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Abstract—The first part of this note is based on a joint

paper with A. Bonami and G. Garrigós [3] in which the

phase retrieval problem for the Radar Ambiguity Function

(i.e. the Radar Ambiguity Problem) has been tackled. In

particular it was shown that for wide classes of signals,

the radar ambiguity problem has a unique solution, up to

trivial transformations.

In the second part of this note, we report on ongoing

work by the author where the radar ambiguity function

is used as a tool to solve other phase retrieval problems.

I. INTRODUCTION

In this paper, we report on our work on the phase

retrieval problem for the Radar Ambiguity Function and

for Fractional Fourier Transforms. Let us recall that the

ambiguity function of u ∈ L2(R) is defined by

A(u)(x, y) =

∫

R

u
(
t+

x

2

)
u
(
t− x

2

)
e−2iπtydt.

This function has been introduced by Woodward [12] in

Radar theory and has been studied by many authors. The

properties that we use here are well documented see e.g.

[1], [11]. The first problem under consideration here is

the phase retrieval problem for the ambiguity function:

Problem 1: Radar ambiguity Problem.

Given u in some subset D ⊂ L2(R), find all v ∈ S such

that

|A(v)(x, y)| = |A(u)(x, y)| for all x, y ∈ R.

We then say that v is a partner of u (in D).

It is not hard to see that v defined by v(x) =
ceibxu(εx− a), ε = ±1, a, b ∈ R, c ∈ C with |c| = 1 is

a partner of u, in which case we say that v is a trivial

partner of u. The question we ask is thus whether non-

trivial partners exist and to have as large as possible

classes D of functions which have only trivial partners.

The classes we consider are mainly the two following:

i) Hermite functions that is D is the set of all

functions of the form P (x)e−πx2

, P a polynomial;

ii) rectangular pulse trains, that is D is the set of

all functions of the form
∑N

k=1 akχ(k,k+η) where

the ak’s are complex numbers and χ(k,k+η) is the

characteristic function of the interval (k, k + η)
where 0 < η ≤ 1/2.

The second family of problems we deal with is

the Phase Retreival Problem for the Fractional Fourier

Transform (FrFT). This transform is defined as follows:

let α ∈ R\πZ, let cα =
exp i

2

(
α− π

2

)
√

| sinα|
. For u ∈ L1(Rd)

and α /∈ πZ, define

Fαu(ξ) = cαe
−iπ|ξ|2 cotα ×

×
∫

R

u(t)e−iπt2 cotαe−2iπtξ/ sinαdt.

Note that Fπ/2 is just Fπ/2 = F , the usual Fourier

Transform. As ‖Fαu‖L2(R) = ‖u‖L2(R) this transform

can be extended to u ∈ L2(R). The problem we address

here is the following:

Problem 2: Phase Retrieval Problem for the frac-

tional Fourier transform.

Let u, v ∈ L2(R) and let τ ⊂ [0, π) be a set of indices

(finite or not). Assume that |Fαv| = |Fαu| for every

α ∈ τ .

i) Does this imply that v = cu for some constant c ∈
C, |c| = 1?

ii) If we restrict u ∈ D for some set D ⊂ L2(R) do we

then have v = cu for some constant c ∈ C, |c| = 1?

iii) If we further restrict both u, v ∈ D for some set

D ⊂ L2(R) do we then have v = cu for some

constant c ∈ C, |c| = 1?



In the first two cases we say that u is uniquely determined

(up to constant multiples or up to a constant phase factor)

from {|Fαu|, α ∈ τ}. In the last case we say that u is

uniquely determined (up to a constant phase factor) from

{|Fαu|, α ∈ τ} within the class D.

This problem appears in diffraction optics and quan-

tum mechanics. We will reformulate this problem in

terms of the radar ambiguity function. This will allow

us to bring a solution to the problem for various classes

D of functions. We will again focus on the class of Her-

mite functions and of rectangular pulse trains and also

give some results for more general compactly supported

functions.

The remaining of this paper is organized as follows:

the next section is devoted to the radar ambiguity func-

tions and presents results that already appeared in [3].

Section 3 is then devoted to the announcement of new

results from [10].

II. THE RADAR AMBIGUITY PROBLEM

The radar ambiguity problem as stated is not yet fully

solved. Early results can be found in [6], [4]. The author

tackled this problem in [9], [7] and [3]. The aim of this

section is to present the two main results from this last

paper which may so far have stayed unnoticed outside

the mathematical community and all results presented

in this section come from that paper. The main object

of [3] was to study the Radar Ambiguity Problem in

a “discrete” setting by restricting attention to Hermite

functions and to pulse trains.

A. Hermite functions

In this section, we study Problem 1 when u is of

the form u(x) = P (x)e−πx2

where P is a polynomial.

As a consequence of Hardy’s Uncertainty Principle for

the ambiguity function (see e.g. [2], [8]), it is not hard

to see that every partner v is of the form v(x) =
Q(x)e(a+ib)x−πx2

with Q a polynomial. Thus, up to

replacing v by a trivial partner, we may assume that

v(x) = Q(x)e−πx2

. Moreover, it is easy to see that P
and Q have same degree.

If we write Hj = (−1)jeπt
2

∂j
t e

−2πt2 for the Hermite

basis, then we may write u and v in that basis, u =
n∑

j=0

αjHj and v =

n∑

j=0

βjHj . Define P =

n∑

j=0

αjt
j , Q =

n∑

j=0

βjt
j , and let us write x, y ∈ R, Z = x + iy, Z̄ =

x− iy. One may then show that

A(u)(x, y) =

n∑

j=0

2−j

j!
P(j)(Z)P(j)(−Z)e|Z|2/4.

Next, expending |A(u)|2, the radar ambiguity problem

then amounts to determining β such that

∑ 2−j−k

j!k!
P(k)(−Z)P(j)(Z)P(j)(−Z)P(k)(Z) (1)

=
∑ 2−j−k

j!k!
Q(k)(−Z)Q(j)(Z)Q(j)(−Z)Q(k)(Z).

Expending this polynomial in Z and Z̄ and comparing

highest order terms leads to |βn| = |αn|. Up to replacing

v by a trivial partner, we may thus assume that βn = αn.

Expending (1) further, we then obtain

P(Z)P(−Z) = Q(Z)Q(−Z)

so that the zeroes of Q are obtained from those of

P via a symmetry, so that we may factor P(Z) =
A(Z)B(Z)C(Z) and Q(Z) = A(Z)B(−Z)C(Z) where

C(Z) is of the form Zk
∏
(Z2−λ2

j). Our aim is to show

that neither A nor B are even or odd.

For a polynomial P , write P̃ (Z) = P (Z)P ′(−Z) +
P (−Z)P ′(Z). One easily sees that P̃ = 0 if and only if

P has a definite parity.

Expending further (1), we now obtain

P ′(Z)P ′(−Z) +
2

n
αn−1P̃(Z)

= Q′(Z)Q′(−Z) +
2

n
βn−1Q̃(Z).

We then reformulate this in terms of A and B and notice

that the equations obtained that way generically do not

have a solution. This leads to the following result:

Theorem 2.1: [3] For almost all and quasi-all polyno-

mials P , u(t) = P (t)e−πt2 has only trivial partners

Here, for a fixed degree n, almost-all refers to 0
Lebesgue measure in Cn+1, while quasi-all refers to

Baire theory. Actually we showed that the set of poly-

nomials for which there exists a non trivial partner is

included in a lower dimensional sub-manifold of Cn+1.

We conjecture that this manifold is actually empty so

that the above result is true for all polynomials.

There are some polynomials P for which one can

assert that u(t) = P (t)e−πt2 has only trivial partners,

for instance those that have no term of degree n − 1.

From this, it is not hard to deduce the following:

Corollary 2.2: [3] The set of functions in L2(R) that

has only trivial partners is dense in L2(R).



B. Pulse trains

In this section, we consider signals of the form u(t) =∑
ajH(t−j) where H has support in [0, 1/2]. One then

easily shows that, for y ∈ R, k ∈ Z and k − 1
2 ≤ x ≤

k + 1
2 ,

A(u)(x, y) =

(∑

j∈Z

ajaj−ke
2iπjy

)
A(H)(x−k, y). (2)

This lead us to propose the following Discrete Radar

Ambiguity Problem in [7]:

Problem 3: Discrete Radar Ambiguity Problem.

Given a = {aj} ∈ ℓ2(Z), find all sequences b ∈ ℓ2(Z)
such that, for every k ∈ Z and y ∈ R,

|A(a)(k, y)| = |A(b)(k, y)|
where A(a)(k, y) =

∑
j∈Z ajaj−ke

2iπjy.

We will then say that a and b are partners and that

they are trivial partners if bj = eiβ+ijωa±j−ℓ for some

β, ω ∈ R and ℓ ∈ Z and a choice of ±.

One easily sees that, as A(a) and A(b) have same

support, if the support of a has finite length N then so

has b. More precisely, we will say that a ∈ S(N) if a
has support {0, . . . , N} with a0aN 6= 0. Then, if b is a

partner of a, up to replacing it by a trivial partner, we

may also assume that b ∈ S(N).
By adapting a method by Bueckner [4] from the

continuous case, the discrete radar ambiguity problem

can be reformulated as a combinatorial problem on

matrices. More precisely, let

dj,k =

{
a j+k

2

a j−k

2

if j, k have same parity

0 otherwise
,

and let Ka = [dj,k]−N≤j,k≤N and call this the Ambiguity

Matrix of a. One then shows that

Proposition 2.3: [3], [7] Two sequences a, b ∈ S(N)
are partners if and only if K∗

aKa = K∗
bKb. In other

words, if Vi (resp. Wi) is the i-th column of Ka (resp. Kb)

this is equivalent to the following identity for all (i, j)’s:

(i, j) 〈Vi, Vj〉 = 〈Wi,Wj〉.
Recall that the Kronecker product of two matrices A =

[ai,j]−N≤i,j≤N and B is the matrix defined blockwise by

A⊗B =




a1,1B a1,2B . . . a1,nB
a2,1B a2,2B . . . a2,nB

...
...

. . .
...

an,1B an,2B . . . an,nB


.

The main result of [3], [7] for pulse type signals can be

stated as follows:

Theorem 2.4: [3], [7] Let a ∈ S(N) and b ∈ S(M)
(N,M integers) then there is a c ∈ S(M(2N + 1) +N)
such that Ka ⊗Kb = Kc. Let us denote c = a⊗ b. Then,

if a, a′ are partners and b, b′ are partners, then a ⊗ b and

a′ ⊗ b′ are partners. Moreover, even if a, a′ (resp. b, b′)
are trivial partners, a ⊗ b and a′ ⊗ b′ need not be trivial

partners.

Proof Let us just prove that a⊗b and a′⊗b′ are partners if

a, a′ (resp. b, b′) are partners. This follows from standard

properties of the Kronecker product:

K∗
a′⊗b′Ka′⊗b′ = (Ka′ ⊗Kb′)

∗(Ka′ ⊗Kb′)

= (K∗
a′ ⊗K∗

b′)(Ka′ ⊗Kb′)

= (K∗
a′Ka′)⊗ (K∗

b′Kb′)

= (K∗
aKa)⊗ (K∗

bKb).

Unwinding the computation, we immediately get that

K∗
a′⊗b′Ka′⊗b′ = K∗

a⊗bKa⊗b. 2

Actually c = a ⊗ b may be constructed as follows.

Write P (z) =
∑N

k=0 akz
k and Q(z) =

∑M
k=0 bkz

k.

Then P (z)Q(z2N+1) =
∑M(2N+1)+N

k=0 ckz
k. For ex-

ample, if a = (1, 2), b = (1, 2) and a′ = (2, 1) (a

trivial partner of a) then a ⊗ b = (1, 2, 0, 2, 4) while

a′ ⊗ b = (2, 4, 0, 1, 2) and these two sequences are not

trivial partners.

Further, based on this construction, we are able to

prove the following which has to be compared to Corol-

lary 2.2:

Corollary 2.5: [3] The set of functions in L2(R) that

has non-trivial partners is dense in L2(R).

Finally, we were also able to obtain a result for the

ambiguity problem itself, without assuming that v is

itself of pulse type. More precisely:

Theorem 2.6: [3] Let 0 < η ≤ 1
3 and u(t) =∑N

j=0 ajχ[j,j+η](t) where a = (a0, a1, . . . , aN ) ∈ CN+1.

Let v ∈ L2(R) be a trivial partner of u. Then, up to

replacing v by a trivial partner, v is of the form v =∑N
j=0 bjχ[j,j+η], where b = (b0, b1, . . . , bN ) ∈ CN+1 is a

partner of a.

III. THE RADAR AMBIGUITY FUNCTION AND THE

PHASE RETRIEVAL PROBLEM FOR FRACTIONAL

FOURIER TRANSFORMS

The aim of this section is to report on ongoing work

[10] on the phase retrieval for the Fractional Fourier

Transform (FrFT). Note that, mathematically, there is no

difference between the phase retrieval problem for the

Fractional Fourier Transform and the same problem for

the classical Fourier Transform. We here concentrate on



the question whether several phase-less measurements

can lead to uniqueness results.

The link between the FrFT and the ambiguity function

comes from the following property:

A(Fαu,Fαv)(x, y)

= A(u, v)(x cos α− y sinα, x sinα+ y cosα).

In particular,

A(u)(−y sinα, y cosα) = A(Fαu)(0, y)

= F [|Fαu|2](y). (3)

It follows that Problem 2 amounts to being able to recon-

struct u from the knowledge of its ambiguity function on

certain lines going through the origin.

One of the main results from [10] is the following:

Theorem 3.1: In the following cases, exact reconstruc-

tion can be obtained.

1) Let u, v ∈ L2(R) such that, for every α ∈
[−π/2, π/2], |Fαv| = |Fαu|. Then there exists

c ∈ C with |c| = 1 such that v = cu.

2) Let τ ⊂ [−π/2, π/2] be either a set of positive mea-

sure or a set with an accumulation point α0 6= 0.

Let u, v ∈ L2(R) with compact support such that,

for every α ∈ τ , |Fαv| = |Fαu|. Then there exists

c ∈ C with |c| = 1 such that v = cu.

3) Let a > 0 and define (αk)k∈Z by α0 = π/2 and, for

k ∈ Z \ {0}, αk = arctan
a2

k
. Then, given u, v ∈

L2(R) with compact support included in [−a, a], if

|Fαk
v| = |Fαk

u| for every k ∈ Z, then there exists

c ∈ C with |c| = 1 such that v = cu.

Proof From (3), if |Fαv| = |Fαu| for every α ∈
[−π/2, π/2] then, from (3), we get A(v) = A(u). This,

as is well known, implies that v = cu for some complex

number with |c| = 1.

Let us prove the third part of the Theorem (the

second part follows from a similar argument). Note

that ϕx(t) := u
(
t+ x

2

)
u
(
t− x

2

)
is an L1 function

supported in the interval

[
−a+

|x|
2
, a− |x|

2

]
when

|x| < 2a and is 0 for |x| ≥ 2a. But then, from

the Shannon-Whittaker Formula, the Fourier transform

A(u)(x, y) of ϕx may be reconstructed from its samples.

More precisely,

A(u)(x, y) = ϕ̂x(y)

=
∑

k∈Z

ϕ̂x

(
hxk

2

)
sinc

2π

hx

(
y +

hxk

2

)

=
∑

k∈Z

A(u)

(
x,

hxk

2

)
sinc

2π

hx

(
y +

hxk

2

)
(4)

6

-
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Fig. 1. The Nyquist rate and the sampling lines for A(u)

provided |hx| ≤
1

a− |x|/2 . A similar expression holds

for A(v)(x, y).

Now recall from (3) that

F [|F−αu|2](ξ) = A(F−αu)(0, ξ)

= A(u)(ξ sinα, ξ cosα).

In particular, if we chose hx of the form hx = γx then,

A(u)

(
x,

hxk

2

)
= A(u)

(
x,

γk

2
x

)

= F [|F−αk
u|2](x/ sinαk)

where αk = arctan
2

kγ
(α0 = −π/2).

As we assumed that |F−αk
v| = |F−αk

u| for every k,

it follows that A(v)
(
x, hxk

2

)
= A(u)

(
x, hxk

2

)
for every

x and k. From (4) we then deduce that A(v) = A(u)
everywhere thus v = cu with c ∈ C, |c| = 1.

It remains to choose γ so that |γx| ≤ 1

a− |x|/2 for

0 ≤ x ≤ 2a. For this, it is enough to find the point on

the hyperbola y = 1/(a−x/2) at which the tangent goes

through the origin. Easy calculus shows that this point

is x = a, y = 2/a, thus any γ ≤ 2

a2
will do (see Figure

1). 2

Note that in the course of the proof of the last point,

we have established a reconstruction formula. However,

to obtain a reasonably accurate reconstruction, we need



the number of measures |Fαk
u| to be rather large,

making this reconstruction formula non practicable.

If the signal is assumed to be more “structured”, then

one or two well chosen measures actually suffice. In the

following theorem we group the main results from [10]

in that direction.

Theorem 3.2: In the following cases, exact reconstruc-

tion can be obtained.

1) Assume u, v are Hermite functions and let α ∈ R \
Qπ. If |v| = |u| and |Fαv| = |Fαu| then v = cu
with |c| = 1.

2) Assume u, v are rectangular pulse trains∑
cjχ[j,j+η) with 0 < η ≤ 1

2 and let α ∈ R \ π
2Z.

If |Fαv| = |Fαu| then v = cu with |c| = 1.

3) Assume u, v are of the form
∑

finite cie
−π(t−ti)2 ,

ci ∈ C and ti ∈ R, and let α ∈ R \ π
2Z. If |Fαv| =

|Fαu| then v = cu with |c| = 1.

The assumptions on α in this theorem are sharp. For

instance, Pauli asked whether |v| = |u| and |v̂| = |û|
implies v = cu, c ∈ C with |c| = 1. It turns out that

there are counterexamples to this where both u and v are

of the form
∑

cie
−π(t−ti) as well as in the case where

both u and v are pulse trains (see e.g. [9] and [5] for the

state of the art).

Let us now sketch a proof of this theorem.

Proof Assume first that both u and v are Hermite

functions and expend them in the Hermite basis: u(t) =
N∑

j=0

cjHj and v(t) =

M∑

j=0

cjHj . Then, as is well known,

Fθ[u](t) =

N∑

k=0

cke
−ikθHk(t)

and a similar expression holds for Fθ[v]. Then |v|2 =
|u|2 and |Fθ[v]|2 = |Fθ[u]|2 is equivalent to





M∑

j,k=1

djdkHj(t)Hk(t)

=

N∑

j,k=1

cjckHj(t)Hk(t)

M∑

j,k=1

djdke
i(k−j)βHj(t)Hk(t)

=

N∑

j,k=1

cjcke
i(k−j)βHj(t)Hk(t)

(5)

Looking at the highest order term (of the polynomial

part) in (5) we obtain |dM |2H2
M(t) on the left hand side

and |cN |2HN (t)2 so that M = N and |dM | = |cN |.

Up to replacing v by cN
dN

v we may thus assume that

dN = cN .

The proof then proceeds by a down-going induction. If

dN−j = cN−j for j = 0, . . . , k−1, then we may simplify

all terms in (5) which only depend on those coefficients.

The highest order term that is left is HN−kHN and

comparing this term reduces (5) to

{
Re(dNdN−k) = Re(cN cN−k)

Re(eikθdNdN−k) = Re(eikθcN cN−k)
.

By assumption, eikθ /∈ R so that dNdN−k = cN cN−k

thus dN−k = cN−k.

Let us now assume that u and v are pulse trains u(t) =∑
ajH(t − j) and v(t) =

∑
bjH(t − j) where aj , bj

are finite sequences. Recall that, for x ∈
[
j − 1

2
, j +

1

2

]
,

A(u)(x, y) = eiπjyA(a)(j, y)A(χ[0,η))(x − j, y) and a

similar expression holds for A(v). According to (3), the

hypothesis of the theorem translates into

A(a)(j, y cosα)A(χ[0,η))(−y sinα− j, y cosα)

A(b)(j, y cosα)A(χ[0,η))(−y sinα− j, y cosα) (6)

for all j ∈ Z and for all y such that

−y sinα ∈
[
j − 1

2 , j +
1
2

]
i.e. for all

y ∈ Iα,j :=

[−2j + 1

2 sinα
,
−2j − 1

2 sinα

]
. Recall that we

assumed that α is not a multiple of π so that this is

perfectly defined.

On the other hand, for |x| ≤ η A(χ[0,η))(x, y) =
eiπηy

πy
sinπ(η−|x|), thus A(χ[0,η))(−y sinα−j, y cosα)

is non zero on a subset Jα,j ⊂ Iα,j of positive measure.

Thus (6) reduces to

∑

k∈Z

bkbk−je
2iπky cosα =

∑

k∈Z

akak−je
2iπky cosα. (7)

on Jα,j . As we assumed that α is not a multiple of π/2,

cosα 6= 0, and as both sides of (7) are trigonometric

polynomials, this identity stays true everywhere. As this

is the case for every j, A(a) = A(b) which is easily seen

to imply that b = ca with c ∈ C, |c| = 1 thus v = cu.

Let us assume that u(t) =

N∑

j=1

cjγ(t − tj) and

v(t) =

M∑

j=1

κjγ(t − τj) with cj , κj ∈ C and tj, τj ∈ R.

Moreover the tj’s (resp. the τj’s) are all distinct. A



simple computation shows that

A(u)(x, y) = 2−1/2
N∑

j,k=1

cjcke
−π(tj+tk)2/2

×e−π
(
(x+tk−tj)2+(y−itk−itj)2

)
/2.

In particular,

A(u)(−t sinα, t cosα)

= 2−1/2
N∑

j,k=1

cjcke
−π(tj+tk)2/2 ×

×e−π
(
(−t sinα+tk−tj)2+(t cosα+itk+itj)2

)
/2

=
e−πt2/2

√
2

N∑

j,k=1

cjcke
−π(tj−tk)2/2−iπt

(
tjeiα+tke−iα

)
.(8)

A similar expression holds for v:

A(v)(−t sinα, t cosα) = 2−1/2e−πt2/2 ×

×
M∑

j,k=1

κjκke
−π(τj−τk)2/2e−iπt

(
τjeiα+τke−iα

)
. (9)

The proof is based on two facts.

Fact 1. Let α ∈ R \ π

2
Z and let {tj}j∈Z and {τj}j∈Z

be two finite sequences of real numbers. If there exists

j, k, j′, k′ ∈ Z such that tje
iα+tke

−iα = τj′e
iα+τk′e−iα

then tj = τj′ and tk = τk′.

This fact is easy to prove. The following fact is well

known:

Fact 2. The set {ezt}z∈C is linearly independent set of

functions on R.

From Fact 1, each term of the form ezt appearing in

the sum (8) –resp. (9)– appears exactly ones. Moreover,

as |Fαv| = |Fαu| implies A(v)(−t sinα, t cosα) =
A(u)(−t sinα, t cosα), Fact 2 implies that the two sums

are equal term by term: M = N , {τj} = {tj} thus

(up to renumbering) τj = tj and then, for every j, k =
1, . . . , N , κjκk = cjck. This last identity implies that

there exists c ∈ C with |c| = 1 such that κj = ccj for

all j and finally that v = cu. 2

Note that so far we have no reasonable algorithm to

obtain u from the measures, an issue we plan to tackle

in the near future.

IV. CONCLUSION

In this paper we have partially solved the phase

retrieval problem for the radar ambiguity function. More

precisely, we concentrated our attention on the two com-

mon cases (gaussian signals and rectangular pulse trains).

In both cases, we have proved that most signals have

only trivial partners, if one restricts the problem to these

classes of functions. In the case of pulse type signals, we

have both the rareness of functions with strange partners,

some criteria to have only trivial solutions and various

ways to construct functions that have strange partners.

Moreover, if the pulses are short enough, then the signal

can be reconstructed among all signals (not just pulse

trains).

In the second part of the paper, we have used the

radar ambiguity function to reconstruct a signal from the

modulus of its Fractional Fourier Transforms of various

orders. We have shown that, if the orders are well chosen,

then uniqueness occurs in several classes of functions,

including gaussian signals and pulse trains.
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