
HAL Id: hal-01103998
https://hal.science/hal-01103998

Submitted on 9 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Realistic Analysis of Some Popular Sorting
Algorithms

Julien Clément, Thu Hien Nguyen Thi, Brigitte Vallée

To cite this version:
Julien Clément, Thu Hien Nguyen Thi, Brigitte Vallée. Towards a Realistic Analysis of Some Popular
Sorting Algorithms. Combinatorics, Probability and Computing, 2015, (Honouring the Memory of
Philippe Flajolet - Part 3, 24 (01), pp.104-144. �10.1017/S0963548314000649�. �hal-01103998�

https://hal.science/hal-01103998
https://hal.archives-ouvertes.fr

Combinatorics, Probability and Computing (20XX) 00, 1–??. c© Cambridge University Press 20XX

doi:

Realistic analysis
of some popular sorting algorithms

J. C L É M E N T , T. H. N G U Y E N T H I and B. V A L L É E†

Université de Caen/ENSICAEN/CNRS – GREYC – Caen, France

Received

We describe a general framework for realistic analysis of sorting algorithms, and we

apply it to the average-case analysis of three basic sorting algorithms (QuickSort,
InsertionSort, BubbleSort). Usually, the analysis deals with the mean number of key

comparisons, but, here, we view keys as words produced by the same source, which
are compared via their symbols in the lexicographic order. The “realistic” cost of

the algorithm is now the total number of symbol comparisons performed by the

algorithm, and, in this context, the average-case analysis aims to provide estimates
for the mean number of symbol comparisons used by the algorithm. For sorting

algorithms, and with respect to key comparisons, the average-case complexity of

QuickSort is asymptotic to 2n logn, InsertionSort to n2/4 and BubbleSort to n2/2.
With respect to symbol comparisons, we prove that their average-case complexity be-

comes Θ(n log2 n),Θ(n2),Θ(n2 logn). In these three cases, we describe the dominant

constants which exhibit the probabilistic behaviour of the source (namely, entropy
and coincidence) with respect to the algorithm.

Introduction

There are two main classes of sorting and searching algorithms: the first class gathers

the algorithms which deal with keys, while the algorithms of the second class deal with

words (or strings). Of course, any data is represented inside a computer as a sequence of

bits (that is a binary string). However, the point of view is different: the key is viewed as

a “whole”, and its precise representation is not taken into account, whereas the structure

of a word, as a sequence of symbols, is essential in text algorithms. Hence, for basic

algorithms of the first class (sorting, searching), the unit operation is the comparison

between keys, whereas for text algorithms of the second class, comparisons between

symbols are considered.

There exist two important drawbacks to this usual point of view. First, it is difficult

to compare algorithms belonging to these two different classes, since they are analyzed

† Thanks to the two ANR Projects: ANR BOOLE (ANR 2009 BLAN 0011) and ANR MAGNUM (ANR
2010 BLAN 0204).

2 J. Clément, T. H. Nguyen Thi and B. Vallée

with respect to different costs. Second, when the keys are complex items, not reduced

to single machine words, it is not realistic to consider the total cost of their comparison

as unitary. This is why Sedgewick proposed in 1998 to analyze basic algorithms (sorting

and searching) when dealing with words rather than with “atomic” keys; in this case,

the realistic cost for comparing two words is the number of symbols comparisons needed

to distinguish them in the lexicographic order and is closely related to the length of their

longest common prefix, called here the coincidence. There are two factors which influence

the efficiency of such an algorithm: the strategy of the algorithm itself (which words are

compared?) and the mechanism which produces words, called the source (what makes

two words distinguishable?).

The first results in the area are due to Fill and Janson [9] who dealt with data

composed of random uniform bits in the case of the QuickSort algorithm. Then, in

[28], a general framework towards a realistic analysis based on the number of symbol

comparisons is provided, when the source which emits symbols is (almost completely)

general. Furthermore, these principles are applied to two algorithms, QuickSort and

QuickSelect. Later on, a study of the distribution of the complexity was performed in

the same framework [8, 10].

Main results. The present paper follows the lines of the article [28], and works within

the same general framework. We consider that the input keys are words on a finite totally

ordered alphabet Σ. What we call a probabilistic source produces infinite words on the

alphabet Σ, as described in Definition 1. The set of keys (words, data items) is then ΣN,

endowed with the strict lexicographic order. The sources of symbols that we deal with

include memoryless sources, and Markov chains, as well as many non-Markovian sources

with unbounded memory from the past. A central idea is the modelling of the source via

its fundamental probabilities, namely the probabilities that a word of the source begins

with a given prefix.

We wish to estimate the mean number of symbol comparisons performed by three

popular sorting algorithms, when they deal with words produced by a given source. We

describe our main results as follows:

(a) The general method has been already described in [28]: it was shown that a

Dirichlet series denoted by $(s) characterizes the behavior of an algorithm with respect

to the source. We wish here to highlight the main principles, in order to make easier its

application to various algorithms. This is done in Section 1. As it is often the case in

analytical combinatorics, there are two main phases in the method, a first phase where

the series $(s) is built (with algebraic tools), and a second phase where it is analyzed

(with analytical tools). We note here that the first phase may mostly be performed in an

“automatic” way (Section 3).

(b) We apply the method to two other popular algorithms: InsertionSort, and Bubble-

Sort, respectively denoted in the sequel by the short names InsSort, BubSort (see for

instance the book [23] for a thorough description of these algorithms). With this general

approach, we provide in Theorem 5.1 an unified framework for the analysis of these three

algorithms, and we also recover the results about QuickSort already obtained in [28].

Realistic analysis of sorting algorithms 3

(c) The generating function of the source plays a fundamental rôle in the analysis. This

series Λ(s) (of Dirichlet type) defined in Eq. (1.2), and introduced for the first time in

[27], collects the fundamental probabilities of the source, and intervenes in the expression

of the Dirichlet series $(s) which characterizes the behavior of an algorithm with respect

to the source (table of Figure 7). Our analyses deal with the case when the series Λ(s) is

“tame enough”; in this case, the source itself is called “tame” (Section 1.8 for a precise

definition)1. We exhibit, for each algorithm, a particular constant of the source (namely

the entropy or the coincidence) closely related to the Λ-function, which describes the

interplay between the algorithm and the source, and explains how the efficiency of the

algorithm depends on the source (Proposition 4.3). Our study is thus a tool for a better

understanding of the algorithmic strategy.

(d) We also discuss in Section 5 the robustness of the algorithms, i.e., the two possible

changes in the complexity behaviors: the first one due to the change in the complexity

measure, from the number of key comparisons to the number of symbol comparisons, or

the second one due to the tameness of the source.

(e) We then discuss the faithfulness of the algorithms. This notion was recently in-

troduced by Seidel [24], and we obtain here a natural characterization of this notion,

from which we easily prove that the algorithms QuickSort and InsSort are faithful,

whereas the algorithm BubSort is not faithful. Seidel used the faithfulness property to

obtain an interesting relation between the two measures of interest — mean number of

key comparisons and mean number of symbol comparisons — in the case of a faithful

algorithm. Adapting the main ideas of Seidel to our framework, we obtain an alternative

proof for the expression of the mean number of symbol comparisons, in the case of the

two faithful algorithms (Theorem 6.4).

(f) There is a close relation between the two analyses — faithful sorting algorithms

and trie parameters —. We are then led to revisit trie analyses, and compare the two

possible methods, the Rice methodology and the Poisson–Mellin tools (Proposition 6.3).

(g) We finally show in Section 6 that combining ideas of Seidel and our general

framework leads to an asymptotic lower bound for the number of symbol comparisons

performed by any comparison-based algorithm using the standard string comparison

procedure (Theorem 6.5).

Relation between the four articles on related subjects. There are two extended

abstracts: the paper [28], in the proceedings of ICALP 2009, and the paper [4], in the

proceedings of STACS 2013. Then, there are two long papers which are journal versions

of the previous ones.

The paper [28] was the first paper devoted to the subject “analysis with respect to

symbol comparisons” in the case of general (non-ambiguous) sources; this short paper

just mentioned the main steps of the methodology: even if the algebraic steps are well

1 The word “tame” was proposed by Philippe Flajolet and used for the first time in [28]. Later on, most
of the papers which deal with probabilistic sources use similar notions and the word “tame” is now

largely used.

4 J. Clément, T. H. Nguyen Thi and B. Vallée

described, the analytic steps are just mentioned. It then focused on the QuickSort and

QuickSelect algorithms, for which it states the main results, without proofs.

The paper [4] was the second paper devoted to the subject; it wished to perform two

tasks: first it shows the generality of the method, and designs a quite general framework

for the “analysis with respect to symbol comparisons”. It provides a precise description

of the algebraic steps, and also explains the analytic steps, with the introduction of the

various notions of tameness. The second aim of [4] was to apply the method to five

algorithms: amongst them, one again finds QuickSort and QuickMin, but also other

classical algorithms, as InsertionSort, BubbleSort and Selection-Minimum. Again, this is

only a short paper which does not contain proofs.

The two journal versions provide all the details for the methodology, and precise

analyses for algorithms of interest; each of the two journal versions is devoted to a class

of algorithms. The present paper focuses on the three sorting algorithms QuickSort,

InsSort, BubSort and makes precise all the notions of tameness that are adapted to

sorting algorithms, whereas the second paper [2] adapts the general method to the

algorithms of the QuickSelect class, for which it provides a complete analysis, together

with a precise description of the convenient notions of tameness for searching algorithms.

Plan of the paper. Section 1 first describes the general method, with its main four steps.

Then, each following section (from Section 2 to Section 5) is devoted to one of these steps.

Finally, Section 6 is devoted to the comparison of our results to the approach of Seidel,

and description of asymptotic lower bounds.

1. General method for a “realistic” analysis of sorting algorithms.

Here, we describe our general framework, already provided in [28]. We insist on the main

steps, and the notions developed here are somewhat different from the previous paper. We

first characterize in Section 1.1 the strategy of the algorithm (which keys are compared?

with which probability?), then we describe the model of source in Section 1.2 together,

with the particular cases of “simple” sources, then the central notion of coincidence

(Section 1.3). Section 1.4 is devoted to various probabilistic models, that lead in Sec-

tion 1.5 to an exact formula for the mean number of symbol comparisons, which involves

the mixed Dirichlet series $(s) (depending on the source and the algorithm). In order

to obtain asymptotic estimates, we deal with tameness properties of the source, which

entail tameness for the series $(s), and finally the asymptotic estimates (Sections 1.6, 1.7,

and 1.8). We conclude by describing the plan for the following sections.

1.1. The classical probabilistic model based on permutations.

Consider a totally ordered set of keys U = {U1 < U2 < · · · < Un} and any algorithm

A which only performs comparisons and exchanges between keys. The initial input

is the sequence (V1, V2, . . . , Vn) defined from U by the permutation σ ∈ Sn via the

equalities Vi = Uσ(i). The execution of the algorithm does not actually depend on the

input sequence, but only on the permutation σ which defines the input sequence from the

Realistic analysis of sorting algorithms 5

final (ordered) sequence. Then, the permutation σ is the actual input of the algorithm

and the set of all possible inputs is the set Sn.

The strategy of the algorithm A defines, for each pair (i, j), with 1 ≤ i < j ≤ n, the

subset of Sn which gathers the permutations σ for which Ui and Uj are compared by the

algorithmA, when the input sequence is (Uσ(1), Uσ(2), . . . , Uσ(n)). For efficient algorithms,

the two keys Ui and Uj are compared only once, but there exist other algorithms (the

BubSort algorithm for instance) where Ui and Uj may be compared several times. In

all cases, considering the usual uniform distribution on permutations, π(i, j) denotes the

mean number of comparisons2 between Ui and Uj . The computation of π(i, j) is the first

step of our method, and the results are found in Section 2 and summarized in the table

of Figure 4.

1.2. Sources.

Here, we consider that the keys are words produced by a general source on a finite

alphabet. A general source S built on the alphabet Σ produces at each discrete time

t = 0, 1, . . . a symbol from Σ. If Xn is the symbol emitted at time t = n, a source produces

the infinite word (X0, X1, . . . , Xn, . . .). For any finite prefix w ∈ Σ?, the probability pw
that a word produced by the source S begins with the finite prefix w is called the

fundamental probability of prefix w. The probabilities pw, w ∈ Σ?, completely define the

source S. By convention, we denote open and closed intervals of real numbers]a, b[and

[a, b], whereas (a, b) denotes a pair of real numbers.

Definition 1. Let Σ be a totally ordered alphabet of cardinality r. A source over the

alphabet Σ produces infinite words of ΣN, and is specified by the fundamental probabilities

pw, w ∈ Σ?, where pw is the probability that an infinite word begins with the finite prefix

w. When the two following properties hold,

(i) pw > 0 for any w ∈ Σ?, (ii) πk := max{pw : w ∈ Σk} tends to 0, as k →∞,

the source is said to be non-ambiguous.

In the sequel, all the sources are assumed to be non-ambiguous.

The sets Σk, for k ≥ 1 and the set ΣN are endowed with the strict lexicographic order

(derived from the order on Σ) and denoted by ‘<’. For any prefix w ∈ Σ?, we denote by

|w| the length of w (i.e., the number of the symbols that it contains) and aw, bw, pw
the probabilities that a word produced by the source begins with a prefix α of the same

length as w, which satisfies α < w, α ≤ w, or α = w, meaning

aw :=
∑

α,|α|=|w|
α<w

pα, bw :=
∑

α,|α|=|w|
α≤w

pα, pw = bw − aw. (1.1)

2 Strictly speaking, we should denote the expected value by π(n, i, j) since it could depend on n for

some algorithms (the simplest one being the selection of the maximum symmetric to the selection of
the maximum). However for clarity’s sake and also since the algorithms we chose to analyse have no
such dependency, we omit the cardinality n.

6 J. Clément, T. H. Nguyen Thi and B. Vallée

0 1
pε = 1

p0 p1

p00 p01 p10 p11

p000 p001 p010 p011 p100 p101 p110 p111

u t

M
(u

)
=

0
0
1
.
.
.

M
(t)

=
0
1
1
.
.
.

Figure 1: The parameterization of a source.

Thus, for a given k, when the prefix w varies in Σk, this gives rise to a partition of the

unit interval with subintervals of length pw (see Figure 1). When the prefixes w ∈ Σk

are ordered in increasing lexicographic order, and the subintervals are arranged from

left to right, then, the subinterval corresponding to prefix w has left (respectively, right)

endpoint equal to aw (resp., bw).

Parameterization of the source. Consider the set ΣN of (infinite) words produced by

the source S, ordered via the lexicographic order. Given an infinite word X ∈ ΣN, denote

by wk its prefix of length k. The sequence (awk
)k≥0 is increasing, the sequence (bwk

)k≥0

is decreasing, and bwk
− awk

= pwk
tends to 0 when k tends to infinity. Thus a unique

real P (X) ∈ [0, 1] is defined as the common limit of (awk
) and (bwk

), and P (X) is simply

the probability that an infinite word Y be smaller than X. The mapping P : ΣN → [0, 1]

is surjective and strictly increasing outside the exceptional set formed with words of ΣN

which end with an infinite sequence of the smallest symbol or with an infinite sequence

of the largest symbol.

Conversely, almost everywhere (except on the set {aw, w ∈ Σ?}), there is a mapping

M which associates a number u of the interval I := [0, 1] with a word M(u) ∈ ΣN. Hence,

the probability that a word Y be smaller than M(u) equals u. The lexicographic order

on words (‘<’) is then compatible with the natural order on the interval I, namely,

M(t) ≤M(u) if and only if t ≤ u. The interval Iw := [aw, bw], of length pw, gathers (up

to a denumerable set) all the reals u for which M(u) begins with the finite prefix w. This

is the fundamental interval of the prefix w.

Dirichlet series Λ(s). Our study involves the Dirichlet series of the source, defined as

Λ(s) :=
∑
w∈Σ?

psw, Λk(s) :=
∑
w∈Σk

psw. (1.2)

Realistic analysis of sorting algorithms 7

Since the equalities Λk(1) = 1 hold, the series Λ(s) is divergent at s = 1, and the prob-

abilistic properties of the source can be expressed in terms of the regularity of Λ near

s = 1, as we will see later.

For instance, the entropy h(S) relative to a probabilistic source S is defined as the

limit (if it exists) of a quantity that involves the fundamental probabilities

h(S) := lim
k→∞

−1

k

∑
w∈Σk

pw log pw = lim
k→∞

−1

k

d

ds
Λk(s)

∣∣∣∣
s=1

. (1.3)

For “good” sources, the Λ series is convergent at s = 2, and the constant c(S) := Λ(2) is

called the coincidence of the source.

Simple sources: memoryless sources and Markov chains. A memoryless source

over the alphabet Σ (possibly infinite) is a source where the symbols Xi ∈ Σ are in-

dependent and identically distributed. The source is thus defined by the set (pj)j∈Σ of

probabilities, with pj = Pr[Xk = j] for any k ≥ 0. The Dirichlet series Λ,Λk are expressed

with

λ(s) =
∑
i∈Σ

psi , under the form Λk(s) = λ(s)k, Λ(s) =
1

1− λ(s)
. (1.4)

In this case, the entropy equals h(S) = −
∑
i pi log pi = −λ′(1).

A Markov chain over the finite alphabet Σ, is defined by the vector R of initial

probabilities (ri)i∈Σ together with the transition matrix P :=
(
pi|j
)

(i,j)∈Σ×Σ
, whose each

column has a sum equal to 1. Here, one has

ri := Pr[X0 = i], pi|j = Pr[Xk+1 = i | Xk = j]

for any (i, j) ∈ Σ and k ≥ 0. We denote by P (s) the matrix with general coefficient psi|j ,

and by R(s) the vector of components rsi . Then

Λk(s) =t1 · P (s)k−1 ·R(s), Λ(s) = 1 +t1 · (I − P (s))−1 ·R(s). (1.5)

If, moreover, the matrix P is irreducible and aperiodic, then, for any real s > 0, the

matrix P (s) has a unique dominant eigenvalue λ(s). For s = 1, the matrix P = P (1) has

a unique fixed vector with positive components πi, whose sum equals 1. The entropy of

the source is then equal to

h(S) = −λ′(1) = −
∑

(i,j)∈Σ2

πj pi|j log pi|j .

Other instances of “simple” sources: intermittent sources. Intermittent sources

are an interesting particular case of a source of VLMC type (Variable Length Markov

Chain), where the dependency from the past is unbounded. An intermittent source has

two regimes, depending whether it emits a particular symbol σ ∈ Σ or not. Consider a

source with an alphabet of finite cardinality r ≥ 2. The source is intermittent of exponent

a > 0 with respect to σ if one has the following conditional probability distribution

for the emission of each symbol in the word given the prefix preceding it. Define the

8 J. Clément, T. H. Nguyen Thi and B. Vallée

event Sk as Sk := {the prefix ends with a sequence of exactly k occurrences of σ}. Then

the conditional distribution of the next symbol emitted depends on the length k; more

precisely, one has Pr[σ | S0] = 1/r and, for k ≥ 1,

Pr[σ | Sk] =

(
1− 1

k + 1

)a
, Pr[σ | Sk] =

(
1−

(
1− 1

k + 1

)a)
1

r − 1
for σ 6= σ.

Then, in the case of a binary alphabet Σ := {0, 1}, when the source is intermittent with

respect to 0, the probability of the prefixes 0k and 0k1 are respectively equal to

p0k =
1

2
· 1

ka
, p0k1 =

1

2

(
1

ka
− 1

(k + 1)a

)
,

and, with the language description {0, 1}? = (0?1)? · 0?, the series Λ(s) admits the ex-

pression

Λ(s) =
1 + 2−sζ(as)

1− 2−s[1 + Σa(s)]
with Σa(s) =

∑
k≥1

[
1

ka
− 1

(k + 1)a

]s
.

[Here, ζ(·) is the Riemann zeta function.]

Dynamical sources. An important subclass is formed by dynamical sources, which are

closely related to dynamical systems on the interval [27]. One starts with a partition

{Iσ} indexed by symbols σ ∈ Σ, a coding map τ : I → Σ which equals σ on Iσ, and a

shift map T : I → I whose restriction to each Iσ is increasing, invertible, and of class

C2. Then the word M(u) is the word that encodes the trajectory (u, Tu, T 2u, . . .) via the

coding map τ , namely, M(u) := (τ(u), τ(Tu), τ(T 2u), . . .). All memoryless (Bernoulli)

sources and all Markov chain sources belong to the general framework of Definition 1:

they correspond to a piecewise linear shift, under this angle. For instance, the standard

binary system is obtained by T (x) = {2x} ({·} is the fractional part). Dynamical sources

with a non-linear shift allow for correlations that depend on the entire past (e.g., sources

related to continued fractions obtained by T (x) = {1/x}).
For complete dynamical systems, which emit all the possible infinite words, there is

an operator, called the “secant transfer operator”, and denoted by Hs which provides a

generalization of the transition matrix of Markov chains. The Dirichlet series Λ(s) defined

in (1.2) can be expressed with the quasi-inverse (I −Hs)−1 of this operator (see [27]).

1.3. Geometry of the source and coincidence.

We are interested in a more realistic cost related to the number of symbol comparisons

performed by sorting algorithms, when the keys are words independently produced by

the same source. The words are ordered with respect to the lexicographic order, and the

cost for comparing two words (measured as the number of symbol comparisons needed)

is closely related to the coincidence, defined as follows.

Definition 2. The coincidence function γ(u, t) : [0, 1]× [0, 1]→ N ∪ {+∞} is the length

of the largest common prefix of words M(u) and M(t).

Realistic analysis of sorting algorithms 9

More precisely, the realistic cost of the comparison between M(u) and M(t) equals

γ(u, t) + 1.

We represent the pair of words (M(u),M(t)) with u ≤ t by the point (u, t) of the

triangle T := {(u, t) : 0 ≤ u ≤ t ≤ 1}, and the fundamental triangles

Tw = (Iw × Iw) ∩ T = {(u, t) : aw ≤ u ≤ t ≤ bw} (1.6)

define the level sets of the function γ. Indeed, the coincidence γ(u, t) is at least ` if

and only if M(u) and M(t) have the same common prefix w of length `, so that the

parameters u and t belong to the same fundamental interval Iw relative to a prefix w of

length `. Then, the two relations

T ∩ [γ ≥ `] =
⋃
w∈Σ`

Tw,
∑
`≥0

1[γ≥`] =
∑
`≥0

(`+ 1)1[γ=`],

entail the following equality which deals with the functional J and holds for any inte-

grable function g on the unit triangle T ,

J [g] :=

∫
T

[γ(u, t) + 1]g(u, t) du dt =
∑
w∈Σ?

∫
Tw
g(u, t) du dt. (1.7)

This functional J will be extensively used in the sequel.

The following figure represents the family of triangles Tw, which defines the “geometry”

of the source for two memoryless sources.

Figure 2: The geometry of two memoryless sources. On the left, the case of Σ := {a, b} with

pa = pb = 1/2. On the right, the case of Σ := {a, b, c} with pa = 1/2, pb = 1/6, pc = 1/3.

The sum of all the triangle areas involves the Λ series defined in (1.2), under the form

1

2

∑
w∈Σ?

p2
w =

1

2
Λ(2)

and equals (1/2) c(S) where c(S) is the coincidence of the source, already mentioned in

Section 1.2.

10 J. Clément, T. H. Nguyen Thi and B. Vallée

1.4. Average-case analysis – various models.

The purpose of average-case analysis of structures (or algorithms) is to characterize the

mean value of their “costs” under a well-defined probabilistic model that describes the

initial distribution of its inputs.

Here, we adopt the following general model for the set of inputs: we consider a finite

sequence V = (V1, . . . , Vn) of infinite words independently produced by the same source

S. Such a sequence V is obtained by n independent drawings v1, v2, . . . , vn in the unit

interval I = [0, 1] via the mapping M , and we set Vi := M(vi). We assume moreover

that V contains two given words M(u) and M(t), with u < t. The variables N[0,u[, N[0,t[

respectively denote the number of words of V strictly less than M(u), strictly less than

M(t). These variables define the ranks of M(u) and M(t) inside the set V, via the

relations, valid for u < t,

RankM(u) = N[0,u[+ 1, RankM(t) = N[0,u[+N]u,t[+ 2,

where the respective translations of 1 and 2 express that M(u) and M(t) belong to V.

We first consider the number of key comparisons between M(u) and M(t), and deal

with the mean number π̂(u, t) of key comparisons performed by the algorithm between

two words M(u) and M(t) chosen as keys, where the mean is taken with respect to all

the permutations of V. The mean number π̂(u, t) is related to the mean number π(i, j)

via the equality

π̂(u, t) = π(N[0,u[+ 1, N[0,u[+N]u,t[+ 2). (1.8)

In our framework, expressions obtained for π(i, j) ensure that π̂(u, t) is always a sum of

rational functions in variables N[0,u[and N]u,t[.

When the cardinality n of V is fixed, and words Vi ∈ V are independently emitted

by the source S, this is the Bernoulli model denoted by (Bn,S). However, it proves

technically convenient to consider that the cardinality N of the sequence V is a random

variable that obeys a Poisson law of rate Z,

Pr{N = k} = e−Z
Zk

k!
. (1.9)

In this model, called the Poisson model of rate Z, the rate Z plays a role much similar

to the cardinality of V. When it is relative to probabilistic source S, the model, denoted

by (PZ ,S), is composed with two main steps:

(a) The number N of words is drawn according to the Poisson law of rate Z;

(b) Then, the N words are independently drawn from the source S.

Note that, in the Poisson model, the variables N[0,u[, N]u,t[are themselves independent

Poisson variables of parameters Zu and Z(t− u) (respectively). This implies that the

sum N[0,u[+N]u,t[is also a Poisson variable of parameter Zt. The expectation π̂(u, t) is

itself a random variable which involves these variables.

1.5. Exact formula for the mean number of symbol comparisons.

We first work in the Poisson model, where the previous independence properties lead to

easier computations, then we return to the Bernoulli model.

Realistic analysis of sorting algorithms 11

Density in the Poisson model. The density of the algorithm at the point (u, t) of

triangle T is defined as the mean number of key comparisons between a pair of words

(M(u′),M(t′)) for u′ ∈ [u− du, u] and t′ ∈ [t, t+ dt]. In the Poisson model, the two

intervals [u− du, u] and [t, t+ dt] are disjoint for u < t, and the probability that the

words M(u′),M(t′) are both chosen as keys for some u′ ∈ [u− du, u] and t′ ∈ [t, t+ dt]

is Zdu · Zdt. Now, conditionally, given that M(u) and M(t) are both chosen as keys, the

mean number of comparisons between the two words M(u),M(t) is EZ [π̂(u, t)]. Thus,

in the Poisson model, the mean number of key comparisons performed by the algorithm

between two words M(u′) and M(t′) for u′ ∈ [u− du, u] and t′ ∈ [t, t+ dt] equals

Zdu · Zdt · EZ [π̂(u, t)]. (1.10)

Then, the density φZ(u, t) in the Poisson model satisfies

φZ(u, t) = Z2 · EZ [π̂(u, t)]. (1.11)

In our framework, the series expansion of φZ(u, t), written as3

φZ(u, t) =
∑
k≥2

(−1)k
Zk

k!
ϕ(k, u, t), (1.12)

is easy to obtain, as its coefficients ϕ(k, u, t)

(−1)kϕ(k, u, t) := k![Zk]φZ(u, t) for k ≥ 2, ϕ(k, u, t) = 0 for k = 0, 1, (1.13)

are computed in an “automatic way” during the second step (done in Section 3) leading

to results described in Figure 5.

Expectation in the Poisson model. In the model (PZ ,S), the density φZ is an easy

main tool for computing the mean number of key comparisons KZ and the mean number

of symbol comparisons SZ performed by the algorithm. The mean number KZ is obtained

by taking the integral over the triangle T , namely

KZ = L[φZ], with L[Φ] =

∫
T

Φ(u, t) du dt.

Since the product [γ(u, t) + 1]φZ(u, t) is the mean number of symbol comparisons be-

tween two words M(u′) and M(t′) for (u′, t′) close to (u, t), the mean number of symbol

comparisons SZ is obtained via the formula

SZ = J [φZ] =

∫
T

[γ(u, t) + 1]φZ(u, t) du dt,

where the functional J was introduced in (1.7).

This is a general phenomenon: there is the same type of formula for the mean number

of comparisons in the two models — key comparisons and symbol comparisons —. For

symbol comparisons, the functional J replaces the integral L.

3 The sign (−1)k is just put here to get positive coefficients ϕ(k, u, t), (as we will see it in Section 3),

and the condition n ≥ 2 is related to Eq. (1.11).

12 J. Clément, T. H. Nguyen Thi and B. Vallée

Using now the linearity of the functional J , the series expansion of the expectation

SZ , defined as

SZ =
∑
k≥0

(−1)k
Zk

k!
ϕ(k).

involves the sequence ϕ(k), defined for any k ≥ 2 as

ϕ(k) := J [(u, t) 7→ ϕ(k, u, t)] =
∑
w∈Σ?

∫
Tw
ϕ(k, u, t) du dt. (1.14)

This sequence is easy to compute with integrals of ϕ(k, u, t) on the triangles Tw. It

depends both on the algorithm (via the sequence of functions ϕ(k, u, t)) and the source

(via the fundamental triangles Tw).

Expectation in the Bernoulli model. It is now easy to return to the Bernoulli model

(Bn,S), where we are interested in the mean number K(n) of key comparisons and

the mean number S(n) of symbol comparisons performed by the algorithm. The mean

number S(n) of symbol comparisons used by the algorithm when it deals with n words

independently drawn from the same source is related to SZ and then to ϕ(n) by the

equalities

SZ = e−Z
∑
n≥2

Zn

n!
S(n), S(n) =

n∑
k=2

(−1)k
(
n

k

)
ϕ(k), (1.15)

which provide an exact formula for S(n), described in Proposition 4.1 in Section 4. The

expression of S(n) is thus obtained in an “automatic” way, from the expectations π(i, j).

1.6. Asymptotic estimates for the mean number of symbol comparisons.

However, the previous formula does not give an easy or straightforward access to the

asymptotic behaviour of S(n) (when n→∞).

Analytic lifting. In order to get asymptotic estimates, we first need an analytic lifting

$(s, u, t) of the coefficients ϕ(k, u, t), that is an analytic function $(s, u, t) which coin-

cides with ϕ(k, u, t) at integer values s = k in the summation of Eq. (1.12). This analytic

lifting gives rise to the mixed Dirichlet series itself,

$(s) := J [$(s, u, t)] =

∫
T

[γ(u, t) + 1]$(s, u, t) du dt =
∑
w∈Σ?

∫
Tw
$(s, u, t) du dt, (1.16)

which depends both on the algorithm (via $(s, u, t)) and the source (via the fundamental

triangles Tw). This Dirichlet series is studied in Section 4.

The abscissa σ0. For each algorithm, the existence of this analytic lifting is granted in

a domain <s > σ0. However, the value of σ0 depends on the algorithm, and there are two

classes of algorithms. The first class is formed by InsSort and BubSort. Here, there is a

constant term 1/2 which appears in the expectation π(i, j), as seen in Figure 4 (see also

Section 4). Then, the analytic lifting of $(s) exists only for integers k ≥ 3, and thus for

Realistic analysis of sorting algorithms 13

<s > 2, and the abscissa σ0 equals 2. This constant 1/2 will be considered in a separate

way, and its contribution will be added at the end of the computation. There is a unique

algorithm in the second class, namely the QuickSort algorithm, for which the analytic

lifting exists for k ≥ 2, and thus for <s > 1, and the abscissa σ0 equals 1.

The Rice formula. The Rice Formula [20, 21] transforms a binomial sum into an

integral in the complex plane. For any real σ1 ∈]σ0, σ0 + 1[, one has

T (n) :=

n∑
k=1+σ0

(−1)k
(
n

k

)
$(k) =

(−1)n+1

2iπ

∫
<s=σ1

G(s) ds, with G(s) =
n!$(s)

s(s− 1) . . . (s− n)
.

(1.17)

Then, along general principles in analytic combinatorics [15, 16], the integration line

can be pushed to the left, as soon as G(s) (closely related to $(s)) has good analytic

properties: we need a region R on the left of <s = σ0, where $(s) is of polynomial growth

(for |=s| → ∞) and meromorphic. With a good knowledge of its poles, we finally obtain

a residue formula

T (n) = (−1)n+1

[∑
s

Res [G(s)] +
1

2iπ

∫
C2
G(s) ds

]
, (1.18)

where C2 is a curve of class C1 enclosed in R and the sum is extended to all poles s of

G(s) inside the domain delimited by the vertical line <s = σ1 and the curve C2.

The dominant singularities of G(s) provide the asymptotic behaviour of T (n), and the

remainder integral is estimated using the polynomial growth of G(s) when |=(s)| → ∞.

According to Eq. (1.15) and (1.17), and in the cases where σ0 = 2, we have to add to

T (n) the term corresponding to the index k = 2, where the analytical lifting $ does not

coincides with ϕ. For algorithms BubSort and InsSort, the additional term is of the

form ϕ(2)
(
n
2

)
. Finally, depending on the value of σ0 the mean number S(n) of symbol

comparisons is

S(n) = T (n) =

n∑
k=2

(−1)k
(
n

k

)
$(k) (if σ0 = 1) (1.19)

S(n) =

(
n

2

)
ϕ(2) + T (n) =

(
n

2

)
ϕ(2) +

n∑
k=3

(−1)k
(
n

k

)
$(k) (if σ0 = 2). (1.20)

1.7. Tameness properties of the Dirichlet series $(s).

We first describe three cases of possible regions R where good properties of $(s) will

make possible such a shifting to the left in the Rice formula.

Definition 3. A function $(s) is tame at σ0 if one of the three following properties

holds:

(a) [S-shape] (shorthand for Strip shape) there exists a vertical strip <(s) > σ0 − δ
for some δ > 0 where $(s) is meromorphic, has a sole possible pole (of order k0 ≥ 0)

at s = σ0 and is of polynomial growth as |=s| → +∞.

14 J. Clément, T. H. Nguyen Thi and B. Vallée

(b) [H-shape] (shorthand for Hyperbolic shape) there exists an hyperbolic region R,

defined as, for some A,B, ρ > 0

R := {s = σ + it; |t| ≥ B, σ > σ0 −
A

|t|ρ
}
⋃
{s = σ + it; σ > σ0 −

A

Bρ
, |t| ≤ B},

where $(s) is meromorphic, with a sole possible pole (of order k0 ≥ 0) at s = σ0 and is

of polynomial growth in R as |=s| → +∞.

(c) [P -shape] (shorthand for Periodic shape) there exists a vertical strip <(s) > σ0 − δ
for some δ > 0 where $(s) is meromorphic, has only a pole (of order k0 ≥ 0) at s = σ0

and a family (sk) (for k ∈ Z \ {0}) of simple poles at points sk = σ0 + 2kiπt with t 6= 0,

and is of polynomial growth as |=s| → +∞4.

There are three parameters relative to the tameness: the integer k0 is the order, and,

when they exist, the real δ is the width, and the real ρ is the exponent.

Such tameness properties, together with the Rice formula, entail the following asymp-

totic properties for the sum T (n) defined in (1.17).

Proposition 1.1. The following holds for the sequence T (n), when it is related to $(s)

by the Rice formula (1.17), with σ0 ∈ {1, 2}. If $(s) is tame at s = σ0 with order k0, then

there exists a polynomial Q of degree k0 such the following asymptotics hold, depending

on the tameness shape:

(a) With a S-shape and width δ0, for any δ < δ0, one has, for n→∞,

(−1)n+1T (n) = nσ0Q(log n) +O(nσ0−δ).

(b) With a H-shape and exponent β0, then, for any β with β < 1/(β0 + 1), one has, for

n→∞,

(−1)n+1T (n) = nσ0Q(log n) +O
(
nσ0 · exp[−(log n)β]

)
(c) With a P -shape and width δ0, then, for any δ < δ0, one has, for n→∞,

(−1)n+1T (n) = nσ0 (Q(log n) + Φ(n)) +O(nσ0−δ)

where nσ0 · Φ(n) is the part of the expansion brought by the family of the non real

poles of G(s) located on the vertical line <s = σ0.

Note that, from Eq. (1.18), the dominant part of the asymptotics comes from considering

poles in the region R (residue calculus) and the error term comes from the evaluation of

the integral on the curve C2 in Eq. (1.18).

1.8. Tameness of sources.

Here, the main Dirichlet series $(s) of interest relative to sorting algorithms are closely

related to the Dirichlet series Λ(s) of the source, already defined in Eq. (1.2).

4 More precisely, this means that $(s) is of polynomial growth on a family of horizontal lines t = tk
with tk →∞, and on vertical lines <(s) = σ0 − δ′ with some δ′ < δ.

Realistic analysis of sorting algorithms 15

Series Λ(s) and its extensions. We recall the definition of these Dirichlet series,

Λ(s) =
∑
w∈Σ∗

psw, Λk(s) =
∑
w∈Σk

psw.

There are also extensions of Λ(s) and Λk(s) which involve the fundamental probabilities

pw, together with the ends aw, bw of the fundamental intervals (see Section 1.2), via a

function F : [0, 1]2 → R+ of class C1,

Λ[F](s) :=
∑
w∈Σ?

F (aw, bw) psw, Λk[F](s) :=
∑
w∈Σk

F (aw, bw) psw. (1.21)

For F ≡ 1, we recover the classical function Λ := Λ[1]. On the halfplane σ := <s > 1,

these series satisfy the relation |Λ[F](s)| ≤ ‖F‖Λ(σ), where the norm ‖·‖ is the sup-norm

on [0, 1]× [0, 1].

Tameness of sources. We now describe properties of the source that may entail

tameness for the mixed series $(s).

Definition 4. [Tameness of Sources] Denote by F the set of functions F : [0, 1]2 → R+

of class C1. A source is Λ-tame if Λ(s) admits at s = 1 a simple pole, with a residue

equal to 1/h(S), (where h(S) is the entropy of the source) and if one of the following

conditions is fulfilled:

[S-shape] for any F ∈ F , the series Λ[F](s) is tame at s = 1 with a S-shape;

[H-shape] for any F ∈ F , the series Λ[F](s) is tame at s = 1 with a H-shape;

[P -shape] for any F ∈ F , the series Λ[F](s) is tame at s = 1, with a P -shape for

F ≡ 1. For F 6≡ 1, Λ[F](s) has either a S-shape, or a P -shape.

Remark. If Λ(s) admits at s = 1 a simple pole, with a residue equal to 1/h(S), then any

series Λ[F](s) for any F ∈ F , F > 0, admits at s = 1 a simple pole, with a residue equal

to (see Section 4.5 for details)

1

h(S)

∫ 1

0

F (x, x)dx.

About various notions of tameness. This definition is in fact very natural, as it

describes various possible behaviors of classical sources. “Most of the time”, the simple

sources (memoryless sources or aperiodic Markov chains) are Λ-tame. They never have a

S-shape, but they may have a H-shape or a P -shape, according to arithmetic properties

of their probabilities [14]. Dynamical sources, introduced by Vallée and defined in [27],

may have a P -shape only if they are “similar” to simple sources. Adapting deep results

of Dolgopyat [6, 7] to the “secant transfer operator” Hs, it is possible to prove that

dynamical sources are “most of the time” Λ-tame with a S-shape [1], but they may also

have a H-shape [22]. The intermittent sources defined in Section 1.2 are Λ-tame as soon

as the parameter a satisfies a > 1. And, for a = 1, the source is not Λ-tame but the

Dirichlet series Λ(s) is tame at s = 1 of order 2, with a H-shape given by the Riemann

16 J. Clément, T. H. Nguyen Thi and B. Vallée

ζ function. For more details, see the cited papers where all these facts, here described in

a informal way, are stated in a formal way and proven.

Relation between tameness of sources and tameness of the mixed series $(s).

This tameness notion for sources is also well-adapted to our framework since it describes

situations where the mixed series $(s) may be proven tame. More precisely, as it is

proven in Proposition 4.2 of Section 4, the Λ-tameness of the source is central in the

analysis, as it ensures the tameness of the mixed series $(s); moreover, the tameness

shape of $(s) is inherited from the one of the source. It is then possible to shift the

contour of the Rice integral to the left, providing an asymptotic expansion for the mean

number T (n) as it is obtained in Proposition 1.1. It is easy to return to S(n) with (1.15).

This leads to the final result for the asymptotics of S(n), in Theorem 5.1 (see Section 5).

Plan of the following sections; application to the three algorithms under study.

We have drawn the general framework of our study. We now apply it to the analysis of

three “popular ”algorithms which are precisely described in Section 2.1. Each step of the

method is then performed:

– First Step (Section 2). Computation of expected values π(i, j).

– Second Step (Section 3). Automatic derivation of $(s, u, t) and determination of the

abscissa σ0.

– Third Step (Section 4). Expression for the mixed Dirichlet series $(s), relation be-

tween tameness of the source and tameness of the mixed series $(s) and description

of the main term of the singular expression of $(s)/(s− σ0). Interpretation of the

“dominant” constants.

– Final Step (Section 5). Application of the Rice Formula and statement of the final

results (with a discussion about robustness and possible extensions).

Moreover, the last Section (Section 6) compares our point of view with Seidel’s one, and

describes asymptotic lower bounds.

2. First Step. Computation of the mean numbers π(i, j).

Section 2.1 describes the three algorithms of interest, Section 2.2 explains the main

principles that we adopt for the computation of π(i, j), and Section 2.2 states the results

of the first step. Then, the sequel of the Section is devoted to the proof of the results,

and each of the following subsections studies one algorithm.

2.1. Description of the three algorithms.

We first briefly recall in Figure 3 the three algorithms under study (for precisions, see

[23]).

2.2. General approach for the computation of π(i, j).

When the ordered sequence U is given under the permutation σ, the input sequence is

(V1, V2, . . . , Vn), with Vi = Uσ(i) and we adopt the point of view given by the arrival

Realistic analysis of sorting algorithms 17

Procedure QuickSort(V, left, right)

/* Sorts the subarray V [left . . right]. */

/* Recursive function to be called for an array V [1 . . n]: QuickSort

(V, 1, n) */

/* Partition (V, i, j) rearranges the subarray V [i . . j] according to its

first element V [i], called the pivot, and compares each element to

the pivot: the keys that are smaller than the pivot are placed on

its left in the array, whereas the keys that are greater are

placed on its right, and thus the pivot is at the right place.

Partition returns the rank of the pivot. */

if left < right then

k ← Partition(V, left, right)

QuickSort (V , left, k − 1)

QuickSort (V , k + 1, right)

end

Procedure InsSort(V, n)

/* Sorts the array V [1 . . n] */

for i from 2 to n do

for j from i downto 2 do

if V [j − 1] ≥ V [j] then
swap(V [j], V [j − 1])

end

else Break /* exit the inner loop */

end

end

Procedure BubSort(V, n)

/* Sorts the array V [1 . . n] */

for i from 1 to n− 1 do

for j from n downto i+ 1 do

if V [j − 1] > V [j] then
swap(V [j − 1], V [j])

end

end

end

Figure 3: The three algorithms under study: QuickSort, InsSort, and BubSort.

18 J. Clément, T. H. Nguyen Thi and B. Vallée

times. The arrival time of Ui, denoted by τ(Ui) is the position of Ui in the input array.

Of course, there is a simple relation between the two points of view since τ(Ui) = j if and

only if Vj = Ui (meaning also σ(j) = i since there is a bijection between arrival times

and permutations).

There are two types of comparisons between two keys Ui and Uj : the positive com-

parisons which occur when Ui and Uj arrive in the good order in the initial array

(τ(Ui) < τ(Uj)), and the negative comparisons which occur when Ui and Uj arrive in the

wrong order (τ(Ui) > τ(Uj)). The mean number of positive and negative comparisons

between two keys Ui and Uj is denoted respectively by π+(i, j) and π−(i, j). These

mean numbers π±(i, j) are often computed in a separate way, with direct probabilistic

arguments dealing with the arrival times. A remarkable feature is that the expectations

π±(i, j) are always expressed as sums of rational functions depending on i, j or j − i.
The mean number of key comparisons is π(i, j) = π+(i, j) + π−(i, j).

We will see that the event “Ui and Uj are compared” is generally “similar” to an event

of the type “The arrival times of the keys Ui and Uj into a given subset V of keys are

the first two (resp. the last two)”. For a subset V of cardinality `, the probability of such

an event is 1/`(`− 1). Moreover, the subset V is often a subset U[x,y] which gathers all

the keys whose rank belongs to the interval [x, y], with three main cases, according to

the algorithms: [x, y] = [1, i], [x, y] = [1, j], or [x, y] = [i, j], which entails that ` belongs

to {i, j, j − i+ 1}.
Then, we obtain a general form for the mean numbers π(i, j) and their analogs π̂(u, t),

which makes possible the automatic transfer performed in Section 3.

Summary of the results for Step 1. We present in Figure 4 the expressions for

the mean number π(i, j) of key comparisons between Ui and Uj , for each algorithm of

interest. With these expressions, it is easy to recover the estimates for the mean number

K(n) of key comparisons (recalled in the third column).

Proposition 2.1. Consider the uniform permutation model described in Sections 1.1

(and also 2.2), and denote by π(i, j) the mean number of comparisons between the keys

of rank i and j, with i < j. Then, for any of the three algorithms, the mean numbers

π(i, j) admit the expressions described in the second column of Figure 4.

2.3. Algorithm QuickSort.

This algorithm is based on the “Divide and Conquer” principle. All the keys are compared

to the first key of the array that is used as a pivot. During the Partition stage, the keys

that are smaller than the pivot are placed on its left in the array, whereas the keys that

are greater are placed on its right. After this partitioning, the pivot is at the right place.

Then, the QuickSort algorithm recursively sorts the two sub-arrays. While the pivot

does not belong to the subset U[i,j], this set is not separated by the pivot. When the

pivot belongs to the subset U[i,j], the keys Ui and Uj may be compared only if Ui or Uj
is a pivot. This event coincides with the event “Ui or Uj is the first key-in inside the

subset U[i,j]”. After such a comparison, the keys are separated and no longer compared.

Realistic analysis of sorting algorithms 19

Algorithms π(i, j) K(n)

QuickSort
2

j − i+ 1
2n logn

InsSort
1

2
+

1

(j − i+ 1)(j − i)
n2

4

BubSort
1

2
+

1

(j − i+ 1)(j − i) +
2(i− 1)

(j − i+ 2)(j − i+ 1)(j − i)
n2

2

Figure 4: Results for Step 1.

Then, the mean number of key comparisons is π(i, j) = 2/(j − i+ 1) (the probability of

the event).

2.4. Algorithm InsSort.

There are n− 1 phases in the algorithm. During the i-th phase, the key Vi of the array

is inserted into the left sub-array which contains an already sorted sequence built on the

set {V1, V2, . . . , Vi−1}.

First case. Ui and Uj arrive in the wrong order in the initial array (τ(Ui) > τ(Uj)). In

the phase when Ui is inserted into the left sub-array, this sub-array already contains Uj
with Uj > Ui, and the key Ui is always compared and exchanged with Uj . This event is

defined as “Inside the two keys set {Ui, Uj}, Uj is the first-in key, and Ui is the second-in

key” and the probability of such an event is 1/2 so that π−(i, j) = 1/2.

Second case. Ui and Uj arrive in the good order in the initial array (τ(Ui) < τ(Uj)).

The comparison does not always occur. In the phase when Uj is inserted into the left

sub-array, this left sub-array already contains the key Ui. If this left sub-array contains

one of the keys of the subset U[i,j[, then Uj “meets” (i.e., is compared to) this key before

meeting Ui and remains on its right. Finally, the comparison between Ui and Uj occurs

only if the subset U]i,j[arrives after Uj . This defines the event “Ui is the first-in key and

Uj is the second-in key inside the set U[i,j]”. The probability of such an event and the

expected value of symbol comparisons π+(i, j) is

1

(j − i+ 1)(j − i)
.

2.5. Algorithm BubSort.

As its name says, the algorithm pushes the smallest keys to the left of the array as the

air bubbles on to the surface of a liquid. The algorithm performs n− 1 phases. During

each phase, the algorithm steps through the array, compares each pair of adjacent keys

and swaps them if they are in the wrong order. The i-th phase aims at finding the key

of rank i and place it in the position i of the array. After the i-th phase, the keys of

U[1..i] are at their right places. The BubSort algorithm may perform several comparisons

20 J. Clément, T. H. Nguyen Thi and B. Vallée

between two keys Ui and Uj . We are now interested in the first comparison between Ui
and Uj and we distinguish two cases:

First case. Ui and Uj arrive in the right order in the initial array (τ(Ui) < τ(Uj)). If

there is one key of U]i,j[which arrives after Ui and before Uj , it will stay between Ui
and Uj in the array thereafter, and will prevent Ui and Uj from meeting each other. If

it arrives after Uj , it will eventually come between Ui and Uj in the array before these

two keys meet each other. Hence, there is a comparison between Ui and Uj only if all

the keys of the subset U]i,j[arrive before both Ui and Uj . This coincides with the event

“the key Uj is the last-in and the key Ui arrived just before inside the subset U[i,j]”. The

probability that the first comparison between Ui and Uj occurs is

1

(j − i+ 1)(j − i)
.

Second case. Ui and Uj arrive in the wrong order in the initial array (τ(Uj) < τ(Ui)).

The first comparison between Ui and Uj occurs just before they are swapped. The

probability of the event “Uj is the first-in key and Uj is the second-in key in {Ui, Uj}”
is 1/2.

Subsequent comparisons. There might be subsequent comparisons between two keys.

Note that, in both previous cases, immediately after the first comparison (either positive

or negative) Ui and Uj are in the right order and in consecutive positions. A necessary

condition for having at least one subsequent comparison between Ui and Uj is that all

the keys of U]i,j[are still on the left of Ui after this point (for the same reasons exposed

previously in Case 1). Now we also remark that any key U` with ` ∈ [1, i[which arrived

after U]i,j[and before Ui in the first case, and after U]i,j[and before Uj in the second

case, will be the cause of a stop of key Ui during some latter phases (such a key U`
will never be swapped with Ui because of its smaller value). Also each time a key Ui is

stopped during a phase by a key from U[1,i[, the set of keys from U[1,i[between U]i,j[and

Ui decreases by one during the same phase. After such a phase, as all keys to the right of

Ui are in U[j,n], the key Uj during the next phase will be swapped until reaching Ui (and

results in a comparison). In conclusion the number of subsequent comparisons is exactly

the number of keys from U[1,i[which arrived after U]i,j[and before Ui in the first case

and before Uj in the second case. For any ` ∈ [1 . . i[, the probabilities that U` arrives

after U]i,j[and before Ui (and Uj arrives after Ui — Case 1) or after U]i,j[and before Uj
(and Ui arrives after Uj — Case 2) have the same expression

1

(j − i+ 2)(j − i+ 1)(j − i)
.

Using independence of events for ` ∈ [1, i[, this yields that the mean number of subsequent

(positive) comparisons (summing up for both Cases 1 an 2) is

2(i− 1)

(j − i+ 2)(j − i+ 1)(j − i)
.

Realistic analysis of sorting algorithms 21

To conclude, one has

π+(i, j) =
1

(j − i+ 1)(j − i)
+

2(i− 1)

(j − i+ 2)(j − i+ 1)(j − i)
, π−(i, j) =

1

2
.

3. Second Step: Automatic transfer.

We start with expressions for π(i, j) obtained in the previous Section, and, with Equa-

tion 1.8, we transfer them into expressions for π̂(u, t). There are two algorithms for which

π̂(u, t) contains a constant term 1/2 —namely InsSort and BubSort— and we denote

by π̃(u, t) the term π̂(u, t) from which this constant is removed. This means:

π̃(u, t) :=

{
π̂(u, t)− 1/2 for InsSort and BubSort

π̂(u, t) for QuickSort.

This random variable is always expressed as a linear combination of “basic” functions

whose Poisson expectations are easy to compute, as it is shown in Proposition 3.1. It

is then possible to compute in an automatic way the coefficients ϕ(k, u, t) described in

Equation (1.14) and their analytic liftings $(s, u, t).

3.1. Main principles of the automatic transfer.

We first explain how we transfer the mean number π(i, j) of key-comparisons into the

Dirichlet terms $(s, u, t).

Proposition 3.1. Consider a variable X which follows a Poisson law of rate Z, and,

for m ≥ 1, the variable

Gm(X) :=
1

(X + 1)(X + 2) . . . (X +m)
.

Then, the following holds:

(a) For any of the three algorithms, the random variable π̃(u, t), equal to π̂(u, t) up to

the possible constant term 1/2, can be expressed in the “basis” Gm, as displayed in the

second column of the table in Figure 5.

(b) Denote by Fm(Z) the expectation of the variable Gm(X). Then, the two sequences

βm(n, λ) = (−1)nn![Zn]
(
Z2 Fm(λZ)

)
, γm(n, λ) := (−1)nn![Zn]

(
Z3 Fm(λZ)

)
.

admit the following expressions, resp. for n > 1 and n > 2,

βm(n, λ) =
1

(m− 1)!

n(n− 1)

n+m− 2
λn−2, γm(n, λ) =

−1

(m− 1)!

n(n− 1)(n− 2)

n+m− 3
λn−3.

(3.1)

(c) For any of the three algorithms, there exists an integer σ0, for which the coefficients

ϕ(n, u, t) of the density φZ(u, t) can be expressed for n > σ0 as a linear combination of

βm(n, λ) and γm(n, λ) for λ ∈ {u, t, t− u}, as displayed in the third column of Figure 5.

The integer σ0 is displayed in the fourth (and last) column of Figure 5.

22 J. Clément, T. H. Nguyen Thi and B. Vallée

Algorithms π̃(u, t) (in the “basis” πi) ϕ(n, u, t) (in the “basis” βi, γj) σ0

QuickSort 2[G1(N[u,t[)−G2(N[u,t[)] 2[β1(n, t− u)− β2(n, t− u)] 1

InsSort G2(N[u,t[) β2(n, t− u) 2

BubSort G2(N[u,t[) + 2N[0,u[·G3(N[u,t[) β2(n, t− u) + 2uγ3(n, t− u) 2

Figure 5: Automatic transfer

Proof.

Assertion (a). We begin with the expressions of π(i, j) displayed in Figure 4, and we

obtain with (1.8) expressions for the random variable π̃(u, t) displayed in the second

column of Figure 5.

Assertion (b). Recall that

Fm(Z) := EZ [Gm(X)] = e−Z
∑
k≥0

πm(k)
Zk

k!
.

We first compute the coefficients αm(n) of Fm(Z)

αm(n) := (−1)nn![Zn]Fm(Z) =
1

(m− 1)!

1

n+m
. (3.2)

Then, the coefficients βm(n, λ) and γm(n, λ) are related to αm(n), resp. for n > 1 and

n > 2

βm(n, λ) = n(n− 1)λn−2αm(n− 2), γm(n, λ) = −n(n− 1)(n− 2)λn−3αm(n− 3),

which proves, with (3.2), the expressions (3.1) of Assertion (b).

Assertion (c). Now, the third column is obtained from the second one by “taking the

expectations” in the Poisson model, multiply by Z2 and extracting the coefficient of

order n. All the expressions of the second column are linear combinations, except the

term N[0,u[· π3(N]u,t[), which involves the product of two independent variables, whose

expectation is thus the product of expectations, namely

Z2 · EZ(N[0,u[) · EZ
(
G3(N]u,t[)

)
= u · Z3F3(Z(t− u)).

The explicit expressions of ϕ(n, u, t) deduced from the decompositions described in

the third column of Figure 5 together with the expressions (3.1) yield expressions for

$(s, u, t) reported in the following Figure 6 (for s > σ0). We recall that the link between

ϕ(n, u, t) and $(s, u, t) is essentially — but not only — a change of variable n→ s. The

precise link was described in Section 1.6.

Realistic analysis of sorting algorithms 23

3.2. Summary of the results for Step 2.

We then obtain the expressions for the analytic lifting $(s, u, t), via the “automatic”

derivation taking into account the similar expressions for quantities π(i, j).

Proposition 3.2. Denote by $(s, u, t) the function which provides an analytical lifting

of the sequence ϕ(n, u, t) defined in Eq. (1.13), and by σ0 the integer which defines the

domain <s > σ0 of validity of this lifting. Then, for any of the three algorithms, the value

of the real σ0 is provided in the second column of Figure 6 and the functions $(s, u, t)

admit the expressions described in the third column of Figure 6.

Algorithms σ0 $(s, u, t) on {<s > σ0}

QuickSort 1 2(t− u)s−2

InsSort 2 (s− 1)(t− u)s−2

BubSort 2 (s− 1)(t− u)s−3[t− (s− 1)u]

Figure 6: Results for Step 2.

4. Third Step — Study of the mixed Dirichlet series

We start with the “local” expression of $(s, u, t) and obtain in Proposition 4.1 the

expressions for the series $(s) thanks to a sum of integrals over all the fundamental

triangles Tw, as described in Eq. (1.16). Proposition 4.2 states the main relations be-

tween tameness of the source and tameness of the mixed Dirichlet series $(s). Then,

Proposition 4.3 describes the constants which intervene in the dominant term of S(n).

The remainder of Section 4 is devoted to the proofs of Propositions 4.2 and 4.3.

4.1. Expression for the mixed Dirichlet series.

We describe here the expression of the Dirichlet series $(s) as a function of the geometry

of the source, described by the fundamental intervals Iw := [aw, bw] of length pw = bw −
aw. More precisely, the Dirichlet series Λ(s) of the source, defined in (1.2), or its extension

Λ[F] defined in (1.21) will play a fundamental role in the sequel.

Proposition 4.1. Consider any (non-ambiguous) source, together with the fundamental

intervals [aw, bw] defined in (1.1) and its Dirichlet series defined in Eq. (1.2). Then, for

any of the three algorithms, the mixed Dirichlet series $(s) (defined in Section 1.6)

admit in the domain <s > σ0, the expressions displayed in the second column of Table of

Figure 7, together with the values of σ0 in the third column. Depending on the value of

24 J. Clément, T. H. Nguyen Thi and B. Vallée

σ0 the mean number S(n) of symbol comparisons is

S(n) =

n∑
k=2

(−1)k
(
n

k

)
$(k) (if σ0 = 1),

S(n) =

(
n

2

)
Λ(2)

2
+

n∑
k=3

(−1)k
(
n

k

)
$(k) (if σ0 = 2).

Remark. This is a reformulation of Eq. (1.19-1.20) using the fact that ϕ(2) = Λ(2)/2.

Algorithms $(s) $(s) σ0
Main term

of $(s)/(s− σ0)

QuickSort
2Λ(s)

s(s− 1)

2

s(s− 1)

∑
w∈Σ?

psw 1
2

h(S)

1

(s− 1)3

InsSort
Λ(s)

s

1

s

∑
w∈Σ?

psw 2
c(S)

2

1

(s− 2)

BubSort −Λ[F0](s− 1) −
∑

w∈Σ?

awp
s−1
w 2 − 1

2h(S)

1

(s− 2)2

Figure 7: Results for Step 3.

4.2. Relations between tameness of the source and tameness of the mixed

Dirichlet series.

We now study the relation between various notions of tameness: tameness of the source

defined in Section 1.8 and tameness of the mixed Dirichlet series, defined in Section 1.7.

Proposition 4.2. The following holds for the mixed Dirichlet series $(s) relative to

the three sorting algorithms:

(i) Each mixed Dirichlet series is closely related to the Dirichlet series Λ(s) of the source,

and this relation is displayed in the first column of the tabular of Figure 7.

(ii)Assume the source S to be Λ-tame. Then, the mixed Dirichlet series $(s) relative to

the three sorting algorithms satisfy the following:

(a) [QuickSort] $(s) is tame at σ0 = 1 with order k0 = 2.

(b) [InsSort] $(s) is tame at σ0 = 1 with order k0 = 1.

(c) [BubSort] $(s) is tame at σ0 = 2 with order k0 = 1.

Moreover, the source S gives its shape of tameness to the series $(s).

4.3. Main constants of interest.

We now describe the main constants which intervene in the dominant terms of the

singular expression of $(s)/(s− σ0) at s = σ0.

Realistic analysis of sorting algorithms 25

Proposition 4.3. The constants of interest which intervene in the main terms displayed

in the last column of Figure 7 are:

(i) The entropy h(S) of the source.

(ii)The coincidence c(S), namely the mean number of symbols needed to compare two

random words produced by the source.

The entropy h(S) is defined in (1.3). The constant c(S) satisfies

c(S) = 2
∑
w∈Σ?

∫
Tw

du dt =
∑
w∈Σ?

p2
w = Λ(2).

Here, Tw is the fundamental triangle defined in (1.6) and Λ(s) is defined in (1.2).

The proofs of Propositions 4.2 and 4.3 are given in the following sections. In the sequel,

σ denotes the real part of s, i.e., σ := <s.

4.4. Case of QuickSort and InsSort.

The integral of $(s, u, t) = (s− 1)(t− u)s−2 on the fundamental triangle Tw equals

(1/s)psw. This entails the nice formulae for both $(s) (where Q and I stand respectively

for QuickSort and InsSort)

$Q(s) = 2
Λ(s)

s(s− 1)
, $I(s) =

Λ(s)

s
.

Then, the functions s 7→ $(s) are tame at s = 1. Moreover, the shape of tameness of

$(s) at s = 1 coincides with the shape of Λ-tameness of the source. For InsSort, the

function $I(s) has a simple dominant pole at s = 1 with a residue equal to 1/h(S),

whereas, for QuickSort, the function $I(s) has a dominant pole at s = 1 of order 2.

Moreover, the singular expressions of the functions $(s)/(s− 1) can be easily computed

from the singular expression of Λ(s).

4.5. Case of BubSort.

The integral of $(s, u, t) = (s− 1)(t− u)s−3[t− (s− 1)u] on the fundamental triangle

equals −awpws−1. Then, the Dirichlet series $(s) admits the expression

$(s) = −
∑
w∈Σ?

awpw
s−1 = −Λ[F0](s− 1),

where F0(x, y) = x. By hypothesis, the series s 7→ Λ[F0](s) is tame at s = 1. Then, the

series $(s) is tame at s = 2, with the same shape of tameness as the series s 7→ Λ[F0](s).

We now study its precise behaviour at s = 2. We remark, with the relation Λ`(1) =

Λ`(1)2 = 1, the equality

2Λ`[F0](1) = 2
∑
w∈Σ`

awpw = 2
∑
w∈Σ`

[∑
w′<w

pw′

]
pw = Λ`(1)2 −

∑
w∈Σ`

p2
w = Λ`(1)− Λ`(2).

(4.1)

26 J. Clément, T. H. Nguyen Thi and B. Vallée

The series

L(s) :=
∑
`≥0

L`(s) with L`(s) := 2Λ`[F0](s)− Λ`(s),

is convergent at s = 1 and satisfies

L(1) =
∑
`≥0

L`(1) = −
∑
`≥0

Λ`(2) = −Λ(2) = −c(S),

where c(S) is the coincidence of the source defined in Proposition 2.5. Since Λ(s) admits

a simple pole at s = 1 with a residue equal to 1/h(S), then Λ[F0](s) admits a simple pole

at s = 1 with a residue equal to 1/2h(S). More precisely, as the singular expansion of

Λ(s) at s = 1 is

Λ(s) =
1

h(S)

1

s− 1
+ d(S) +O(s− 1),

the singular expansion of $(s) at s = 2 is

$(s) = − 1

2h(S)

1

s− 2
+

1

2
(c(S)− d(S)) +O(s− 2).

Note that Equation (4.1) can be generalized to any function F of class C1. The sum of

interest can be viewed as a Riemann sum on the fundamental intervals of depth `, so

that ∑
w∈Σ`

F (aw, bw)pw = I[F] + ρ`[F],

with for some constant C

I[F] :=

∫ 1

0

F (t, t)dt and |ρ`[F]| ≤ C · sup
(x,y)∈[0,1]2

∣∣∣∣ ∂∂xF (x, y)

∣∣∣∣ · Λ`(2) ,

Then, for any function F whose integral I[F] is not zero, the Dirichlet series Λ[F](s) has

a residue at s = 1 equal to I[F]/h(S).

5. Final step and Discussion

In this section, we obtain the final result, namely the asymptotic expansion of the mean

number S(n) of symbol comparisons.

5.1. The final result.

With the results of the previous Section, it is now possible to use the Rice formula and

obtain the asymptotics of the mean number S(n) of symbol comparisons. We start with

the expression of the mixed Dirichlet $(s) obtained in Proposition 4.1 together with

Propositions 4.2 and 4.3, and apply the main principles described in Section 1.6.

Theorem 5.1. Consider a (non-ambiguous) source S, assumed to be Λ-tame. Then,

the mean number S(n) of symbol comparisons performed by each sorting algorithm on a

Realistic analysis of sorting algorithms 27

sequence of n words independently drawn from the same source S admits the asymptotic

behaviour described in Table of Figure 8.

(i) [Dominant terms.] The constants in the dominant terms are already described in

Proposition 4.3.

(ii) [Subdominant terms.] Here, the constants κi in the subdominant terms involve the

Euler constant γ together with the subdominant constant of the source d(S) equal to the

constant term in the singular expansion of Λ(s) at s = 1,

d(S) = lim
s→1

[
Λ(s)− 1

h(S)

1

s− 1

]
,

under the form

κ0 =
2

h(S)
(γ − 2) + 2d(S), κ1 =

1

8h(S)
(2γ − 3) +

d(S)

4
.

(iii) [Error terms.] Assuming a Λ-tame source with a given shape, we have

– if the source has a S-shape with width δ, then E(n) = O(n1−δ);

– if the source has a H-shape with exponent ρ, then E(n) = n · O (exp[−(log n)ρ]);

– if the source has a P -shape with width δ, then E(n) = n · Φ(n) +O(n1−δ) where n ·
Φ(n) is the expansion given by the family of imaginary poles (sk) of Λ(s).

Remarks. The constant κ2 depends on other terms in singular expansions at s = 1, and

is not computed here. Note that the computation of the subdominant term for InsSort

needs the singular expansion of $(s)/(s− 1) at s = 1. This subdominant constant d(S)

is often easy to compute, for instance for a binary memoryless source Bp of probabilities

(p, 1− p),

d(Bp) =
1

h(Bp)2
p log2 p+ (1− p) log2(1− p).

Algorithms K(n)
Dominant

term of S(n)

Subdominant

terms of S(n)

Remainder

term of S(n)

QuickSort 2n logn
1

h(S)
n log2 n κ0n logn + κ2n E(n)

InsSort
n2

4

c(S)

4
n2 1

h(S)
n logn +

(
κ0 −

c(S)

4

)
n E(n)

BubSort
n2

2

1

4h(S)
n2 logn

(
κ1 +

c(S)

4

)
n2 nE(n)

Figure 8: Results for Theorem 1.

28 J. Clément, T. H. Nguyen Thi and B. Vallée

5.2. Beyond Λ-tameness?

In this paper, we insist on sources which are Λ-tame, as they are the most natural.

However, our results can be extended to other sources, whose Dirichlet series Λ fulfills

more general tameness properties.

Proposition 5.2. Consider a source S and its Dirichlet series Λ(s). The following

holds:

(i) If the Dirichlet series Λ is tame at s = s0, with s0 ∈]1, 2[and order 1, then the

asymptotic order of the mean number S(n) of symbol comparisons performed by each

of the three algorithms is described in the second column of Figure 9.

(ii)If the Dirichlet series is Λ-tame at s = 1 with order k0 ≥ 1, then the asymptotic

order of the mean number S(n) of symbol comparisons performed by each of the three

algorithms is described in the third column of Figure 9.

Algorithms

Asymptotic order of S(n)

when Λ is tame at s = s0,

(s0 ∈]1, 2[) with order 1

Asymptotic order of S(n)

when Λ is tame at s = 1

with order k0

QuickSort ns0 n log1+k0 n

InsSort n2 n2

BubSort n1+s0 n2 logk0 n

Figure 9: Results for Proposition 5.2.

This result applies to intermittent sources with parameter a defined in Section 1.2.

More precisely, Assertion (i) applies for a ∈]1, 1/2[, and Assertion (ii) applies for a = 1,

with k0 = 2.

5.3. Robustness.

We now compare the asymptotic estimates for the two mean numbers, the mean number

K(n) of key-comparisons (column 2 of Figure 8) and the mean number S(n) (column 3

of Figure 8). There are two types of algorithms

(a) The “robust” algorithms for which K(n) and S(n) are of the same order. This

is the case for only one algorithms, the InsSort algorithm, and the ratio S(n)/K(n)

involves the coincidence c(S), precisely described in Section 4.3.

(b) The algorithms for which S(n) and K(n) are not of the same order, here QuickSort

and BubSort. In both cases, the ratio S(n)/K(n) satisfies

S(n)

K(n)
∼ 1

2h(S)
log n. (5.1)

We will see later in Section 6.6 that the same ratio also appears in lower bounds.

Realistic analysis of sorting algorithms 29

6. Alternative proofs and lower bounds.

In Section 6.1, we recall the approach due to Seidel [24] together with the notion of

faithfulness he introduced (Section 6.2). We show that this approach leads to analysis of

trie parameters (Section 6.3); we then make a “detour” via trie parameters in Section 6.4,

and we describe the two main methods that can be used in such analyses: the Rice

methodology and the Poisson-Mellin approach; when the first one may be applied (this

is the case for our analyses in previous sections), this greatly simplifies the probabilistic

analysis; we also explain how to deal with the second method when the first one cannot

be applied. Then, in Section 6.5, we return to faithful sorting algorithms and describe

how to mix the two approaches (Seidel’s one and the analysis of Section 6.3). Finally,

we show in Section 6.6 that combining the approach of Seidel and ours leads to a lower

bound for the mean number of symbol comparisons of any sorting algorithm using words

emitted by a Λ-tame source S.

6.1. Another way for relating the number of key comparisons and symbol

comparisons.

Seidel [24] proves the following result that is now described in our framework.

Proposition 6.1. [Seidel] Consider a set U of words that are independently emitted by

the same source S. Denote by S[U , σ] (resp. K[U , σ]) the number of symbol (resp. key)

comparisons performed by the algorithm when the input set U is under the permutation σ.

More generally, for a subset V ⊂ U , denote by S[U ,V, σ] (resp. K[U ,V, σ]) the number

of symbol (resp. key) comparisons performed by the algorithm on the subset V when the

input set U is under the permutation σ. The values S[U],S[U ,V], (resp. K[U],K[U ,V]) are

the expected values of S[U , σ],S[U ,V, σ] (resp. K[U , σ],K[U ,V, σ]) when σ is a uniform

random permutation of Sn.

Consider the subset U〈w〉 of U which gathers all the words which begin by the prefix

w, and the set P (U) of common prefixes of U , defined as the prefixes w for which the

cardinality |U〈w〉| is at least equal to 2. The following relations hold:

S[U , σ] =
∑

w∈P (U)

K[U ,U〈w〉, σ], S[U] =
∑

w∈P (U)

K[U ,U〈w〉]. (6.1)

Proof. The following equality

S[U , σ] =
∑

1≤i<j≤n

(c(Ui, Uj) + 1)K[U , {Ui, Uj}, σ]

involves the coincidence c(Ui, Uj) between the two keys Ui and Uj (namely the length of

their longest common prefix). Seidel considers the subset U〈w〉 of U which gathers all the

words which begin by the prefix w, and the set P (U) of common prefixes of U , defined

as the prefixes w for which the cardinality |U〈w〉| is at least equal to 2. All these sets only

depend on U , not on the permutation σ.

Seidel remarks that c(Ui, Uj) + 1 is also the number of prefixes w ∈ P(U) —including

the empty prefix— which are shared by Ui and Uj . This is also the number of subsets of

30 J. Clément, T. H. Nguyen Thi and B. Vallée

the form U〈w〉 — including the total set U — which contain Ui and Uj . Then,

S[U , σ] =
∑

1≤i<j≤n

∑
w∈P (U)

Ui,Uj∈U〈w〉

K[U , {Ui, Uj}, σ] =
∑

w∈P (U)

∑
1≤i<j≤n
Ui,Uj∈U〈w〉

K[U , {Ui, Uj}, σ].

Now the equality ∑
1≤i<j≤n
Ui,Uj∈U〈w〉

K[U , {Ui, Uj}, σ] = K[U ,U〈w〉, σ],

holds, and entails the first equality of Proposition 6.1. As the subsets U〈w〉 do not depend

on the permutation σ, averaging over σ leads to the second equality of Proposition 6.1.

6.2. Faithfulness.

Seidel introduces the notion of a faithful algorithm, and we consider here a slightly dif-

ferent notion, the notion of a strongly faithful algorithm, on which we give an alternative

point of view. We first recall the notation U[i,j] (already used in Section 2.2) which denotes

the subset formed with the keys of U whose rank k belongs to the interval [i, j].

Definition 5. [Seidel] An algorithm is strongly faithful if, for any n ≥ 2, any subset

U of cardinality n, and any pair (i, j), with 1 ≤ i < j ≤ n, the mean number of key

comparisons K[U ,U[i,j]] performed by the algorithm only depends on the cardinality

j − i+ 1 of the subset U[i,j].

There is an easy translation of this notion in our framework.

Lemma 6.2. For a sorting algorithm A, the following three assertions are equivalent

(a) The algorithm is strongly faithful.

(b) The mean number of key comparisons π(i, j) performed by A between the two keys Ui
and Uj only depends on the difference j − i between their ranks.

(c) The density φZ(u, t) of A in the Poisson model only depends on the difference t− u.

The algorithms Quicksort and InsSort are strongly faithful. The third algorithm BubSort

is not strongly faithful.

Proof. Denote by P (i, j) := K[U ,U[i,j]] the expectation of the total number of key

comparisons between any pair of two keys of U[i,j]. By definition, an algorithm is strongly

faithful if P (i, i+ k) does not depend on i, and only depends on k.

The relation

P (i, i+ `) =
∑

(i′,j′)
i≤i′<j′≤i+`

π(i′, j′) = P (i, i+ `− 1) + π(i, i+ `) +

`−1∑
k=1

π(i+ k, i+ `) (6.2)

holds for ` ≥ 2 between the two sequences P (i, j) and π(i, j). We will use it to prove that

the following two assertions are equivalent, with a recurrence on `.

Realistic analysis of sorting algorithms 31

(a) For any k ≤ `, the expected values P (i, i+ k) do not depend on i.

(b) For any k ≤ `, the expected values π(i, i+ k) do not depend on i.

If ` = 1, there is only one pair of keys in U[i,i+1] and P (i, i+ 1) = π(i, i+ 1). Then, the

lemma is true for ` = 1.

Assume now that the lemma holds for k < `. We prove that it holds for k = `.

Assume first that Assertion (b) holds for k ≤ `. Then, none of the terms π(i+ k, i+ `)

for k ∈ [0 . . `− 1] depends on i. Furthermore, by recurrence hypothesis, Assertion (a)

holds for k ≤ `− 1, and P (i, i+ `− 1) does not depend on i. Then, with Eq. (6.2), it is

the same for P (i, i+ `). and Assertion (a) holds for k ≤ `.
Conversely, assume that Assertion (a) holds for k ≤ `. Then, none of the two terms

P (i, i+ `) or P (i, i+ `− 1) depends on i. Furthermore, by recurrence hypothesis, Asser-

tion (b) holds for k < ` and all the terms π(i+ k, i+ `) are independent of i for k ∈ [1 . . `].

Then, with Eq. (6.2), it is the same for π(i, i+ `), and Assertion (b) holds for k ≤ `.

For a strongly faithful algorithm, the mean number K[U ,U〈w〉] only depends on the

cardinality Nw of U〈w〉. It equals K(Nw), where K(n) is the mean number of key

comparisons of the algorithm in the permutation model, and Relation (6.1) entails the

equality

S[U] =
∑

w∈P(U)

K(Nw), (6.3)

where Nw is the number of words of U which begin with the prefix w. We remark that, for

any sorting algorithm, the equalities K(0) = K(1) = 0 hold. Then, the previous relation

can be written as

S[U] =
∑

w∈P(U)

K(Nw) =
∑
w∈Σ?

K(Nw).

6.3. A relation between faithful sorting algorithms and trie parameters.

Consider, more generally, a function f : N→ R which satisfies f(0) = f(1) = 0 and f(k) ≥
0 for k ≥ 2, and a random variable defined by the relation

R[U] :=
∑
w∈Σ?

f(Nw), (6.4)

where Nw is the number of words of U which begin with the prefix w. We now explain

why such a random variable defines an additive parameter on the trie T (U).

The trie T (U). A trie is a tree structure, used as a dictionary, which compares words

via their prefixes. Since its introduction [17, 5] the trie has become a fundamental data

structure in computer science [11]. Given a finite set U = {U1, U2, . . . , Un} formed with

n (infinite) words emitted by the source, the trie T (U) built on the set U is defined

recursively by the following three rules:

(i) If |U| = 0, T (U) = ∅.
(ii) If |U| = 1, U = {U}, T (U) is a leaf labeled by U .

32 J. Clément, T. H. Nguyen Thi and B. Vallée

a
bc

...

a

b
...

a

c
...

b

b
...

c

c

b

a

b
...

a

b
...

b

a

c

b

cba
...

a

bbc
...

b

ca
b
...

c

c

U1 = aaabc . . .

U2 = abcab . . .

U3 = abcbc . . .

U4 = abccb . . .

U5 = bcaab . . .

U6 = bcabb . . .

U7 = cacba . . .

U8 = cbbbc . . .

U9 = cccab . . .

Figure 10: The trie T (U) associated with a set U of nine (infinite) words on the alphabet

Σ := {a, b, c}

(iii) If |U| ≥ 2, then T (U) is formed with an internal node and r subtries respectively

equal to

T (U 〈0〉), . . . , T (U 〈r−1〉),

where U 〈σ〉 denotes the subset consisting of words of U〈σ〉, stripped of their initial

symbol σ. If the set U〈σ〉 is nonempty, the edge which links the subtrie T (U 〈σ〉) to the

internal node is labelled with the symbol σ.

Then, the internal nodes are used for directing the search, and the leaves contain the

words of U . There are as many leaves as words in U . The internal nodes are labelled by

prefixes w for which the cardinality Nw of the subset U〈w〉 is at least 2 (see Figure 10).

Additive parameters on tries. Trie analysis aims at describing the average shape

of a trie (number of internal nodes, external path length, height). We focus here on

additive parameters, whose (recursive) definition exactly copies the (recursive) definition

of the trie. Consider a function f : N→ R which satisfies f(0) = f(1) = 0 and f(k) ≥ 0

for k ≥ 2, together with a random variable R[U], associated with f , and defined on the

trie T (U) as:

(i) If |U| ≤ 1, then R[U] = 0;

(ii) If |U| ≥ 2, then R[U] = f(|U|) +
∑
σ∈Σ

R[U〈σ〉].

Iterating the recursion, we obtain exactly Equation (6.4). The cost f is the “toll” that

is “paid” at each internal node of the trie. In particular, when f(k) = 1 for k ≥ 2, the

variable R[U] equals the number of internal nodes in the trie T (U), and when f(k) = k

for k ≥ 2, the variable R[U] equals the external path length of the trie T (U). These trie

parameters have been very deeply studied: first in the case when words are emitted by

a simple source (see [25] for instance), and later on, when the words are produced by a

general (non-ambiguous) source (see [3, 1]).

Realistic analysis of sorting algorithms 33

However, even for simple sources, these existing analyses are usually performed with the

Poisson–Mellin tools, need Depoissonization techniques, and do not precisely deal with

the tameness of the source5. The following result has thus two main purposes: it first

deals with the usual cases f(k) = 1 or f(k) = k and explains how the Rice methodology

provides in these cases very natural proofs, with precise error terms, that do not need

Depoissonization techniques. It also makes more precise the role played by the tameness

of the source. Second, it describes the method that can be used in the case of the “toll”

f(k) = k log k, where it does not seem possible to apply directly the Rice methodology.

6.4. Analysis of additive trie parameters.

The following result compares the two methodologies, the Rice methodology and the

Poisson-Mellin approach, it is thus of independent interest, and also important in our

context.

Proposition 6.3. Consider, a source S assumed to be Λ-tame. For each set U of infinite

words independently produced by S, consider the trie T (U) and a trie parameter R[U]

defined by Relation (6.4) from a toll function f : N→ R which satisfies f(0) = f(1) = 0

and f(k) ≥ 0 for k ≥ 2. Then, the mean value R(n) of the random variable R[U] in the

Bernoulli model (Bn,S) satisfies the following:

(i) In the case when f(k) = k(k − 1), then R(n) = Λ(2)n(n− 1).

(ii) Define the degree of f as deg(f) := inf{c, f(k) = O(kc)} and assume that d := deg f

belongs to [0, 2[. Then, R(n) is written as

R(n) =

n∑
k=2

(−1)k
(
n

k

)
Λ(k)r(k), with r(n) =

n∑
k=2

(−1)k
(
n

k

)
f(k),

and there exist analytic liftings ρ(s), for n 7→ r(n), and $(s), for n 7→ R(n), on the

half-plane <s > d.

(iii) In the case when ρ(s) is tame at s = max(d, 1), the Rice methodology can be ap-

plied. This arises in the two cases f(k) = 1 and f(k) = k. The function ρ, and the

asymptotic behavior of the mean value R are described in Figure 11.

(iv) In the case when f(k) = k log k, the function ρ(s) has a pole of order 2 at s = 1, and,

even if it is not proven to be tame at s = 1, Poisson–Mellin tools prove the asymptotic

behaviour for R(n) given in Figure 11.

Remark. There exist two extensions of Proposition 6.3 (that will be described in [26]),

in the following cases:

(i)The source is not Λ-tame, but its Λ series fulfills nice tameness properties as described

in Section 5.2.

(ii)The function f admits an analytic lifting that satisfies f(n) = na logb n, with b ∈ N
and a ∈]0, 2[.

5 There is an exception in [1].

34 J. Clément, T. H. Nguyen Thi and B. Vallée

Toll function Lifting ρ(s) Lifting $(s)
Dominant term

of R(n)

f(k) = 1 s− 1 (s− 1)Λ(s)
n

h(S)

f(k) = k s sΛ(s)
1

h(S)
n logn

f(k) = k log k − ζ′(s)

Γ(−s) +H2(s) −ζ
′(s)Λ(s)

Γ(−s) + Λ(s)H2(s)
1

2h(S)
n log2 n

Figure 11: Results for Proposition 6.3.

Proof of Proposition 6.3. We first work inside the Poisson model (PZ ,S) where the

cardinality N follows a Poisson law of rate Z. Then, the cardinality Nw follows a Poisson

law of rate Zpw. Denote by F (Z) the expectation of the variable f(N) and G(Z) the

expectation of the variable R[U] in the Poisson model of rate Z, namely

F (Z) = e−Z
∑
k≥2

Zk

k!
f(k), G(Z) = e−Z

∑
k≥2

Zk

k!
R(k), (6.5)

where R(n) is the expectation of R[U] in the Bernoulli model in (Bn,S). If we wish to

adopt the technics “à la Rice”, as in Section 1.5, we write F (Z), G(Z) under the form

F (Z) =
∑
n≥0

(−1)n
Zn

n!
r(n), with r(n) =

n∑
k=2

(−1)k
(
n

k

)
f(k), (6.6)

G(Z) =
∑
n≥0

(−1)n
Zn

n!
ϕ(n), with ϕ(n) =

n∑
k=2

(−1)k
(
n

k

)
R(k). (6.7)

Averaging Relation (6.4) in the Poisson model of rate Z entails the equality

G(Z) =
∑
w∈Σ?

EZ [f(Nw)] =
∑
w∈Σ?

F (Zpw). (6.8)

Assertion (i). Consider first the case where f(k) = k(k − 1). Then, Relation (6.5) entails

the equality F (Z) = Z2, and, with (6.8), the equality G(Z) = Λ(2)Z2. This implies the

exact equality R(n) = n(n− 1) Λ(2).

Assertion (ii). Relations (6.6), (6.7) and (6.8) entail the equality

ϕ(n) =

(∑
w∈Σ?

pnw

)
r(n) = Λ(n)r(n), (6.9)

Realistic analysis of sorting algorithms 35

and, inverting the triangular set of relations (6.7) leads to the binomial relations

R(n) =

n∑
k=2

(−1)k
(
n

k

)
ϕ(k), and then R(n) =

n∑
k=2

(−1)k
(
n

k

)
Λ(k)r(k).

If there exists an analytic lifting ρ(s) of r(n), there is an analytic lifting $(s) for ϕ(n),

equal to Λ(s)ρ(s), and we can use the Rice Formula, as previously in Section 1.6, as soon

as the analytic liftings can be proven tame. Previously, for each of the three algorithms,

we computed such an analytic lifting $(s), described in the second column of Table of

Figure 7, which is moreover proven to be tame. However, in the present general setting,

the existence of a simple lifting $(s) for ϕ(n) is not directly granted, but it can be

obtained by the cycle “Poisson–Mellin–Newton–Rice” well described in [12], that we now

state in our setting.

For a sequence f of general term f(k), with f(k) ∈ C, the valuation val(f) is the

smallest index of non-zero elements of f and the degree deg(f) as the infimum of all c

such that f(k) = O(nc). The “good” case for finding a simple lifting ρ(s) of the sequence

r(n) arises when the inequality val(f) > deg(f) holds, as we explain. Here, one always has

val(f) = 2, and when deg(f) satisfies deg(f) < 2, the inequality val(f) > deg(f) always

holds.

In the case when the inequality val(f) > deg(f) holds, we use the Mellin transform in

order to build ρ(s). The Mellin transform [13] transforms a function g into a function g∗

of a complex variable s defined as

g∗(s) :=

∫ +∞

0

g(x)xs−1dx.

When the sequence f satisfies val(f) = 2 and deg(f) = d < 2, the Mellin transform F ∗(s)

of the function F (Z) exists on the vertical strip 〈−2,−d〉, and

F ∗(s) =
∑
k≥2

f(k)

k!

∫ ∞
0

e−zzkzs−1dz =
∑
k≥2

f(k)

k!
Γ(k + s)

= Γ(s)

[∞∑
k=2

f(k)
s(s+ 1) . . . (s+ k − 1)

k!

]
.

If we now let

ρ(s) :=
F ∗(−s)
Γ(−s)

=

∞∑
k=2

(−1)kf(k)
s(s− 1) . . . (s− k + 1)

k!
, (6.10)

the function ρ(s) is expressed as a Newton interpolation series in the vertical strip

〈d, 2〉, which moreover satisfies ρ(n) = r(n), with (6.6). On general grounds, Newton

series converge in half-planes, via classical results due to Nörlund [20, 21], and here the

function ρ(s) is analytically continuable on the half plane <s > d. Finally, the function

ρ(s) defined in (6.10) provides the analytic lifting we look for, on the half plane <s > d. As

the Dirichlet series Λ of the source has a pole at s = 1, the product s 7→ $(s) = ρ(s)Λ(s)

is analytic on the halfplane <s > max(d, 1). And its tameness (needed to apply the Rice

methodology) depends both on the relative position of d and 1, and the tameness of ρ.

36 J. Clément, T. H. Nguyen Thi and B. Vallée

We now give two instances of such a situation, in the context of Assertions (iii) and

(iv).

Assertion (iii). We now consider the cases f(k) = 1 or f(k) = k. In both cases, the degree

d satisfies max(d, 1) = 1, and we study the tameness of ρ at s = 1. The sequences r(n)

satisfy respectively

r(n) =

n∑
k=2

(−1)k
(
n

k

)
= 0− 1 + n = n− 1

r(n) =

n∑
k=2

(−1)k
(
n

k

)
k = −n

n−1∑
k=1

(−1)k
(
n− 1

k

)
= n,

and the analytic liftings ρ(s) are respectively s− 1 and s, whereas the analytic liftings

of the sequence ϕ are $(s) = (s− 1)Λ(s) and sΛ(s). In the case of a source Λ-tame, the

analytic lifting $(s) is tame at s = 1, and we apply the Rice methodology.

Assertion (iv). The case f(k) = k log k is different. The degree d equals 1, and we study

the tameness of ρ at s = 1. We write

F ∗(s) =
∑
k≥2

f(k)

k!

∫ ∞
0

e−zzkzs−1dz =
∑
k≥2

f(k)

k

Γ(k + s)

Γ(k)
.

The ratio of Gamma Functions can be estimated with the Stirling Formula,

Γ(k + s)

Γ(k)
=

(k + s)k+s

kk
e−k−s

e−k

√
k + s

k

[
1 +O

(
1

k

)]
= ks

[
1 +O

(
|s|
k

)]
,

where the O-term is uniform with respect to k. Then, the Mellin transform of F satisfies,

for f(k) = k log k,

F ∗(s) =
∑
k≥2

ks log k

[
1 +O

(
|s|
k

)]
= −ζ ′(−s) +H1(s), (6.11)

where H1(s) is analytic and of polynomial growth in <s < 0. Then F ∗(−s) is tame at

s = 1 with order 2, and the relation

ρ(s) =
F ∗(−s)
Γ(−s)

= − ζ ′(s)

Γ(−s)
+
H1(s)

Γ(−s)
,

proves that the function ρ(s) has a pole of order 1 at s = 1. However, the function

1/Γ(−s), even though it is analytic on the halfplane <(s) > 1, is not tame there. And it

does not seem possible to directly prove that ρ(s) is tame at s = 1. We cannot a priori

apply the Rice methodology, and we then follow the Poisson–Mellin approach, that we

now describe.

We return to the Mellin transforms F ∗(s) and G∗(s). Due to Relation (6.8), the

function G(Z) is an harmonic sum6 with base function F and frequencies pw. With

6 The function g is an harmonic sum with base function f and frequencies µk if g(z) is written as

g(z) =
∑

k f(µkz).

Realistic analysis of sorting algorithms 37

classical properties [13], its Mellin transform G∗(s) factorises as

G∗(s) =

(∑
w∈Σ?

p−sw

)
· F ∗(s) = Λ(−s) · F ∗(s). (6.12)

The singular expressions of F ∗(s) and G∗(s) at s = −1 are, with (6.11) and (6.12),

F ∗(s) � 1

(s+ 1)2
, G∗(s) � 1

h(S)

1

(s+ 1)3
.

The tamenesses of F ∗(s) and Λ(s) are enough to deduce, using standard Mellin inverse

transform [13], the estimates, for Z →∞,

F (Z) = Z logZ(1 + o(1)), G(Z) =
1

2h(S)
Z log2 Z(1 + o(1)). (6.13)

Now, we wish to return in the Bernoulli model, with Depoissonization techniques, which

need a good behaviour of G(Z) with respect to cones. For θ < π/2, the cone Sθ is the

set of complex numbers Z whose argument argZ satisfies the inequality |argZ| ≤ θ. We

use the following theorem of [18].

Theorem A [Jacquet and Szpankowski] Let G(Z) be the Poisson transform of a sequence

R(n) that is assumed to be an entire function of Z. Assume that, in a linear cone Sθ
(with θ < π/2), the following two conditions simultaneously hold for some real numbers

A,B, r > 0, β, and α < 1:

(a) For Z ∈ Sθ, |Z| > r =⇒ |G(Z)| ≤ B|Z|β.

(b) For Z 6∈ Sθ, |Z| > r =⇒ |G(Z)eZ | ≤ A exp(α|Z|).

Then, one has R(n) ∼ G(n) for n→∞.

We apply this result to the Poisson transform G(Z) of the sequence R(n). Assertion

(a) is easy to deduce from (6.13). For Assertion (b), we first study F (Z) and observe that

F (Z) can be written as

F (Z)eZ = Z2L(Z) with L(Z) =
∑
k=0

Zk

k!
`(k) and `(k) :=

1

k + 1
log(k + 2).

(6.14)

Since the function `(k) admits an analytical continuation to the half plane <(Z) > 0, we

use a very useful result of [19].

Lemma B. Let `(Z) be an analytic continuation of a sequence `(n) which is O(|Z|β)

in a linear cone. Then, for some θ0, and for all linear cones Sθ with θ < θ0, there exist

α < 1 and A > 0 such that the exponential generating function L(Z) of `(n) satisfies

Z 6∈ Sθ =⇒ |L(Z)| ≤ A exp(α|Z|).

With Eq. (6.14), the sequence `(k) satisfies hypotheses of Lemma B, and the conclusion

holds for the exponential generating function L(Z) of `(n). This exponential bound is

38 J. Clément, T. H. Nguyen Thi and B. Vallée

then transfered to G, as we now explain. First, we have in accordance with (6.8) and

(6.14)

G(Z)eZ = eZ
∑
w∈Σ?

F (Zpw) = Z2
∑
w∈Σ?

p2
wL(pwZ) exp(Z − pwZ).

We denote by x the real part of Z and consider the cone Ŝα defined by the inequality

x > α|Z|. When Z does not belong to Ŝα, it is the same for all the complex numbers

pwZ, and, with Lemma B, each term of the previous sum satisfies the inequality

|L(pwZ) exp(Z − pwZ)| ≤ A exp (αpw|Z|+ x(1− pw)) ≤ A exp(α|Z|).

Finally, we have shown:

Z 6∈ Ŝα =⇒ |G(Z)eZ | ≤ B|Z|2 exp(α|Z|) with B := AΛ(2),

Now, for |Z| large enough, and Z 6∈ Ŝα, we obtain |G(Z)eZ | ≤ C exp(α′|Z|) with α′ ∈
]α, 1[and a given constant C. Finally, Assertion (b) of Theorem A holds. Applying

Theorem A to G(Z) entails the estimate R(n) ∼ G(n) and ends the proof for Assertion

(iv) of Proposition 6.3.

6.5. An alternative proof for QuickSort and InsSort.

It is clear that two algorithms of the studied family —QuickSort and InsSort— are

strongly faithful whereas the last one BubSort is not strongly faithful.

In the case of the two faithful algorithms, the following result easily follows from

Proposition 6.3 and Relation (6.3). Then, the approach of Seidel, combined with our

methods, provides an alternative approach for our main theorem, at least for the algo-

rithms QuickSort and InsSort. However, this approach cannot be applied to BubSort

that is not strongly faithful, and we only provide here the asymptotic main terms.

Theorem 6.4. Consider a strongly faithful algorithm which sorts words that are inde-

pendently drawn from the same source, assumed to be Λ-tame.

(i) If the mean number K(n) of key comparisons is An2 +O(n), then the mean num-

ber of symbol comparisons satisfies S(n) = Ac(S)n2 +O(n log n), and S(n)/K(n) is

asymptotic to c(S).

(ii)If the mean number K(n) of key comparisons is An log n+O(n), then the mean num-

ber S(n) of symbols comparisons is asymptotic to A/(2h(S)) · n log2 n and S(n)/K(n)

is asymptotic to log n/(2h(S)).

6.6. An asymptotic lower bound for S(n).

Combining our methods described in Proposition 6.3 together with the approach of Seidel

for lower bounds, we obtain an asymptotic lower bound S(n) for the mean number

of symbol comparisons for any sorting algorithm (not necessarily faithful) using the

standard string comparison procedure and dealing with words of a Λ-tame source S.

Realistic analysis of sorting algorithms 39

Theorem 6.5. For a Λ-tame source S, the following asymptotic lower bound S(n) holds

for the mean number of symbol comparisons performed by any key-comparison based

sorting algorithm and dealing with words emitted by S,

S(n) ∼ 1

2 log 2

1

h(S)
n log2 n.

Remark. This lower bound shows that QuickSort is quasi-optimal in the model of

symbol-comparisons, as it is quasi-optimal in the model of key-comparisons.

When the source is not Λ-tame, and its Dirichlet series Λ(s) is tame at s = 1 with

order k0 > 1, then the order of the asymptotic lower bound becomes Θ(n log1+k0 n), and

QuickSort remains quasi-optimal,

Proof. We use the same notations as in Section 6.1. We consider a set U of n distinct

words, and a key-comparison based sorting algorithm A. The set U is presented as input

to algorithm A in order given by some permutation σ, and we denote by K[U ,U〈w〉, σ]

the number of comparisons performed by A on the subset U〈w〉 when U is input under

permutation σ.

We denote by L the function L(n) = log2(n!), which appears in the lower bound for

the mean number of key comparisons. We fix a subset U and an algorithm A and we say

that a permutation σ is k-good for V ⊂ U if K[U ,V, σ] ≥ L(|V|)− k. If it is not k-good,

it is said to be k-bad. We will use the following lemma due to Seidel [24].

Lemma 6.6. [Seidel] For any subset U of cardinality n, and any algorithm A, there is

a set S ⊂ Sn for which the following holds:

(i) The cardinality |S| satisfies: |S| ≥ n! [1− (1/n)];

(ii)All the elements of S are (2 log n)-good for any U〈w〉.

We will prove the Lemma later on. We first explain how it entails the proof of Theo-

rem 6.5. Indeed, with the second relation of Eq. (6.1), Lemma 6.6 entails the inequality,

for any set U of cardinality n,

S[U] ≥
(

1− 1

n

)
(R1[U]− 2 log nR2[U]) ,

where the parameters R1 andR2 are respectively associated with the toll functions f(k) =

L(k) := log2(k!) and f(k) = 1. Now, Proposition 6.3 provides the asymptotic behaviour

for the mean values R1(n) and R2(n), namely

R1(n) ∼ 1

2 log 2

1

h(S)
n log2 n, R2(n) = Θ(n).

This proves that the mean number of symbol comparisons of the algorithm A admits the

asymptotic lower bound

S(n) ≥ S(n), with S(n) ∼ 1

2 log 2

1

h(S)
n log2 n,

and Theorem 6.5 is proven.

40 J. Clément, T. H. Nguyen Thi and B. Vallée

Proof of Lemma 6.6. Consider the decision tree D associated with the algorithm A.

The set U〈w〉 is an order contiguous subrange of U , i.e., U〈w〉 = U[i,j]. Consider the set

of permutations S whose restriction to the set [1 . . n] \ [i . . j] is fixed. Thus |S| = Nw!.

Each leaf of D corresponds to a permutation σ. Take the leaves that correspond to

permutations in S along with their rootpaths. They induce a subtree of D. We contract

all the paths in this tree by removing all the non branching nodes; there results a binary

tree D that represents a valid decision tree for a sorting algorithm on U〈w〉. Since D is a

binary tree with Nw! leaves, for any k > 0, there can be at most a 1/2k- fraction of these

leaves that have distance less than L(Nw)− k from the root. In other words, at most a

1/2k-fraction of the permutations σ ∈ S are k-bad for U〈w〉. Since this is true for any

which way the permutation values outside [i, j] were fixed, we get that for any k > 0, the

fraction of all permutations that are k-bad for U〈w〉 is at most 2−k.

Now, we observe that, although the trie T (U) can have arbitrarily many nodes w,

there are only at most n− 1 different sets U〈w〉. There is a clear equality between the

number of different sets U〈w〉 and the number of branching nodes in the trie. We now

prove that the number of branching nodes in a trie with n leaves is at most n− 1, with

an easy recursion. For n = |U| = 2, there is at most 1 branching node. For a cardinality

n := |U| ≥ 2, we consider the first branching node in the trie (the one with the smallest

level). Then, each subtrie of cardinality ni < n has at most ni − 1 branching nodes, and

there are at most 1 +
∑
i∈Σ(ni − 1) ≤ n− 1 branching nodes.

Thus choosing k ≥ 2 log n ensures that there is a subset S of Sn whose cardinality is

at least (1− n2−k)n! ≥ [1− (1/n)]n! and whose elements are k-good for all the subsets

U〈w〉.

6.7. Relation between various lower bounds.

The well-known lower bound K(n) for any sorting algorithm using key comparisons is

asymptotic to n log2 n. Then, we have proven that

S(n)

K(n)
∼ 1

2h(S)
log n, (6.15)

and this is the same ratio as the ratio which appears in (5.1) for the non-robust algo-

rithms, namely QuickSort and BubSort.

There is also a lower bound in information theory which states that the number D(n)

of symbol comparisons used by any sorting algorithm on words which uses the symbol

representation of words satisfies

D(n) ≥ D(n), with D(n) ∼ 1

h(S)
n log n,

and the following ratio between the two asymptotic lower bounds for sorting words holds

S(n)

D(n)
∼ 1

2 log 2
log n.

Realistic analysis of sorting algorithms 41

Conclusion.

We show here the applicability of the method which has been described in the paper

[28]. We describe a new point of view on the basic algorithms, and their analysis, which

can be (partially) automatized. Our dream is to revisit all standard algorithms from a

student book, with this point of view, and perform their realistic analysis.

Acknowledgements. This paper greatly benefited from many discussions we had with

Philippe Flajolet, on the topics of the Rice formula, on the cycle “Poisson–Mellin–

Newton–Rice” and the tameness of sources. For these, we are truly grateful, and we

dedicate this paper to his memory.

References

[1] E. Cesaratto and B. Vallée. Gaussian distribution of trie depth for dynamical sources.
submitted, 2012.

[2] J. Clément, J. Fill, T. Nguyen Thi, and B. Vallée. Realistic analysis of the Quickselect
algorithm. submitted, 2014.

[3] J. Clément, P. Flajolet, and B. Vallée. Dynamical sources in information theory: A general
analysis of trie structures. Algorithmica, 29(1):307–369, 2001.

[4] J. Clément, T. Nguyen Thi, and B. Vallée. A general framework for the realistic analysis
of sorting and searching algorithms. Application to some popular algorithms. In STACS,
pages 598–609, 2013.

[5] R. De La Briandais. File searching using variable length keys. In Papers Presented at the
the March 3-5, 1959, Western Joint Computer Conference, IRE-AIEE-ACM ’59 (Western),
pages 295–298, New York, NY, USA, 1959. ACM.

[6] D. Dolgopyat. On decay of correlations in Anosov flows. Ann. of Math., 147(2):357–390,
1998.

[7] D. Dolgopyat. Prevalence of rapid mixing in hyperbolic flows. Ergod. Th. & Dynam. Sys.,
18:1097–1114, 1998.

[8] J. A. Fill. Distributional convergence for the number of symbol comparisons used by
Quicksort. Ann. Appl. Probab., 23:1129–1147., (2013).

[9] J. A. Fill and S. Janson. The number of bit comparisons used by Quicksort: an average-case
analysis. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 300–307, 2004. Long version Electron. J. Probab. 17, Article 43, 1-22 (2012).

[10] J. A. Fill and T. Nakama. Distributional convergence for the number of symbol comparisons
used by QuickSelect. Advances in Applied Probability, 45:425–450, 2013.

[11] P. Flajolet. The ubiquitous digital tree. In STACS 2006, 23rd Annual Symposium
on Theoretical Aspects of Computer Science, Marseille, France, February 23-25, 2006,
Proceedings, volume 3884 of Lecture Notes in Computer Science, pages 1–22. Springer,
2006.

[12] P. Flajolet. A journey between Rice, Mellin and Poisson. Personal communication, 2008.
[13] P. Flajolet, X. Gourdon, and P. Dumas. Mellin transforms and asymptotics: Harmonic

sums. Theoretical Comput. Sci., 144(1–2):3–58, June 1995.
[14] P. Flajolet, M. Roux, and B. Vallée. Digital trees and memoryless sources: from arithmetics

to analysis. Proceedings of AofA’10, DMTCS, proc AM, pages 231–258, 2010.
[15] P. Flajolet and R. Sedgewick. Mellin transforms and asymptotics: Finite differences and

Rice’s integrals. Theor. Comput. Sci., 144(1&2):101–124, 1995.
[16] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009.
[17] E. Fredkin. Trie memory. Commun. ACM, 3(9):490–499, Sept. 1960.

42 J. Clément, T. H. Nguyen Thi and B. Vallée

[18] P. Jacquet and W. Szpankowski. Analytical de-Poissonization and its applications.
Theoretical Computer Science, 201(1-2):1–62, 1998.

[19] P. Jacquet and W. Szpankowski. Entropy computations for discrete distributions: towards
analytic information theory. IEEE International Symposium on Information Theory, 1998.

[20] N. E. Nörlund. Leçons sur les équations linéaires aux différences finies. In Collection de
monographies sur la théorie des fonctions. Gauthier-Villars, Paris, 1929.

[21] N. E. Nörlund. Vorlesungen über Differenzenrechnung. Chelsea Publishing Company, New
York, 1954.

[22] M. Roux and B. Vallée. Information theory: Sources, Dirichlet series, and realistic analyses
of data structures. In Proceedings 8th International Conference Words 2011, volume 63 of
EPTCS, pages 199–214, 2011.

[23] R. Sedgewick. Algorithms in C, Parts 1–4. Addison–Wesley, Reading, Mass., 1998. 3rd ed.
[24] R. Seidel. Data-specific analysis of string sorting. In Proceedings of the Twenty-First Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 1278–1286, 2010.
[25] W. Szpankowski. Average case analysis of algorithms on sequences. Interscience series in

Discrete Mathematics and Optimization. Wiley, 2001.
[26] B. Vallée. Rice or Poisson-Mellin? Preprint in preparation.
[27] B. Vallée. Dynamical sources in information theory: Fundamental intervals and word

prefixes. Algorithmica, 29(1/2):262–306, 2001.
[28] B. Vallée, J. Clément, J. A. Fill, and P. Flajolet. The number of symbol comparisons in

QuickSort and QuickSelect. In S. A. et al., editor, Proceedings of ICALP 2009, Part I,
volume 5555 of Lecture Notes in Computer Science, pages 750–763. Springer-Verlag, 2009.

