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Theorem 4.1. If F satisfies (4.1, 4.2), then for any (u0, g) ∈ H1(Ω) × H
3/2+ε,2
loc (R+ × Ω)

satisfying (CC0), α < 2/(d−2), there exists a unique maximal solution u ∈ CT ∗H1 of (NLS).
The solution is causal in the sense that u(t) only depends of u0 and g|s≤t, and if T ∗ <∞, then
lim
t→T ∗

‖u(t)‖H1 = +∞.

If F satisfies (4.3) and d ≤ 3, then the solution map is Lipschitz from bounded sets of H1(Ω)×
H3/2+ε,2(R+ × Ω) to C([0, T ], H1) for any T < T ∗.

It will be convenient to introduce ũ the solution of
i∂tũ+ ∆ũ = F (g̃), (x, t) ∈ Ω× [0, T [,
ũ|t=0 = u0, x ∈ Ω,
ũ|∂Ω×[0,T ] = g, (x, t) ∈ ∂Ω× [0, T [,

(4.4)

where g̃ ∈ H2,2(Ω× [0, T ]) is a compactly supported lifting of g. Thus u must satisfy

∀ t ∈ [0, T ], u = ũ+

∫ t

0
ei(t−s)∆D

(
F (u)− F (g̃)

)
(s)ds.

According to theorems 2.1 and 3.1 we have ũ ∈ CTH1 ∩ L2
TW

1,q0 if F (g̃) ∈ H1/2,2. Actually
F (g̃) is smoother than needed:

Lemma 4.1. For ϕ ∈ H2,2(Ω× [0, T ]), F satisfying (4.1, 4.2), then F (ϕ) ∈ H1,2.

Proof. It is clear that F (ϕ) ∈ L2
TL

2, indeed

‖F (ϕ)‖L2
TL

2 . ‖ϕ‖L2
TL

2 + ‖ϕ‖1+α
L2(1+α) . ‖ϕ‖L2

TH
1(1 + ‖ϕ‖αL2

TH
1),

Since α < 2/(d− 2), there exists p, q satisfying

1

p
+

1

q
=

1

2
, min

(
α

2
,

1

d

)
≥ 1

p
>
α(d− 2)

2d
,

1

q
>
d− 2

2d
,

and Hölder’s inequality gives for any t ∈ [0, T ]

‖∇F (ϕ)(t)‖L2(Ω) . ‖(1 + |ϕ|α)∇ϕ‖L2

. ‖ϕ‖H1 + ‖ϕ‖αLαp‖∇ϕ‖Lq

. ‖ϕ‖H1 + ‖ϕ‖αH1‖ϕ‖H2 ,

where we used the Sobolev embedding H1 ↪→ Lq, 2 ≤ q ≤ 2d/(d− 2) (q <∞ if d = 2). From
the embedding H2,2 ↪→ CTH

1 we deduce taking the L2
T norm

‖∇F (ϕ)‖L2
TH

1 . ‖ϕ‖L2
TH

1 + ‖ϕ‖αL∞T H1‖ϕ‖L2
TH

2 . ‖ϕ‖H2,2(1 + ‖ϕ‖αH2,2).
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For the time regularity we have using Hölder’s inequalities again :

‖F (ϕ(t))− F (ϕ(s))‖L2(Ω) . ‖ϕ(t)− ϕ(s)‖L2 + ‖(|ϕ(t)|+ |ϕ(s)|)‖αLαp‖ϕ(t)− ϕ(s)‖Lq
. ‖ϕ(t)− ϕ(s)‖L2 + ‖(|ϕ(t)|+ |ϕ(s)|)‖αH1‖ϕ(t)− ϕ(s)‖H1 ,

thus the embedding H2,2 ↪→ H1/2([0, T ], H1(Ω)) gives

‖F (ϕ)‖2
Ḣ

1/2
T L2

=

∫∫
[0,T ]2

‖F (ϕ(t))− F (ϕ(s))‖2L2

|t− s|2
ds dt

. ‖ϕ‖2
H1/2L2 + ‖ϕ‖2αL∞T H1‖ϕ‖2

Ḣ
1/2
T H1

. ‖ϕ‖2H2,2(1 + ‖ϕ‖2αH2,2).

Proof of theorem 4.1

Uniqueness : the uniqueness can be done as in the case of homogeneous Dirichlet boundary
conditions from [9]. If u1, u2 are two solutions in CT ∗H

1, then w = u1 − u2 is solution of
i∂tw + ∆w = F (u1)− F (u2), (x, t) ∈ Ω× [0, T [,
w|t=0 = 0, x ∈ Ω,
w̃|∂Ω×[0,T ] = 0, (x, t) ∈ ∂Ω× [0, T [.

This is a homogeneous boundary value problem for which the Strichartz estimates (1.2) give
for (p, q) weakly admissible as in (3.2), (r′, s′) weakly admissible, T < T ∗

‖w‖L∞T L2∩LpTLq
. ‖w‖L1

TL
2 + ‖(|u1|+ |u2|)αw‖LrTLs ≤ T‖w‖L∞T L2 + +‖(|u1|+ |u2|)αw‖LrTLs .

If we can chose (r, s, p1, q1, p, q) satisfying

1

p
+
d

q
=
d

2
,

1

r
+
d

s
= 1 +

d

2
,

1

p1
+

1

2
=

1

r
,

1

q1
+

1

q
=

1

s
,

α(d− 2)

2d
<

1

q1
<
α

2
,

1

p
<

1

2
, 0 <

1

p1
< α,

(4.5)

we get from the Sobolev embedding and Hölder estimate in time

‖(|u1|+ |u2|)αw‖LrTLs . ‖|u1|+ |u2|‖αLαp1Lαq1‖w‖L2Lq

. T 1/2−1/p(‖u1‖L∞T H1 + ‖u2‖L∞T H1)α‖w‖LpLq ,

and thus w = 0 for 0 ≤ t ≤ T , T small enough only depending on ‖u1‖L∞H1 + ‖u2‖L∞H1 .
Iterating the argument implies u = v on [0, T ∗[. The system (4.5) implies

1 +
d

2
=

1

r
+
d

s
=

1

p1
+

1

2
+
d

q1
+
d

q
>

1

p1
+
d

2
+
α(d− 2)

2
+

(
1

2
− 1

p

)
, (4.6)
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which can be solved since α(d − 2)/2 < 1 : we first chose p > 2 close enough to 2 so that
α(d−2)/2+1/2−1/p < 1, then it is possible to chose p1 that satisfies (4.6) and 0 < 1/p1 < α,
up to increasing p we can assume 1/p1 < 1/2. The choice of p imposes the value of q > 2, the
choice of p1 imposes the value of 1 < r < 2, and then 1 < s < 2. The only equation left is
1/q1 = 1/s− 1/q, its solution 1/q1 belongs to ]0, 1[, and thus is an acceptable Hölder index.

Causality : it can be proved as for uniqueness, since if g1, g2 coincide on [0, t], the uniqueness
argument can be applied on [0, t] and implies the associated solutions satisfy u1|[0,t] = u2|[0,t].

Local existence : according to lemma 4.1, theorems 2.1 and 3.1, ũ ∈ CTH1 ∩L2
TW

1,q0 since
F (g̃) ∈ H1,2 ⊂ H1/2,2. Setting w = u − ũ, the local existence will be consequence of the
existence of a local solution to

i∂tw + ∆w = F (ũ+ w)− F (g̃),
w|t=0 = 0,
w|∂Ω×[0,T ] = 0.

This is a nonlinear homogeneous boundary value problem, the existence of a solution is essen-
tially a consequence of (the proof of) theorem 1 in [9]. As it does not strictly cover the case of
our nonlinearity, we sketch briefly the argument. Let us define the map L as:

L : XT = CTH
1
0 ∩ L

p
TW

1,q → CTH
1
0 ∩ L

p
TW

1,q,

w → L(w) =

∫ t

0
ei(t−s)∆D(F (ũ+ w)− F (g̃))ds,

we will check that is has a fixed point for T small enough. In [9], the authors prove that for a
convenient choice of weakly admissible pairs (p, q), (p1, q1) (depending on α < 2/(d − 2) and
d), the map L̃(w) =

∫ t
0 e

i(t−s)∆DF (w)ds satisfies

‖L̃w‖XT . T θ(‖w‖XT + ‖w‖1+α
XT

),

if d < 4, ‖L̃w1 − L̃w2‖XT . T θ
′‖w1 − w2‖XT (1 + ‖w1‖αXT + ‖w2‖αXT ),

if d ≥ 4, ‖L̃w1 − L̃w2‖CTL2∩Lp1L
q
1
. T θ

′′‖w1 − w2‖CTL2∩Lp1Lq1 (1 + ‖w1‖αXT + ‖w2‖αXT ),

where θ, θ′, θ′′ are positive, and the second inequality (d < 4) also requires the assumption
(4.3) on F (this is propositions 3.1, 3.3, 3.4, from [9], equations (3.9, 3.10) ).
Since F (ũ + w) − F (g̃) has trace 0 on ∂Ω × [0, T ], we can use these estimates. We recall
g̃ ∈ H2,2 ↪→ L∞T H

1 ∩ L2
TW

1,q0 , therefore setting M(w) = ‖w‖XT + ‖ũ‖XT + ‖g‖H3/2,2 the
estimates give directly in our case

‖Lw‖XT . T θ(M + (M)1+α), (4.7)

if d < 4, ‖Lw1 − Lw2‖XT . T θ
′‖w1 − w2‖XT (1 +

(
M(w1) +M(w2)

)α
), (4.8)

if d ≥ 4, ‖L̃w1 − L̃w2‖CTL2∩Lp1Lq1 . T θ
′′‖w1 − w2‖CTL2∩Lp1Lq1 (1 +

(
M(w1) +M(w2)

)α
),(4.9)
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If d < 4, from (4.7, 4.8) we can apply Picard-Banach’s fixed-point theorem in CTH
1 ∩LpTW 1,q

for some T
(
‖u0‖H1 +‖g‖H3/2+ε,2(∂Ω×[0,T ])

)
and also implies that the flow is Lipschitz. If d ≥ 4,

(4.7) implies that L sends some ball of XT to itself, and from (4.9) it is contractant in the
weaker space CTL

2 ∩ Lp1

T L
q1 . By a standard argument the metric space {u : ‖u‖XT ≤ M}

with distance d(u, v) = ‖u − v‖L∞T L2∩LpTLq
is complete (e.g. theorem 1.2.5 from [10]), so that

the existence of a solution is again a consequence of Picard-Banach’s fixed point theorem.

Blow-up alternative : this is a direct consequence of the fact that the time of local existence
only depends on ‖u0‖H1 + ‖g‖H3/2+ε . Let u be a solution on [0, T ∗[ such that lim‖u(t)‖H1 =
C <∞, δ such that T (2C+‖g‖H3/2+ε,2([T ∗−1,T ∗+1]×Ω)) ≥ 2δ. Up to decreasing δ, we can assume

‖u(T ∗− δ)‖H1 ≤ 2C. Since u ∈ CTH1 and u|∂Ω = g the couple u(T ∗− δ), g|[T ∗−δ,+∞[ satisfies
(CC0) on ∂Ω×{T ∗− δ}, thus (NLS) has a local solution on the time interval [T ∗− δ, T ∗+ δ].
Thanks to the uniqueness on [T ∗ − δ, T ∗[, this allows to extends the solution on [0, T ∗ + δ].

�

Remark 4.1. If one chooses to use rather the Strichartz estimate from remark 3.6, namely

‖u‖LpTW 1,q . ‖u0‖H1 + ‖g‖H3/2 + ‖f‖H1/2,1/4 ,
1

p
+
d

q
=
d

2
+

2ε

p
.

the restriction on α becomes (supposedly) α < (2− 4ε)/(d− 2). Consequently well-posedness
for the whole range α < 2/(d − 2) and boundary data in the optimal space H3/2,2 can most
likely be obtained, up to more involved with some ε in all indices.

Since our Strichartz estimates for the IBVP only give a gain of half a derivative, the
natural limitation on the nonlinearity is α < 2/(d − 2) (as in [9]). However better (scale
invariant) estimates are available for the homogeneous boundary value problem, and they can
be combined with our estimates to improve the range of α. The following theorem illustrates
this idea.

Theorem 4.2. If Ω is the exterior of a smooth strictly convex obstacle, then theorem 4.1 is
true for α < 3/(d− 2).

Proof. From [15], the usual Strichartz estimates with (p, q) such that 2/p+ d/q = d/2, p > 2,
are true for the semi group eit∆D . The uniqueness in L∞T H

1 follows from standard arguments,
see e.g. [10] section 4.2. The existence part is again an application of the Picard-Banach’s
fixed point theorem : let (p, q) be weakly admissible p > 2 such that

α <
2

d− 2

(
1 +

1

p

)
. (4.10)

We set XT = CTH
1 ∩ LpTW 1,q, and as in theorem 4.1:

L : w → L(w) =

∫ t

0
ei(t−s)∆D(F (ũ+ w)− F (g̃))ds.
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From the Sobolev embedding, g̃ ∈ H2,2 ↪→ L2H2 ∩ CTH1 ↪→ XT . Let q1 be such that
2/p+ d/q1 = d/2. From the scale invariant Strichartz estimates we have

‖Lw‖XT . ‖Lw‖L∞T H1∩LpTW 1,q1 . ‖F (ũ+ w)− F (g̃)‖
Lp
′
T W

1,q′1+L1
TH

1
,

and we will prove that there exists θ > 0 such that

‖F (v)‖
Lp
′
T W

1,q′1+L1
TH

1
. T θ(1 + ‖v‖1+3/(d−2)

XT
). (4.11)

Let ψ ∈ C∞(R+), ψ ≡ 1 for x ≥ 1, ψ ≡ 0 for x ≤ 1/2. Since supp(1− ψ(|v|2)) ⊂ {|v| ≤ 1} we
have

‖
(
1− ψ(|v|2)F (v)

)
‖L1

TH
1 . ‖v‖L1

TH
1 ≤ T‖v‖XT .

On the other hand, for any β ≥ α,

|ψ(|v|2)F (v)| . |v|1+β, |∇(ψ(|v|2)F (v))| . |v|β|∇v|.

Since (1 + α)q′1 ≤
(

1 +
2

d− 2
(1 + 1/p)

)(
1

2
+

2

dp

)−1

=
2d

d− 2

dp+ 2

dp+ 4
<

2d

d− 2
, there exists

β ≥ α such that 2 ≤ (1 + β)q′1 ≤ 2d/(d− 2), and this choice leads to

‖|v|1+β‖
Lp′Lq

′
1
. ‖v‖1+β

L(1+β)p′L(1+β)q′1
. T 1/p′‖v‖1+β

L∞H1 .

To estimate ∇
(
ψ(|v|2)F (v)

)
, we use Hölder’s inequality on |v|β∇v combined with the Sobolev

embedding W 1,r ↪→ Ls,
1

s
=

1

r
− 1

d
:

‖|v|β∇v‖
Lp′Lq

′
1
. ‖v‖β

Lp̂TW
1,q̂
‖∇v‖LpLq , (4.12)

where

1

p̂
=

1

β

(
1

p′
− 1

p

)
=

1

β

(
1− 2

p

)
, (Hölder in time),

1

q̂
=

1

β

(
1

q′1
− 1

q

)
+

1

d
=

1

d

(
1 +

3

βp

)
, (Hölder in space and Sobolev embedding).

Note that q, p̂, q̂ are defined by p and β. If we can choose p > 2 and β ≥ α such that

1

p̂
+
d

q̂
>
d

2
,

1

p̂
<

1

2
,

1

q
≤ 1

q̂
≤ 1

2
, (4.13)

this gives (4.11), indeed for such p, β, if 1/p1 +d/q̂ = d/2 we have Lp1

T W
1,q̂ ⊂ XT , 1/p1 < 1/p̂,

and (4.12) gives

‖v‖β
Lp̂TW

1,q̂
‖∇v‖LpLq . T β(1/p̂−1/p1)‖v‖β

Lp1W 1,q̂‖∇v‖LpLq . T β(1/p̂−1/p1)‖v‖1+β
XT

. (4.14)
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Let us now check that there exists a choice of β, p for which (4.13) holds. The first two
conditions rewrite

1

β

(
1− 2

p

)
+

(
1 +

3

βp

)
>

d

2
⇔ 1

p
> β

(
d

2
− 1

)
− 1,

1

β

(
1− 2

p

)
<

1

2
⇔ 1

p
>

1

2
− β

4
.

Or more compactly
1

2
>

1

p
> max

(
1

2
− β

4
, β

(
d

2
− 1

)
− 1

)
The condition 1/2−β/4 < 1/2 is automatically satisfied. To ensure 1/q ≤ 1/q̂ ≤ 1/2, we must
have

1

β
≤ p(d− 2)

6
,

1

β
≥ p(d− 2)

6
− 1

3
,

so that the condition is finally equivalent to

β

(
d

2
− 1

)
− 1 <

1

p
≤ β(d− 2)

6
,

and there exists solutions p > 2, β ≥ α if and only if β < 3/(d− 2) which is always compatible
with β ≥ α and the initial assumption (4.10).

From (4.11), we infer

‖Lw‖XT . T
θ
(
1 +

(
‖ũ‖XT + ‖w‖XT + ‖g̃‖XT

)3/(d−2))
,

so that for T small enough, L maps the ball of radius one in XT to itself. It is not clear if L is
contractive in XT even for smaller T , however contractivity for the weaker topology induced
by L∞T L

2 ∩LpLq is an easy consequence of the previous estimates and the assumptions on F :

|F (ũ+ w1)− F (ũ+ w2)| . |w1 − w2|+ (|w1|+ |w2|+ |ũ|)β|w1 − w2|,

and (4.14) gives

‖Lw1 − Lw2‖XT . ‖w1 − w2‖L1
TL

2 + ‖|w1 − w2|+ (|w1|+ |w2|+ |ũ|)β|w1 − w2|‖Lp′T Lq
′
1

. T β(1/p̂−1/p1)
(
‖ũ‖XT + ‖w1‖XT + ‖w2‖XT )β‖w1 − w2‖LpTLq

+T‖w1 − w2‖L∞T L2 . (4.15)

As for theorem 4.1, the contractivity of L for the LpTL
q ∩ L∞T L2 topology and the mapping of

a ball of XT to itself gives the existence of a solution as a fixed point.
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Remark 4.2. The only thing limiting us to α < 3/(d−2) is that ũ only belongs to CTH
1∩L2W 1,q

with 1 + d/q = d/2. If this limitation was lifted the fixed point argument on w could be
performed in the usual scale invariant spaces.

Remark 4.3. Theorem 4.2 is only an example of how one may mix optimal and non optimal
Strichartz estimates. If Ω is only assumed to be the exterior of a non trapping obstacle,
Blair-Smith-Sogge proved scale invariant Strichartz estimates with loss of derivatives, namely

‖eit∆Du0‖LpLq . ‖u0‖Hσ , with
2

p
+
d

q
=
d

2
− σ, 1

p
+

1

q
≤ 1

2
.

Such estimates could probably be used to improve the range of α if Ωc is only star-shaped.
Since the method seems similar and with numerous specific cases we choose not to develop this
issue.

Global well-posedness

In order to obtain global well-posedness for the defocusing nonlinear Schrödinger equation
i∂tu+ ∆u = |u|αu, (x, t) ∈ Ω× [0, T [,
u|t=0 = u0, x ∈ Ω,
u|∂Ω×[0,T ] = g, (x, t) ∈ ∂Ω× [0, T [,

(NLSD)

the argument based on local well-posedness and conservation of energy can not be trivially
applied. Indeed we only have the formal identities

d

dt

∫
Ω

1

2
|u|2dx = −Im

∫
∂Ω
∂nugdS, (4.16)

d

dt

∫
Ω

1

2
|∇u|2 +

1

α+ 2
|u|α+2dx = Re

∫
∂Ω
∂nu∂tgdS (4.17)

If g ∈ Hs,2, the control of ‖u‖CTH1 requires to control ‖∂nu‖H2−s,2 . In particular, for the almost

optimal regularity s = 3/2 + ε, we must have some control on ∂nu ∈ H1/2−ε,2(∂Ω × [0, T ]),
which is its (almost) optimal space of regularity.
We will first deal with the simpler case g ∈ H2,2, in this case we only need to control ‖∂nu‖L2 .
This can be done thanks to a nonlinear variation of the virial identity from proposition 3.1.

Theorem 4.3. 1) For any 0 < α < 2/(d − 2), if (u0, g) ∈ H1(Ω) × H2,2
loc (R+ × ∂Ω) satisfy

(CC0), then (NLSD) has a unique global solution u ∈ C(R+, H1).
2) If Ωc is strictly convex and there exists ε > 0 such that g ∈ H2+ε,2, then the theorem is true
for α < 4/(d− 2).
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Proof. The case 1) is a simple consequence of the virial identity and the blow up alternative,
indeed the (nonlinear) virial identity writes

d

dt
I(u(t)) = 4Re

∫
Ω

Hess(h)(∇u,∇u)− 1

4
|u|2∆2h+∇h · ∇u|u|αu+

1

2
u∆h|u|αu dx

+Re

∫
∂Ω

2∂nh|∇τg|2 − 2∂nh|∂nu|2 − 2i∂nh∂tggdS

+Re

∫
∂Ω
−2g∆h∂nu+ |g|2∂n∆hdS

= 4Re

∫
Ω

Hess(h)(∇u,∇u)− 1

4
|u|2∆2h+ |u|α+2∆h

(
1

2
− 1

α+ 2

)
dx

+Re

∫
∂Ω

2∂nh|∇τg|2 − 2∂nh|∂nu|2 − 2i∂nh∂tgudS

+Re

∫
∂Ω
−2g∆h∂nu+ |g|2∂n∆h+

|g|α+2

α+ 2
∂nhdS

As for lemma 3.2, we choose h =
√

1 + |x|2 so that Hessh, ∆h > 0, ∂nh ≤ 0 and integrate in

time. From the embedding H2,2(∂Ω × [0, T ]) ↪→ H
2/(d+1)
T H(2d−2)/(d+1) ↪→ L2(d+1)/(d−3)(∂Ω ×

[0, T ]) (L∞ if d = 2, Lp for any 2 ≤ p <∞ if d = 3) we have∫ T

0

∫
∂Ω
|g|α+2dS dt . ‖g‖α+2

H2,2(∂Ω×[0,T ])
.

If K is a compact neighbourhood of ∂Ω, we deduce∫
K×[0,T ]

|∇u|2 + |u|α+2dxdt−
∫
∂Ω×[0,T ]

|∂nu|2 x · ndSdt ≤M(T )
(
1 + ‖u‖2CTH1 + ‖g‖α+2

H2,2

)
.

If x · n < 0 on ∂Ω, this gives directly a control of ‖∂nu‖L2 , if not then we can argue as in
proposition 3.2 by using some function h compactly supported in K such that ∂nh < 0. For
this choice, ∆h and Hess(h) are no longer signed, but using the estimate ‖u‖α+2

Lα+2([0,T ]×K)
.

1 + ‖u‖2CTH1 + ‖g‖α+2
H2,2 we get

‖∂nu‖L2 ≤M(T )
(
1 + ‖u‖CTH1 + ‖g‖α/2+1

H2,2

)
.

Plugging this in the “conservation” laws (4.16, 4.17) implies

‖u‖2CTH1 ≤ ‖u0‖2H1 + ‖∂nu‖L2‖g‖H2,2 . 1 + ‖u0‖2H1 + (‖u‖CTH1 + ‖g‖α/2+1
H2,2

)
‖g‖H2,2

⇒ 1

2
‖u‖2CTH1 . 1 + ‖u0‖2H1 + ‖g‖α/2+2

H2,2(∂Ω×[0,T ])
.

As a consequence u remains locally bounded in H1 and the solution must be global.
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The case 2) is a bit more intricate, indeed even the local existence of a solution for 3/(d−2) ≤
α < 4/(d − 2) has not been covered yet. The main argument is that we can modify ũ from
problem (4.4) such that it belongs to CTH

1 ∩ L2
TW

1,q0 , 1 + d/q0 = d/2: since g ∈ H2+ε,2, we
have from (CC0) u0|∂Ω = g|t=0 ∈ H1+ε,2. Let v0 ∈ H3/2+ε(Ω) be a lifting of u0|∂Ω, we define
ṽ as the solution of the linear IBVP

i∂tṽ + ∆ṽ = F (g̃),
ṽ|t=0 = v0,
ṽ|∂Ω×[0,T ] = g.

Since F (g̃) ∈ H1,2 (see lemma 4.1), g ∈ H2+ε,2, v0 ∈ H3/2, the Strichartz estimates imply
ṽ ∈ L2

TW
3/2,q ↪→ L2

TW
1,q0 where 1 + d/q0 = d/2. We are now left to solve the homogeneous

boundary value problem 
i∂tw + ∆w = F (ṽ + w)− F (g̃),
w|t=0 = u0 − v0 ∈ H1

0 ,
w|∂Ω×[0,T ] = 0.

or equivalently obtain a fixed point to the map

Lw = eit∆D(u0 − v0) +

∫ t

0
ei(t−s)∆D

(
F (ṽ + w)− F (g̃)

)
ds.

Since ṽ, g̃ ∈ L∞T H1 ∩ L2
TW

1,q0 , the fixed point argument can be done as in the Rd case, e.g.
[10] section 4.4, leading to local existence. We can still use the virial identity as in case 1)
since α+ 2 < (d+ 2)/(d− 2) < 2(d+ 1)/(d− 3), and the energy argument is ended in the same
way.

If we only assume g̃ ∈ H3/2+ε,2, global existence becomes a much more delicate issue since
we need to control ‖∂nu‖H1/2,2 . Let us sketch the main issue : the linear smoothing gives a
control ‖∂nu‖H1/2,2 . ‖u0‖H1 + ‖g‖3/2+ε,2 + ‖f‖H1/2,2 where f = |u|αu has scaling 1 + α. In
order to estimate the time regularity of f we need again to use the equation, which adds again
a power α to the scaling. Using various chain rules, the conservation laws (4.16, 4.17) should
give at best ‖u‖2CTH1 .

∏
‖u‖αjXj , where

∑
αj = 1+2α and for all j, Xj ↪→ CTH

1. Eventually,

‖u‖2CTH1 . ‖u‖βCTH1 for some β depending on α, and this allows to close the estimate if β < 2.
It is clear that such an approach will be limited to small values of α. Nevertheless, this is the
method used in the following theorem, where the restriction on α is of course purely technical.

Theorem 4.4. For d = 2, 1/2 ≤ α < 11/9, (u0, g) ∈ H1×H3/2+ε,2 satisfying the compatibility
conditions, the problem (NLSD) has a unique global solution in C(R+, H1).

Proof. The existence of a maximal solution is theorem 4.1, it remains to prove that u is locally
bounded in H1. In this proof, . means that the inequality is true up to a multiplicative
constant that may depend on T, g and an additive constant thay may depend on T, g, u0. We
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use δ as a placeholder for some positive quantity that can be chosen arbitrarily small.
As in theorem 4.3, we can use the nonlinear virial identity provided g ∈ Lα+2(∂Ω × [0, T ]),

which is ensured by H3/2,2 ↪→ H
1/2
T H1/2(∂Ω) ↪→ Lp(∂Ω× [0, T ]) for any 2 ≤ p <∞. From the

nonlinear virial identity we obtain

‖∂nu‖L2
TL

2 + ‖∇u‖L2
TL

2 . ‖u‖1/2CTH1‖u‖
1/2
CTL2 + ‖g‖1+α/2

H3/2+ε,2 . ‖u‖
1/2
CTH1‖u‖

1/2
CTL2 , (4.18)

plugging this in (4.16) gives

‖u‖2CTL2 . ‖∂nu‖L2
TL

2‖g‖L2
TL

2 . (‖u‖1/2
CTH1‖u‖

1/2
CTL2 + ‖g‖H3/2+ε,2)‖g‖L2

TL
2

⇒ ‖u‖CTL2 . ‖u‖1/3
CTH1 , (4.19)

and ‖u‖L2
TH

1
loc
. ‖u‖1/2+1/6

CTH1 = ‖u‖2/3
CTH1 . (4.20)

For further use, let us note that Hölder’s inequality and the Sobolev embedding H1 ↪→ Lr for
2 ≤ r <∞ imply

∀ q > 2, 0 < δ < 2/q, ‖u‖Lq . ‖u‖1−2/q+δ
H1 ‖u‖2/q−δ

L2 . (4.21)

On the other hand, (4.16, 4.17) give

‖u‖2CTH1 + ‖u‖α+2
Lα+2 . ‖u0‖2H1 + ‖g‖H3/2+ε,2‖∂nu‖H1/2,2 . (4.22)

To estimate ∂nu, we fix χ ∈ C∞c (Ω) such that χ ≡ 1 on a neighbourhood of ∂Ω, and split
u = u1 + u2 where u1, u2 are solutions of

i∂tu1 + ∆u1 = χ|u|αu,
u1|t=0 = u0,
u1|∂Ω×[0,T ] = g,

,


i∂tu2 + ∆u2 = (1− χ)|u|αu,
u2|t=0 = 0,
u2|∂Ω×[0,T ] = 0,

Proposition 3.1 gives

‖∂nu1‖H1/2,2 . ‖u0‖H1 + ‖g‖H3/2+ε,2 + ‖χ|u|αu‖H1/2,2

We estimate the nonlinear term using H1 ↪→ B
1/2
4,2 (Triebel [27], 3.3) and (4.19, 4.20) :

‖χ|u|αu‖L2
TH

1/2 . ‖|u|α‖L∞T L4
loc
‖u‖

L2
TB

1/2,4
2,loc

. ‖u‖α−1/2+δ
L∞H1 ‖u‖1/2−δ

L∞T L
2‖u‖L2

TH
1
loc

. ‖u‖α+1/3+δ
CTH1 . (4.23)

For the time regularity, we use the composition rules and interpolation of anisotropic Sobolev
spaces ([20] chapter 4 section 2.1). For χ̃ such that χ̃ = 1 on suppχ,

‖χ|u|αu‖H1/4L2 . ‖|u|α‖L∞T L4‖u‖
H

1/4
T L4

loc

. ‖u‖αL∞T L4α‖χ̃u‖H1/4
T H1/2

. ‖u‖αL∞T L4α‖χ̃u‖1/2
H

1/2
T L2

‖χ̃u‖1/2
L2
TH

1 .
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Since i∂tχ̃u+ ∆χ̃u = χ̃|u|αu+ [∆, χ̃]u, we have ‖∂tχ̃u‖L2
TH
−1 . ‖χ̃u‖L2

TH
1 + ‖χ̃|u|αu‖L2

TH
−1 +

‖u‖L∞T L2 , and since H−1 ⊃ Lq for 1 < q ≤ 2 we get

‖∂tχ̃u‖L2
TH
−1 . ‖u‖2/3L∞T H

1 + ‖χ̃|u|αu‖L2
TL

2/(1+α) . ‖u‖2/3L∞T H
1 + ‖u‖(1+α)/3

L∞T H
1 .

Next we use ‖χ̃u‖
H

1/2
T L2 . ‖χ̃u‖

1/2

H1
TH
−1‖χ̃u‖

1/2

L2
TH

1 , so that

‖χ̃u‖
H

1/2
T L2 .

(
‖u‖2/3

L∞T H
1 + ‖u‖(1+α)/3

L∞T LH
1

)1/2‖χ̃u‖1/2
L2
TH

1 . ‖u‖
2/3
L∞T H

1 + ‖u‖(3+α)/6
L∞T H

1 .

This implies, using (4.19, 4.20, 4.21),

‖χ|u|αu‖H1/4L2 . ‖u‖αL∞T L4α

(
‖u‖1/3

L∞T H
1 + ‖u‖(3+α)/12

L∞T H
1

)
‖u‖1/3

L∞T H
1

. ‖u‖1/3+α+δ
L∞T H

1 + ‖u‖13α/12+1/4+δ
L∞T H

1 .

Combining the estimate above with (4.23) gives the following estimate on ∂nu1:

‖∂nu1‖H1/2,2 . ‖u‖1/3+α+δ
CTH1 + ‖u‖13α/12+1/4+δ

CTH1 . (4.24)

We treat now ∂nu2. The situation is less favourable since we can not use the smoothing

property ‖χu‖L2
TH

1 . ‖u‖2/3L∞T H
1 . In particular we only have

‖(1− (χ)u‖
H

1/2
T L2 . ‖u‖L∞T H1 + ‖u‖(4+α)/6

L∞T H
1 (4.25)

Using property 3.5, we have

‖∂nu2‖H1/2,2(∂Ω×[0,T ]) . ‖(1− χ)|u|αu‖
L3/2B1

3/2,2
∩B1/2

3/2,2
L3/2 .

For the first norm we write

‖(1− χ)|u|αu‖L3/2B1
3/2,2

. ‖(1− χ)|u|αu‖L∞T W 1,3/2

. ‖u‖αL∞T L6α‖u‖L∞T H1

. ‖u‖1/3
L∞T L

2‖u‖
α−1/3+δ
L∞T H

1 ‖u‖L∞T H1

. ‖u‖α+7/9+δ
CTH1 .

For the other norm, the composition rules and (4.25) give similarly

‖(1− χ)|u|αu‖
B

1/2
3/2,2

L3/2 . ‖u‖αL6α
T L6α‖u‖H1/2

T L2

. ‖u‖α−2/9+δ
CTH1

(
‖u‖CTH1 + ‖u‖(4+α)/6

CTH1

)
= ‖u‖α+7/9+δ

CTH1 + ‖u‖7α/6+4/9+δ
CTH1 ,
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so that ‖∂nu2‖H1/2,2 . ‖u‖α+7/9+δ
L∞T H

1 + ‖u‖7α/6+4/9
L∞T H

1 . Combining this estimate with (4.24) into

(4.22) we finally obtain (as previously . still means “up to multiplicative and additive quan-
tities only depending on T and the data”)

‖u‖2CTH1 . ‖u‖βCTH1 ,

with β = max

(
1/3 +α,

13α

12
+

1

4
, α+ 7/9, 7α/6 + 4/9

)
+ δ. If β < 2 then ‖u(t)‖H1 is locally

bounded, and hence the solution is global. The condition β < 2 is equivalent to α < 11/9.
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A Two interpolation lemmas

In this section we give two results on the interpolation of Sobolev spaces. They do not seem
standard as they involve in some way compatibility conditions. We do not claim that such
results are new, however we did not find them in the litterature, thus we decided to include

reasonnably self-contained proofs.

Definition A.1. (real interpolation)
If X0, X1 are two functional spaces embedded in D′(Ω), we define for u ∈ X0 +X1,

K(t, u) = inf
u=u0+u1∈X0+X1

‖u0‖X0 + t‖u1‖X1 .

For 0 < θ < 1, the interpolated space [X0, X1]θ,q is the set of functions such that∫ ∞
0
|K(t, u)q|dt/t1+θq <∞.

Lemma A.1. Let

Xθ = {(u0, g) ∈ H−1/2+2θ ×H2θ,θ(∂Ω× [0, T ]) that satisfy the compatibility conditions},

where for θ = 0 we take (H
1/2
D )′ instead of H−1/2. Then for 0 ≤ θ ≤ 1,

[X0, X1]θ = Xθ.

Remark A.1. While it is a bit tedious, the case θ = 1/2 really needs to be treated as it
corresponds to the natural space for the virial estimates.
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Proof. We have clearly

H
3/2
0 (Ω)×H2,2

0 (∂Ω× [0, T ]) ⊂ X1 ⊂ H3/2(Ω)×H2,2(∂Ω× [0, T ]).

The interpolation of Sobolev spaces ([19, 20], chapter 1 and 4) gives for θ < 1/2

[(H
1/2
D )′(Ω), H

3/2
0 ]θ = H2θ−1/2, [H0,0(∂Ω× [0, T ]), H2,2

0 ]θ = H2θ,2,

[(H
1/2
D )′(Ω), H3/2]θ = H2θ−1/2, [H0,0(∂Ω× [0, T ]), H2,2]θ = H2θ,2,

the two left identities are not explicitly written in [19], however (H
1/2
D )′ does not cause any new

difficulty since it can be bypassed using (H
1/2
D )′ = [H−1, H2]1/6 = [H−1, H2

D]1/6 ([19] sections
12.3, 12.4), and the reiteration theorem

[
[X,Y ]θ0 , [X,Y ]θ1

]
θ

= [X,Y ](1−θ)θ0+θθ1 . We deduce
that for 0 < θ < 1/2,

Xθ = H2θ−1/2 ×H2θ,θ ⊂ [X0, X1]θ ⊂ Xθ.

For θ ≥ 1/2 we first apply the Lions-Peetre reiteration theorem

[X0, X1]θ =
[
[X0, X1]3/8, [X

0, X1]1
]
8θ/5−3/5

= [X3/8, X1]8θ/5−3/5,

so that we are reduced to prove [X3/8, X1]θ = X(5θ+3)/8 for 1/5 < θ < 1. To this end, we use
the existence of a lifting operator independent of 1/4 < s ≤ 1 3

R : Xs 7→ H2s+1/2,s+1/4(Ω× [0, T ]),

(u0, g) 7→ u such that u|Ω×[0,T ] = g, u|t=0 = u0,

Such an operator can be constructed as follows: for any (g, u0) ∈ Xs, there exists a map

R1 : H2s,s(∂Ω× [0, T ]) 7→ H2s+1/2,s+1/4(Ω× [0, T ]),

g 7→ R1g,

on the half space Fx′,tR1b = ĝ(ξ, τ)ϕ(
√

1 + |ξ′|2 + |τ |2xd) with ϕ(0) = 1, ϕ smooth enough,
works. There is also a map

R2 : H
2s−1/2
D (Ω) 7→ H

2s+1/2,s+1/4
D (Ω× R),

u0 → R2u0,

in this case, one might take R2(u0) = ϕ((1 −∆D)t)u0 (this is a very special case of theorem
4.2 chapter 1 in [19], see also theorem 2.3 chapter 4 in [20]). With these two operators, we can
now define

R(u0, g) = R2

(
u0 −R1(g)|t=0

)
+R1(g),

3R is usually called a coretraction of the trace operator u→ (u|t=0, u|∂Ω×[0,T ]).
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R is continuous Xs → H2s+1/2,2 for s > 1/4 since u0 −R1g|t=0 ∈ H2s−1/2
D . For s > 1/2 this is

a consequence of Hs
D = Hs

0 and (CC0), while for s = 1/2 this comes from H
1/2
D = H

1/2
00 and

(CCG0). We can conclude by introducing

T : H2s+1/2,2(Ω× [0, T ]) 7→ H2s−1/2(Ω)×H2s,2(∂Ω× [0, T ]),

u 7→ (u|t=0, u|∂Ω×[0,T ]).

By construction, T ◦ R = Id on X3/8 and X1 so that [X3/8, X1]θ = T ([H5/4,5/8, H5/2,5/4]θ).
From basic results on anisotropic Sobolev spaces ([20] chapter 4 proposition 2.1 theorem 2.3)
we obtain as expected

T ([H5/4,2(Ω× [0, T ]), H5/2,2]θ) = T (H(5θ+5)/4,2) = X(5θ+3)/8.

Proposition A.2. Let H2,2
(0) (Ω × Rt) = {u ∈ H2,2(Ω × [0, T ]), u|∂Ω×{0} = 0}. For θ < 3/4,

[L2, H2,2
(0) ]θ,2 = H2θ,2.

The result is quite expectable since the trace on t = 0 sends H2θ,2(∂Ω× [0, T ]) to H2θ−1(Ω),
for which there is a trace on ∂Ω if and only if 2θ − 1 > 1/2⇔ θ > 3/4.

Proof. The inclusion ⊂ is obvious, we focus on the reverse inclusion.
Let R be the restriction operator H2θ,2(Rd×[0, T ]) 7→ H2θ,2(Ω×[0, T ]), since R is continuous for
0 ≤ θ ≤ 1 and surjective with value to H2θ,2, we only need to check that for H2,2

(0),∂Ω(Rd×Rt) =

{u ∈ H2,2 : u|∂Ω×{0} = 0} we have

∀ θ < 3/4, [L2, H2,2
(0),∂Ω]θ = H2θ,2(Rd × Rt). (A.1)

Using a partition of the unity, we can reduce the problem to the case ∂Ω = Rd−1 × {0} and
for conciseness we write H2,2

(0),∂Ω(Rd × Rt) = H2,2
(0) . Let u ∈ H2θ,2(Rd × Rt), since L2 ⊂ H2,2, it

is easily seen from definition A.1 that u ∈ [L2, H2,2
(0) ]θ,2 if

∞∑
j=0

24θjK(2−2j , u)2 <∞, where K(t, u) = inf
u=u0+u1∈L2+H2,2

(0)

‖u0‖L2 + t‖u1‖H2,2
(0)
. (A.2)

We define an anisotropic Littlewood-Paley decomposition as follows : the dual variable of x, t
are (ξ, τ) = (ξ′, ξd, τ), we set u =

∑
j≥0 ∆ju(x, t) where for j ≥ 1, ∆̂ju(ξ, τ) is supported in

(|ξ|2 + |τ |)1/2 ∼ 2j , ∆̂0u is supported in |ξ|2 + |τ | ≤ 1, and set Sju =
∑j

k=0 ∆ku, Rju =
u − Sju. From the Plancherel theorem and

∫
Rd ∆ju∆lu = 0 for |j − l| large enough (“almost

orthogonality”), we have

‖∆ju‖H2,2 ∼ ‖∆ju‖L222j ⇒ ‖u‖2H2,2 ∼
∑
j≥0

24j‖∆ju‖2L2 . (A.3)



A TWO INTERPOLATION LEMMAS 32

Let us write

u =

(
Rju+ Sju(x′, 0, 0)ψj(xd, t)

)
+

(
Sju− Sju(x′, 0, 0)ψj(xd, t)

)
= u0 + u1,

where ψ̂j = cj2
−3j1(|ξd|2+|τ |)1/2∼2j with c such that ψj(0) = 1. Since vol((|ξd|2 + |τ |)1/2 ∼ 2j) ∼

23j , cj is uniformly bounded in j. For this choice it is clear that (u0, u1) ∈ L2 × H2,2
(0) . The

decomposition u = Sju+Rju would correspond to the standard interpolation [L2, H2,2]θ, thus
we will only focus on how to estimate in (A.2)

‖Sju(x′, 0, 0)ψj(xd, t)‖L2 + 2−2j‖Sju(x′, 0, 0)ψj(xd, t)‖H2,2 .

We first note that

F
(
Sju(x′, 0, 0)ψj(xd, t)

)
= ψ̂j(ξd, τ)

∫
R2

Ŝju(ξ′, η, δ)dηdδ,

so that F
(
Sju(x′, 0, 0)ψj(xd, t)

)
is supported in (|ξ|2 + |τ |)1/2 . 2j . We deduce

2−2j‖Sju(x′, 0, 0)ψj(xd, t)‖H2,2 + ‖Sju(x′, 0, 0)ψj(xd, t)‖L2 . ‖Sju(x′, 0, 0)ψj(xd, t)‖L2

. ‖ψj‖L2

∫
R2

‖Ŝju(ξ′, η, δ)‖L2
ξ′
dηdδ.

Using again vol
(
(|ξd|2 + |τ |)1/2 ∼ 2j

)
∼ 23j , we have ‖ψj‖L2 ∼ 2−3j23j/2 = 2−3j/2. Moreover

∆ku(ξ′, η, δ) is supported in (|η|2 + |δ|)1/2 . 2k independently of ξ′, thus the Cauchy-Schwartz
inequality implies∫

R2

‖Ŝju(ξ′, η, δ)‖L2
ξ′
dηdδ ≤

∫
R2

j∑
k=0

‖∆ku(ξ′, η, δ)‖L2
ξ′
dηdδ

.
j∑

k=0

‖∆ku‖L223k/2.

Plugging this in (A.2) (and omitting the estimate on Sju,Rju)

∞∑
j=0

24θjK(2−2j , u)2 .
∞∑
j=0

2(4θ−3)j

( j∑
k=0

‖∆ku‖L222θk2(3/2−2θ)k

)2

.
∞∑
j=0

( j∑
k=0

‖∆ku‖L222θk 2(3/2−2θ)(k−j)
)2

= ‖a ∗ b‖2l2 ,
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where (ak)k≥0 = (‖∆ku‖L222θk)k≥0 ∈ l2, (bk)k≥0 = (2(2θ−3/2)k)k≥0 ∈ l1, we can conclude by
Young’s inequality and (A.3)

∞∑
0

24θjK(2−2j,u)2 . (‖a‖l2‖b‖l1)2 . ‖u‖2H2θ,2 ,

thus H2θ,2 ⊂ [L2, H2,2
(0) ]θ.

Remark A.3. Using a similar argument, it is not difficult to check that [L2, H2,2
(0) ]θ,2 = H2θ,2

(0)

for θ > 3/4. Of course the identification in the case θ = 3/4 is less clear.

References

[1] Herbert Amann. Anisotropic function spaces and maximal regularity for parabolic prob-
lems. Part 1. Jindr̆ich Nec̆as Center for Mathematical Modeling Lecture Notes, 6. Mat-
fyzpress, Prague, 2009. Function spaces.

[2] Ramona Anton. Cubic nonlinear Schrödinger equation on three dimensional balls with
radial data. Comm. Partial Differential Equations, 33(10-12):1862–1889, 2008.

[3] Ramona Anton. Strichartz inequalities for Lipschitz metrics on manifolds and nonlinear
Schrödinger equation on domains. Bull. Soc. Math. France, 136(1):27–65, 2008.

[4] Corentin Audiard. Non-homogeneous boundary value problems for linear dispersive equa-
tions. Comm. Partial Differential Equations, 37(1):1–37, 2012.

[5] Corentin Audiard. On the non-homogeneous boundary value problem for Schrödinger
equations. Discrete Contin. Dyn. Syst., 33(9):3861–3884, 2013.
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