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Hydrodynamic Limit for the Velocity-flip Model

Marielle Simon

Abstract We review the proof of the hydrodynamic limit for the velocity-flip model
which is given in [12]. We study the diffusive scaling limit for a chain of N coupled
harmonic oscillators. In order to provide the system with good ergodic properties,
we perturb the Hamiltonian dynamics with random flips of velocities, so that the
energy is still conserved. We derive the hydrodynamic equations by estimating the
relative entropy with respect to the local equilibrium state modified by a correction
term.

Key words: Hydrodynamic limit, Hamiltonian system, Velocity-flip model.

1 Introduction

We consider a Hamiltonian system of N coupled oscillators with the same mass that
we set equal to 1. Since the ergodic properties of Hamiltonian dynamics are poorly
understood, especially when the size of the system goes to infinity, we perturb it by
an additional conservative mixing noise, as it has been proposed for the first time by
Olla, Varadhan and Yau ([11]) in the context of gas dynamics, and then in [6] in the
context of Hamiltonian lattice dynamics.

We are interested in the macroscopic behavior of this system as N goes to infinity,
after rescaling space and time. The system is considered under periodic boundary
conditions, more precisely we work on the one-dimensional discrete torus TN :=
{0, ...,N−1}. A typical configuration is given by ω = (px,rx)x∈TN where px stands
for the velocity of the oscillator at site x, and rx represents the distance between
oscillator x and oscillator x + 1. The deterministic dynamics is described by the
harmonic Hamiltonian
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HN =
N−1

∑
x=0

[
p2

x + r2
x

2

]
. (1)

The stochastic perturbation is added only to the velocities, in such a way that the
energy of particles is still conserved. Nevertheless, the momentum conservation is
no longer valid, so that we can hope for a normal diffusion of energy1. The added
noise can be easily described: each particle independently waits an exponentially
distributed time interval and then flips the sign of velocity. The strength of the noise
is regulated by the parameter γ > 0. The total deformation ∑rx and the total energy
∑
(

p2
x + r2

x
)
/2 are the only two conserved quantities. Thus, the Gibbs states are

parametrized by two potentials, temperature and tension: for β > 0 and λ ∈ R, the
equilibrium Gibbs measures µN

β ,λ on the configuration space Ω N := (R×R)TN are
products of Gaussians (see (10)).

The goal is to prove that the two empirical profiles associated to the conserved
quantities converge in the thermodynamic limit N→ ∞ to the macroscopic profiles
r(t, ·) and e(t, ·), which satisfy an autonomous system of coupled parabolic equa-
tions. More precisely, let r0 : T → R and e0 : T → R be respectively the initial
macroscopic deformation profile and the initial macroscopic energy profile defined
on the one-dimensional torus T = [0,1] and denote by µN

0 the Gibbs local equilib-
rium associated to r0 and e0 (see (14) for the explicit formula). If the inital law of
the process is µN

0 , then the law of the process in the diffusive scale, namely at time
tN2, is close in the large N limit, to the Gibbs local equilibrium associated to the
functions r(t,q) and e(t,q) (defined on R+×T), which are solutions of

∂tr =
1
γ

∂
2
q r ,

∂te =
1
2γ

∂
2
q

(
e+

r2

2

)
,

q ∈ T, t ∈ R+ , (2)

with the initial conditions r(0, ·) = r0(·) and e(0, ·) = e0(·).
We approach this problem by using the relative entropy2 method introduced for

the first time by H. T. Yau [15] for a gradient3 diffusive Ginzburg-Landau dynamics.
Roughly speaking, we measure the distance between the Gibbs local equilibrium4

µN
e(t,·),r(t,·) and the state µN

t by their relative entropy HN(t) (see (28)). The strategy
consists in proving that limN→∞ HN(t)/N = 0 and deducing that the hydrodynamic
limit holds. In the context of diffusive systems, the relative entropy method works if
the following conditions are satisfied.

1 If the momentum is conserved, anormal behaviors can emerge, see for example [1], or [3].
2 The relative entropy of the probability measure µ with respect to the probability measure ν is
denoted by H(µ|ν) and is defined in (15).
3 A conservative system is called gradient if the currents corresponding to the conserved quantities
are gradients.
4 For the sake or readability, in the following sections we will denote it by µN

βt (·),λt (·) (see (14)).
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• First, the dynamics has to be ergodic: the only time and space invariant measures
for the infinite system, with finite local entropy, are given by mixtures of the
Gibbs measures in infinite volume µβ ,λ (see (16)). From [6], we know that the
velocity-flip model is ergodic in the sense above (see Theorem 3).

• Next, we need to establish the so-called fluctuation-dissipation equations in the
mathematics literature (for example, in [10]). Such equations express the micro-
scopic current of energy (which here is not a discrete gradient) as the sum of a
discrete gradient and a fluctuating term. More precisely, the microscopic current
of energy, denoted by jx,x+1, is defined by the local energy conservation law:
L ex = ∇ jx−1,x, where L is the generator of the infinite dynamics. The standard
approach consists in proving that there exist local functions fx and hx such that
the following decomposition holds:

jx,x+1 = ∇ fx +L hx . (3)

Equation (3) is called a microscopic fluctuation-dissipation equation. The term
L hx, when integrated in time, is a martingale. Roughly speaking, L hx repre-
sents rapid fluctuation, whereas ∇ fx represents dissipation. Gradient models are
systems for which hx = 0 with the previous notations.
In general, these equations are not explicit but we are able to compute them in
our model (see [12], App. A).

• Finally, since we observe the system on a diffusive scale and the system is non-
gradient, we need second order approximations. If we want to obtain the entropy
estimate of order o(N), we can not work with the measure µN

e(t,·),r(t,·): we have
to correct the Gibbs local equilibrium state with a small term. This idea was
first introduced in [7] and then used in [13] for interacting Ornstein-Uhlenbeck
processes, and in [9] for the asymmetric exclusion process. However, as far as we
know, it is the first time that this is applied for a system with several conservation
laws.

Up to present, the derivation of hydrodynamic equations for the harmonic oscil-
lators perturbed by the velocity-flip noise is not rigorously achieved (see e.g. [5]),
because the control of large energies has not been considered so far. Along the proof,
we need to control all the following moments,

∫ [ 1
N ∑

x∈TN

|px|k
]

dµ
N
t , (4)

uniformly in time and with respect to N. In fact, the only first moments are necessary
to cut-off large energies and we need all the others to obtain the Taylor expansion
that appears in the relative entropy method (Proposition 1). Usually, the following
entropy inequality (true for any α > 0 and any positive measurable function f )∫

f dµ 6
1
α

{
log
(∫

eα f dν

)
+H(µ|ν)

}
(5)
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reduces the control of (4) to the estimate of the following equilibrium exponential
moments ∫

exp(δ |px|k) dµ
N
1,0 , with δ > 0 small. (6)

Unfortunately, in our model, these integrals are infinite for all k > 3 and all δ > 0.
Bernardin [2] deals with a harmonic chain perturbed by a stochastic noise which

is different from ours but has the same motivation: energy is conserved, momentum
is not. He derives the hydrodynamic limit for a particular value of the intensity of
the noise. In this case the hydrodynamic equations are simply given by two decou-
pled heat equations. The author highlights that good energy bounds are necessary
to extend his work to other values of the noise intensity. In fact, in [2], only the
following weak form is proved:

lim
N→+∞

∫ [ 1
N2 ∑

x∈TN

p4
x

]
dµ

N
t = 0 . (7)

In [12], we get uniform control of (4) for our model (Theorem 2). Let us notice that
the harmonicity of the chain is crucial to get this result: roughly speaking, it ensures
that the set of mixtures of Gaussian probability measures is left invariant during the
time evolution. The article is divided into two parts: after the main results being
stated, we give the ideas of proof. All the results discussed here are in [12] to which
we refer for the details.

2 The Velocity-flip Model

We consider the unpinned harmonic chain perturbed by the momentum-flip noise.
Each particle has the same mass that we set equal to 1. A typical configuration is
ω = (r,p) ∈Ω N := (R×R)TN , where r = (rx)x∈TN and p = (px)x∈TN .

The generator of the dynamics is given by LN := AN + γSN , where for any
continuously differentiable function f : Ω N → R,

AN( f )(r,p) := ∑
x∈TN

[(px+1− px) ∂rx f (r,p)+(rx− rx−1) ∂px f (r,p)] , (8)

SN( f )(r,p) :=
1
2 ∑

x∈TN

[ f (r,px)− f (r,p)] . (9)

Here px is the configuration obtained from p by the flip of px into −px. The param-
eter γ > 0 regulates the strength of the random flip of momenta.

The operator AN is the Liouville operator of a chain of harmonic oscillators,
and SN is the generator of the stochastic part of the dynamics that flips at random
time the velocity of one particle. The dynamics conserves two quantities: the total
deformation of the lattice R := ∑x∈TN rx and the total energy E := ∑x∈TN ex, where
ex =

(
p2

x + r2
x
)
/2. Observe that the total momentum is no longer conserved. The
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deformation and the energy define a family of invariant measures depending on two
parameters. For β > 0 and λ ∈R, we denote by µN

β ,λ the Gaussian product measure
on Ω N given by

µ
N
β ,λ (dr,dp) := ∏

x∈TN

e−βex−λ rx

Z(β ,λ )
drxdpx , (10)

where Z(β ,λ ) is the partition function.
In the following, we shall denote by µ[·] the expectation with respect to the mea-

sure µ . The thermodynamic relations between the averaged conserved quantities
r̄ ∈ R and ē ∈ (0,+∞), and the potentials β ∈ (0,+∞) and λ ∈ R are given by

ē(β ,λ ) := µ
N
β ,λ [ex] =

1
β
+

λ 2

2β 2 ,

r̄(β ,λ ) := µ
N
β ,λ [rx] =−

λ

β
.

(11)

Notice that

∀ β ∈ (0,+∞),∀ λ ∈ R, ē(β ,λ )>
r̄2(β ,λ )

2
. (12)

Remark 1. There exists a bijection between the two sets
{
(β ,λ ) ∈ R2 ; β > 0

}
and{

(e,r) ∈ R2 ; e > r2/2
}

. The equations above can be inverted according to the
functional

Ψ :
{
(e,r) ∈ R2 ; e > r2/2

}
→

{
(β ,λ ) ∈ R2 ; β > 0

}
(e,r) 7→

(
1

e− r2/2
, − r

e− r2/2

)
.

We assume that the system is initially close to a local equilibrium.

Definition 1. A sequence (µN)N of probability measures on Ω N is a local equi-
librium associated to a deformation profile r0 : T → R and an energy profile
e0 : T→ (0,+∞) if for every continuous function G : T→ R and for every δ > 0,
we have 

lim
N→∞

µ
N

[∣∣∣∣∣ 1
N ∑

x∈TN

G
( x

N

)
rx−

∫
T

G(q)r0(q)dq

∣∣∣∣∣> δ

]
= 0 ,

lim
N→∞

µ
N

[∣∣∣∣∣ 1
N ∑

x∈TN

G
( x

N

)
ex−

∫
T

G(q)e0(q)dq

∣∣∣∣∣> δ

]
= 0 .

(13)

Example 1. For any integer N we define the probability measures

µ
N
β0(·),λ0(·)(dr,dp) := ∏

x∈TN

exp(−β0(x/N)ex−λ0(x/N)rx)

Z(β0(x/N),λ0(x/N))
drxdpx , (14)
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where the two profiles β0 and λ0 are related to e0 and r0 by (11). Then, this se-
quence of probability measures is a local equilibrium, and it is called the Gibbs
local equilibrium state associated to the macroscopic profiles β0, λ0. Both profiles
are assumed to be continuous.

To establish the hydrodynamic limits, we look at the process with generator
N2LN , namely in the diffusive scale. The configuration at time tN2 is denoted by
ωN

t , and the law of the process (ωN
t )t>0 is denoted by µN

t .

2.1 Hydrodynamic Equations

Let µ and ν be two probability measures on the same measurable space (X ,F ). We
define the relative entropy H(µ|ν) of the probability measure µ with respect to the
probability measure ν by

H(µ|ν) := sup
f

{∫
X

f dµ− log
(∫

X
e f dν

)}
, (15)

where the supremum is carried over all bounded measurable functions f on X . The
Gibbs states in infinite volume are the probability measures µβ ,λ on Ω = (R×R)Z
given by

µβ ,λ (dr,dp) := ∏
x∈Z

e−βex−λ rx

Z(β ,λ )
drxdpx . (16)

We denote by τxϕ the shift of ϕ: (τxϕ)(ω) = ϕ(τxω) = ϕ(ω(x+ · )). Hereafter, all
statements involving time t assume that t belongs to a compact set [0,T ]. In [12] the
following theorem is proved.

Theorem 1. Let (µN
0 )N be a sequence of probability measures on Ω N which is a

local equilibrium associated to a deformation profile r0 and an energy profile e0
such that e0 > r2

0/2. We denote by β0 and λ0 the potential profiles associated to r0
and e0: (β0,λ0) :=Ψ(e0,r0).

We assume that the initial profiles are continuous, and that

H
(

µ
N
0 |µN

β0(·),λ0(·)

)
= o(N). (17)

We also assume that the energy moments are bounded: let us suppose that there
exists a positive constant C which does not depend on N and t, such that

∀ k > 1, µ
N
t

[
∑

x∈TN

ek
x

]
6 (Ck)k×N . (18)

Let G be a continuous function on the torus T and ϕ be a local function which
satisfies the following property: there exists a finite subset Λ ⊂ Z and a constant
C > 0 such that, for all ω ∈Ω N , ϕ(ω)6C (1+∑i∈Λ ei(ω)). Then,
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µ
N
t

[∣∣∣∣ 1
N ∑

x
G
( x

N

)
τxϕ−

∫
T

G(q) ϕ̃(e(t,q),r(t,q))dq
∣∣∣∣]−−−→N→∞

0 (19)

where ϕ̃ is the grand-canonical expectation of ϕ: in other words, for any (e,r)∈R2,
if (β ,λ ) =Ψ(e,r) then

ϕ̃(e,r) = µβ ,λ [ϕ] =
∫
(R×R)Z

ϕ(ω) dµβ ,λ (ω) . (20)

Besides, e and r are defined on R+×T and are solutions of
∂tr =

1
γ

∂
2
q r,

∂te =
1
2γ

∂
2
q

(
e+

r2

2

)
,

q ∈ T, t ∈ R+ , (21)

with the initial conditions r(·,0) = r0(·) and e(·,0) = e0(·).

Remark 2. Let us notice that the functions e,r,β and λ are smooth when t > 0, since
the system of partial differential equations is parabolic.

In Sec. 4, we will see that the hypothesis on moments bounds (18) holds for a
large class of initial local equilibrium states. Before stating the theorem, we give
some definitions. We denote by SN(R) the set of real symmetric matrices of size
N. The correlation matrix C ∈ S2N(R) of a probability measure ν on Ω N is the
symmetric matrix C = (Ci, j)16i, j62N defined by

Ci, j :=


ν [rir j] i, j ∈ {1, ...,N} ,
ν [ri p j] i ∈ {1, ...,N}, j ∈ {N +1, ...,2N} ,
ν [pir j] i ∈ {N +1, ...,2N}, j ∈ {1, ...,N} ,
ν [pi p j] i, j ∈ {N +1, ...,2N} .

(22)

Let us denote by ΣN the subset of R2N×S2N(R) defined by the following condition:

(m,C) ∈ ΣN ⇔


mk = 0 for all k = N +1 . . .2N ,

Ci, j = 0 for all i 6= j ,
Ci,i > 0 for all i = 1 . . .2N ,

Ci,i−m2
i =Ci+N,i+N for all i = 1 . . .N .

(23)

Precisely, it means that m is written as m=(m1, . . . ,mN ,0, . . . ,0), and C is a diagonal
matrix whose components are (m2

1+α1, . . . ,m2
N +αN ,α1, . . . ,αN), where αi > 0 for

all i = 1 . . .N. For (m,C) ∈ ΣN , we denote by Gm,C(·) the Gaussian measure with
mean m and correlations given by the matrix C. The covariance matrix of Gm,C(·) is
thus C−mtm. In [12] the following lemma is proved.
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Lemma 1. Let λ and β be two functions of class C 1 defined on T, and µN
β (·),λ (·) be

the Gibbs local equilibrium defined by (14). If we denote by mβ (·),λ (·) and Cβ (·),λ (·)
respectively the mean vector and the correlation matrix of the probability measure
µN

β (·),λ (·), then we have

(mβ (·),λ (·),Cβ (·),λ (·)) ∈ ΣN and µ
N
β (·),λ (·) = Gmβ (·),λ (·),Cβ (·),λ (·) . (24)

Now we state our second main theorem.

Theorem 2. We assume that the initial probability measure µN
0 is a Gibbs local

equilibrium state, defined by (14).
Then, (18) holds, and the conclusions of Theorem 1 are valid.

In the following, we will denote by et(·), rt(·), λt(·) and βt(·) respectively the func-
tions q→ e(t,q), q→ r(t,q), q→ λ (t,q), and q→ β (t,q) defined on T.

2.2 Ergodicity of the Infinite Volume Velocity-flip Model

We conclude this part by giving the ergodicity theorem, which is proved in [3], Secs
2.2 and 2.4.2, by following the ideas of [6]. We define, for all finite subsets Λ ⊂ Z,
and for two probability measures ν and µ on Ω = (R×R)Z, the restricted relative
entropy HΛ (ν |µ) := H(νΛ |µΛ ) where νΛ and µΛ are the marginal distributions of
ν and µ on Ω . The Gibbs states in infinite volume are the probability measures µβ ,λ

on Ω given by (16). The formal generator of the infinite dynamics is denoted by L
(respectively A and S for the antisymmetric and the symmetric part).

Theorem 3. Let ν be a probability measure on the configuration space Ω such that

1. ν has finite density entropy: there exists C > 0 such that for all finite subsets Λ of
Z, HΛ (ν |µ∗)6C|Λ |, with µ∗ := µ1,0 a reference Gibbs measure on (R×R)Z;

2. ν is translation invariant ;
3. ν is stationary: for any compactly supported and differentiable function F(r,p),∫

A (F) dν = 0 ; (25)

4. the conditional probability distribution of p given the probability distribution of
r, denoted by ν(p|r), is invariant by any flip p→ px, with x ∈ Z.

Then, ν is a mixture of infinite Gibbs states.

Corollary 1. If ν is a probability measure on Ω satisfying 1, 2 and if ν is stationary
in the sense that: for any compactly supported and differentiable function F(r,p),∫

L (F) dν = 0 , (26)

then ν is a mixture of infinite Gibbs states.
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3 The Relative Entropy Method

For the sake of simplificity, we denote all couples of the form (β (·),λ (·)) by χ(·).
First, we introduce the corrected local Gibbs state νN

χt (·) defined by

dνN
χt (·)

drdp
:=

1
Z(χt(·)) ∏

x∈TN

exp
(
−βt

( x
N

)
ex−λt

( x
N

)
rx +

1
N

F
(

t,
x
N

)
· τxh(r,p)

)
(27)

where Z(χt(·)) is the partition function. Functions F and h should be judiciously
chosen, and are explicitely defined in [12].

We are going to use the relative entropy method, with the corrected local Gibbs
state νN

χt (·) instead of the usual one µN
χt (·). We define

HN(t) := H
(

µ
N
t |νN

χt (·)

)
=
∫

Ω N
f N
t (ω) log

f N
t (ω)

φ N
t (ω)

dµ
N
1,0(ω) , (28)

where f N
t is the density of µN

t with respect to the reference measure µN
1,0. In the same

way, φ N
t is the density of νN

χt (·) with respect to µN
1,0 (which here is easily computable).

The objective is to prove a Gronwall estimate of the entropy production of the form

∂tHN(t)6C HN(t)+o(N) , (29)

where C > 0 does not depend on N. In order to prove Theorem 1, we show in [12]
that HN(t) = o(N) and this implies the existence of the hydrodynamic limit in the
sense given in the theorem, by using the relative entropy inequality (5). For a proof
of this last step, we refer the reader to [3], Proposition 3.3.2. and [8]. Thus, our
purpose now is to prove (29).

We begin with the following lemma, proved in [8], Chap. 6, Lemma 1.4 and [4],
Sec. 3.2. The operator L ∗

N =−AN + γSN is the adjoint of LN in L2(µN
1,0).

Lemma 2.

∂tHN(t)6
∫ 1

φ N
t

(
N2L ∗

N φ
N
t −∂tφ

N
t
)

f N
t dµ1,0 = µ

N
t

[
1

φ N
t

(
N2L ∗

N φ
N
t −∂tφ

N
t
)]

.

We define ξx := (ex,rx) and η(t,q) := (e(t,q),r(t,q)). If f is a vectorial function,
we denote its differential by D f . In [12], we prove that we can choose the correction
term to obtain the following technical result.

Proposition 1. The term (φ N
t )−1

(
N2L ∗

N φ N
t −∂tφ

N
t
)

is given by the sum of five
terms in which a microscopic expansion up to the first order appears.

In other words,
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(φ N
t )−1 (N2L ∗

N φ
N
t −∂tφ

N
t
)

=
5

∑
k=1

∑
x∈TN

vk

(
t,

x
N

)[
Jk

x −Hk

(
η

(
t,

x
N

))
− (DHk)

(
η

(
t,

x
N

))
·
(

ξx−η

(
t,

x
N

))]
+o(N) (30)

where

k Jk
x Hk(e,r) vk(t,q)

1 p2
x + rxrx−1 +2γ pxrx−1 e+ r2/2 −(2γ)−1∂ 2

q β (t,q)
2 rx + γ px r −γ−1∂ 2

q λ (t,q)
3 p2

x (rx + rx−1)
2 (2e− r2)

(
e+3r2/2

)
(4γ)−1[∂qβ (t,q)]2

4 p2
x (rx + rx−1) r (2e− r2) γ−1∂qβ (t,q) ∂qλ (t,q)

5 p2
x e− r2/2 γ−1[∂qλ (t,q)]2

(31)

Remark 3. Along the proof, the so-called fluctuation-dissipation equations will play
a crucial role, in particular for the choice of functions F,h.

A priori the first term on the right-hand side of (30) is of order N, but we want
to take advantage of these microscopic Taylor expansions. First, we need to cut-off
large energies in order to work with bounded variables only. Second, the strategy
consists in performing a one-block estimate: we replace the empirical truncated cur-
rent which is averaged over a microscopic box centered at x by its mean with respect
to a Gibbs measure with the parameters corresponding to the microscopic averaged
profiles. This is achieved thanks to the ergodicity of the dynamics (see Theorem 3).
A one-block estimate is performed for each term of the form

∑
x∈TN

vk

(
t,

x
N

)[
Jk

x −Hk

(
η

(
t,

x
N

))
− (DHk)

(
η

(
t,

x
N

))
·
(

ξx−η

(
t,

x
N

))]
.

(32)
We deal with error terms by taking advantage of the following equality

Hk

(
η

(
t,

x
N

))
= ν

N
χt (x/N)(J

k
0) (33)

and by using the large deviation properties of the probability measure νN
χt (·), that

locally is almost homogeneous. Along the proof, we will need to control, uniformly
in N, the quantity ∫

∑
x∈TN

exp
(ex

N

)
dµ

N
t . (34)

In fact, to get the convenient estimate, it is not difficult to see that it is sufficient to
prove (18). For all the details, we refer the reader to [12], where the proof is written
following the lines of [3], Sec. 3.3 and inspired from [11].
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4 Proof of Theorem 2: Moments Bounds

Now we review how to prove the two conditions on the moments bounds for a class
of local equilibrium states. Hereafter we assume that the initial law µN

0 is the Gibbs
local equilibrium state µN

β0(·),λ0(·)
.

We need to control the moments µN
t
[
∑x ek

x
]

for all k > 1. The first two bounds
would be sufficient to justify the cut-off of the currents, but here we need more
bounds because of the Taylor expansion (Proposition 1). Precisely, the moments
bounds are necessary to get the term of order o(N) in the right hand-side of (32).
Since the chain is harmonic, Gibbs states are gaussian. Remarkably, all Gaussian
moments can be expressed in terms of variances and covariances. We start with an
other representation of the dynamics of the process, and then we prove the bounds
and describe their dependence on k. Let us highlight that, from now on, we con-
sider the process with generator LN : it is not accelerated any more. The law of this
new process (ω̃t)t>0 is denoted by µ̃N

t . Theorem 2 will be easily deduced since all
estimates will not depend on t, and the following equality still holds: µN

t = µ̃N
tN2 .

Remark 4. 1. In the following, we always respect the decomposition of the space
Ω N = RN ×RN . Let us recall that the first N components stand for r and the
last N components stand for p. All vectors and matrices are written according
to this decomposition. Let ν be a measure on Ω N . We denote by m ∈ R2N its
mean vector and by C ∈M2N(R) its correlation matrix (see (22)). There exist
ρ := ν [r] ∈ RN , π := ν [p] ∈ RN and U,V,Z ∈MN(R) such that

m = (ρ,π) ∈ R2N and C =

(
U Z∗

Z V

)
∈S2N(R) . (35)

Hereafter, we denote by Z∗ the transpose of the matrix Z.
2. Thanks to the convexity inequality (a+b)k 6 2k−1 (ak+bk) (a,b> 0, k a positive

integer), we have

ek
x 6

1
2

(
p2k

x + r2k
x

)
. (36)

Thus, instead of proving (18) we can show

µ
N
t

[
∑

x∈TN

p2k
x

]
6 (Ck)k×N and µ

N
t

[
∑

x∈TN

r2k
x

]
6 (Ck)k×N . (37)

4.1 Poisson Process and Gaussian Measures

We start by giving a graphical representation of the process (ω̃t)t>0. Let us define
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A :=



0 · · · · · · 0 −1 1 (0)
...

... 0
. . . . . .

...
... 0

. . . 1
0 · · · · · · 0 1 0 0 −1
1 0 0 −1 0 · · · · · · 0

−1
. . . 0

...
...

. . . . . . 0
...

...
(0) −1 1 0 · · · · · · 0


∈M2N(R) . (38)

We consider the Markov process (mt ,Ct)t>0 on R2N ×S2N(R) defined by its
generator G , which can be written as follows.

Take m = (ρ,π)∈R2N and C =

(
U Z∗

Z V

)
∈S2N(R), with two vectors ρ,π ∈RN

and three matrices U,V ∈SN(R), Z ∈MN(R). The generator GN is given by

(GNv)(m,C) := (KNv)(m,C)+ γ (HNv)(m,C) , (39)

where

KN := ∑
i, j∈TN

(−AC+CA)i, j ∂Ci, j + ∑
i∈TN

{
(πi+1−πi)∂ρi +(ρi−ρi−1)∂πi

}
, (40)

(HNv)(m,C) :=
1
2 ∑

k∈TN

[v(mk,Ck)− v(m,C)] . (41)

In these formulas, we define mk := (ρ,πk) and Ck := Σ ∗k ·C ·Σk =

(
U Zk∗

Zk V k

)
, where

πk is the vector obtained from π by the flip of πk into −πk, and Σk is

Σk :=
(

In 0n
0n In−2Ek,k

)
. (42)

Here, Ei, j denotes the (n,n)-matrix which has only one non-zero entry, the compo-
nent (i, j), equal to 1.

We denote by Pm0,C0 the law of the process (mt ,Ct)t>0 starting from (m0,C0), and
by Em0,C0 [·] the expectation with respect to Pm0,C0 . For t > 0 fixed, let θ t

m0,C0
(·, ·) be

the law of the random variable (mt ,Ct) ∈ R2N ×S2N(R), knowing that the process
starts from (m0,C0).

The following lemma, which is proved in [12], gives the link between the two
Markov processes defined in this paper. The proof is based on the Harris description.

Lemma 3. Let µN
0 := µN

β0(·),λ0(·)
be the Gibbs equilibrium state defined by (14),

where λ0(·) and β0(·) are two macroscopic potential profiles.
Then,
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µ̃
N
t =

∫
Gm,C(·) dθ

t
m0,C0

(m,C) , (43)

where the components of (m0,C0)∈ ΣN can be explicitely expressed (and depend on
λ0 and β0).

Remark 5. Observe that we have, from (43),

µ̃
N
t [px] =

∫
Gm,C(px) dθ

t
m0,C0

(m,C) =
∫

πx dθ
t
m0,C0

(m,C) = Em0,C0 [πx(t)] , (44)

µ̃
N
t [rx] =

∫
Gm,C(rx) dθ

t
m0,C0

(m,C) =
∫

ρx dθ
t
m0,C0

(m,C) = Em0,C0 [ρx(t)] . (45)

Finally, thanks to the Harris description and Lemma 3, it is proved in [12] that we
can control the quantities πy(t) and ρy(t) for all t > 0. More precisely,

Lemma 4. Let (mt ,Ct)t>0 be the Markov process defined above. As previously done,
we introduce ρ(t),π(t) ∈ RN and U(t),V (t),Z(t) ∈MN(R) such that

mt = (ρ(t),π(t)) and Ct =

(
U(t) Z∗(t)
Z(t) V (t)

)
. (46)

Then,

Pm0,C0 - a. s. , ∀ t > 0,

{
π

2
y (t)6Vy,y(t) ,

ρ
2
y (t)6Uy,y(t) .

(47)

4.2 Evolution of the Process (mt ,Ct)t>0

According to Lemma 4, the problem is reduced to estimate Uy,y(t) and Vy,y(t) for
t > 0. Thanks to the regularity of β0 and λ0, we know that there exists a constant K
which does not depend on N such that

1
N ∑

i

[
(Ui,i)

k(0)+(Vi,i)
k(0)

]
6 Kk, for all k > 1 . (48)

It is easy to see that the above inequality is uniform in t > 0, in the sense that

1
N
Em0,C0

[
∑

i

[
(Ui,i)

k(t)+(Vi,i)
k(t)
]]

6 Kk, for all k > 1 . (49)

We are going to see how this last inequality can be used to show (18). We denote by
uk(t) and vk(t) the two quantities

uk(t) := Em0,C0

[
∑

i∈TN

Uk
i,i(t)

]
, vk(t) := Em0,C0

[
∑

i∈TN

V k
i,i(t)

]
. (50)
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Let us make the link with (18). We are going to focus on uk(t). The same ideas work
for vk(t). In view of (43), we can write

µ̃
N
t

[
p2k

y

]
=
∫

Gm,C

[
p2k

y

]
dθ

t
m0,C0

(m,C) . (51)

We use the convexity inequality to get

µ̃
N
t

[
p2k

y

]
=
∫

Gm,C

[
(py−πy +πy)

2k
]

dθ
t
m0,C0

(m,C)

6 22k−1
[∫

Gm,C

[
(py−πy)

2k
]

dθ
t
m0,C0

(m,C)+
∫

π
2k
y dθ

t
m0,C0

(m,C)

]
.

We deal with the two terms of the sum separately. First, observe that Gaussian cen-
tered moments are easily computable:

Gm,C

[
(py−πy)

2k
]
=
(
Vy,y−π

2
y
)k (2k)!

k! 2k . (52)

Hence,

∑
y∈TN

∫ (
Vy,y−π

2
y
)k (2k)!

k! 2k dθ
t
m0,C0

(m,C)6
(2k)!
k! 2k

(
vk(t)+Em0,C0

[
∑

y∈TN

π
2k
y (t)

])
.

(53)
Lemma 4 shows that

Em0,C0

[
∑

y∈TN

π
2k
y (t)

]
6 Em0,C0

[
∑

y∈TN

V k
y,y(t)

]
= vk(t) . (54)

As a result,

∑
y

µ̃
N
t

[
p2k

y

]
6

(2k)!
k!

vk(t)∼ 2
(

4
e

)k

kk vk(t) . (55)

As a result, in order to get (18) we need to estimate the two quantities uk(t) and
vk(t), which are related to Ct . In [12], the following final technical lemma is proved.

Lemma 5. For any integer k not equal to 0, there exists a positive constant K which
does not depend on N and t such that{

vk(t)6 Kk N ,

uk(t)6 Kk N .
(56)
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