
HAL Id: hal-01103892
https://hal.science/hal-01103892

Preprint submitted on 15 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining DEVS with Multi-agent Concepts to Design
and Simulate Multi-models of Complex Systems

Benjamin Camus, Christine Bourjot, Vincent Chevrier

To cite this version:
Benjamin Camus, Christine Bourjot, Vincent Chevrier. Combining DEVS with Multi-agent Concepts
to Design and Simulate Multi-models of Complex Systems. 2015. �hal-01103892�

https://hal.science/hal-01103892
https://hal.archives-ouvertes.fr


Combining DEVS with Multi-agent Concepts to
Design and Simulate Multi-models of Complex

Systems

Benjamin Camus, Christine Bourjot, Vincent Chevrier
Université de Lorraine, CNRS, LORIA UMR 7503,

Vandœuvre-lès-Nancy, F-54506, France.
INRIA, Villers-lès-Nancy, F-54600, France

prenom.nom@loria.fr

January 15, 2015

Abstract

We are interested in the multi-modeling and simulation of complex systems, that
is representing a complex system as a set of interacting models and simulating it
with a co-simulation approach. Representing and simulating the multi-model of
a complex system requires to integrate heterogeneity at several levels (representa-
tions, formalisms, simulation software, models’ interactions. . . ). In this article, we
present our approach that consists of combining the DEVS formalism and multi-
agent concepts in order to achieve these requirements. The use of the DEVS for-
malism enables a rigourous integration of models described with heterogeneous
formalisms and a rigourous simulation protocol. Multi-agent concepts ease the de-
scription of multi-perspective integration and the reuse of existing heterogeneous
simulators. We detail the combination of both in the AA4MM approach and illus-
trate its use in a proof of concept.

Keywords: Complex system, multi-model, meta-model, multi-agent, DEVS

1 Introduction
In this article, we are interested in the design and the study of complex systems. Such
systems are characterized by ”a great number of heterogeneous entities, among which
local interactions create multiple levels of collective structure and organization” [4].

Simulation is an important tool for this activity because it allows testing different
alternatives and different scenarios while limiting experimentation costs. Most model-
ing questions about complex systems can only be answered by representing the system
as a set of interacting models: a multi-model. Such a multi-model may be heteroge-
neous as composed of models written in different formalisms, implemented in different

1



simulation software, and interacting in different ways. The problem is then to integrate
this heterogeneity.

Siebert et al. [17] introduced the Agent & Artifact for Multi-Modeling (AA4MM)
approach. They proposed multi-agent concepts to describe an heterogeneous multi-
model, and they relied on the Discrete EVent System Specification (DEVS) formalism
[27] to conceive a decentralized execution algorithm that respects causality constraints.
However, this approach considered only one application case: the structural coupling
of models for mobile ad-hoc networks study [12]. Within this scope, the co-simulation
algorithm was simplified with respect to the DEVS possibilities.

As a consequence, whereas the multi-agent paradigm of AA4MM provides the
concepts required to represent a complex system multi-model, the capabilities of DEVS
to formalize and simulate such a multi-model were not fully exploited in this approach,
and therefore, limit the application domain of AA4MM.

In this article, we present a generalization of this approach to cover the study of
other complex systems. We systematically describe the mapping of the DEVS concepts
to the AA4MM ones and the implementation of the Chandy-Misra-Bryant algorithm
[3] [1] for DEVS within AA4MM.

The following section presents the challenges related to multi-modeling and co-
simulation of complex systems. Section “The DEVS formalism for multi-modeling”
rapidly positions DEVS as a integration formalism for heterogeneous multi-model.
Section “The AA4MM approach” underlines the principles of AA4MM. Section “The
AA4MM meta-model” introduces the meta-model of AA4MM and how we map it with
DEVS. Section “The AA4MM Simulation Middleware : implementing multi-agent
concepts according to the DEVS simulation protocol” details how we translate the
parallel conservative DEVS algorithm to specify and implement the AA4MM software.
Finally, section “Proof of concept” illustrates with a proof of concept showing the
ability of this generalization to describe and simulate an heterogeneous multi-model.

2 Requirements for multi-modeling and multi-simulation
In this section, we detail the key requirements related to complex system multi-modeling
and simulation.

Multi-perspective integration: the multi-model may represent the target system
with models at different temporal and/or spatial scales, and with different levels of res-
olution. Such multi-level representation could be needed, for instance, when there is a
lack of expressiveness of one level and a second one is required; when available data
explicitly refer to different levels of representation; or when the modeling question is
explicitly to study the mutual influences between the coupled levels dynamics. Ag-
gregation and disaggregation operations are required to pass from a level to another
one [11].

Multi-formalism integration: the representation of a complex system may require
the integration of models written in different formalisms [21]. At the execution level,
this formalism heterogeneity implies dealing with different scheduling policies: cyclic
or variable time-steps, and event-based.

Simulation software interoperability: the models composing the multi-model

2



may be already implemented in different simulation software. These models and their
implementations constitute an expertise that must be capitalized. That’s why reusing
these models without implementing them again is required. Interoperability processes
are required to manage exchange of data between these heterogeneous software. [5]

Dynamic simulation adaptation: dynamically modifying a multi-model may be
required during the simulation of a multi-model. For instance, if the models represent
different parts of the system’s state space [8], or when emerging conditions promote
the use of another model than the current used one [25] [24]. Monitoring the simula-
tion, selecting the appropriate model, and switching of model during the simulation is
required.

To sum-up, multi-modeling a complex system requires to integrate heterogeneity
at several levels (representations, formalisms, simulation software, models’ interac-
tions. . . ). In the following section, we investigate the ability of the DEVS formalism
to represent and simulate an heterogeneous multi-model.

3 The DEVS formalism for multi-modeling
The DEVS formalism [27] is the most general formalism for discrete event model. An
important feature of this formalism is that it can integrate all other formalisms [20].

Within the DEVS formalism, each model of the multi-model is described as a
DEVS atomic model. This atomic model which has input and output ports, has a
sufficiently generic behavior to represent other formalism ones. The multi-model cor-
responds to a DEVS coupled model. Figure 1 and table 1 show an example of a multi-
model described with a simplified flattened version of DEVS.

Figure 1: A multi-model composed of three models m1, m2 and m3 as a DEVS cou-
pled model (here described with a simplified flattened version of DEVS).

Once formalized in DEVS, the heterogeneous multi-model can be simulated thanks
to the DEVS simulation protocol. This simulation protocol includes parallel and se-
quential simulation algorithms.

The DEVS formalism explicitly addresses the multi-formalism integration. How-
ever, whereas DEVS is compatible with the other requirements of section “Require-
ments for multi-modeling and multi-simulation”, it does not provide explicit solution
to:

• models reuse, and the interoperability between their simulators [19] [10];

3



Descriptions Notations
Atomic models Md = {m1,m2,m3}

Atomic models’s IC = {((1, 1), (2, 2)),
interconnections ((1, 2), (3, 1)), ((2, 1), (1, 1)),

((3, 1), (2, 1))}

Table 1: Formalization of the coupled model of figure 1 in a simplified flattened
version of DEVS.

• the use of operations like aggregation or disaggregation, to pass from a perspec-
tive of the target system to another one [16];

• the processes of dynamic simulation adaptation. [26]

In following sections, we present the AA4MM approach and how it combines
DEVS with multi-agent concepts to fulfill the requirements listed above.

4 The AA4MM approach
AA4MM [17] aims to describe systems as a set of heterogeneous models (namely a
multi-model). It proposes a meta-modeling approach based on the multi-agent metaphor
to describe a heterogeneous multi-model.

Based on the linguistic levels of [13] and the multi-perspective modelling of [16],
we specify the AA4MM’s approach as follows (see Figure 2). At the meta-model
level, we define a language tailored for the description of heterogeneous multi-models.
A multi-model can be then simulated at the simulators level using the AA4MM mid-
dleware. This middleware implements the meta-models’ concepts and, therefore, can
be automatically configured based on a AA4MM multi-model description.

Within the AA4MM meta-model, a multi-model is described with multi-agent con-
cepts. These concepts are combined with the DEVS formalism in order to achieve
multi-formalism integration. The concepts are graphically represented (detailed in
section “The AA4MM meta-model”) and associated with semantic and syntactic con-
straints guaranteeing a non ambiguous description [18].

At the simulation level, the multi-model is simulated with a co-simulation ap-
proach thanks to the AA4MM simulation middleware. Within this middleware, the
meta-model’s concepts are implemented according to DEVS simulation protocol for
coordinating the simulators’ execution and managing interactions between models.

5 The AA4MM meta-model

5.1 Generalities
The AA4MM meta-model relies on the multi-agent paradigm to envisage a multi-
model as a set of interacting models: each couple model/simulator corresponds to an
agent, and the data exchanges between the simulators correspond to the interactions

4



Figure 2: The AA4MM approach.

between the agents. Originality toward other multi-agent multi-model approaches is
to consider the interactions in an indirect way within the Agents and Artifacts (A&A)
paradigm [15].

Within this paradigm, artifacts support models’ interactions as processes outside
of the models and express them independently of the models’ internal functioning.
As a consequence, the simulators interoperability issue is managed by the artefacts.
The multi-perspective integration issue is managed as a transformation service of the
artefact in charge of the interaction between models.

Moreover, the concept of autonomous agent has been shown [26] to be sufficiently
expressive to describe the monitoring of a multi-model and its dynamical adaptation
during a simulation.

5.2 Multi-agent Concepts of the meta-model
AA4MM relies on four concepts to describe a multi-model:

• A model mi is a partial representation of the target system implemented in a
simulator si (symbol in Figure 3d).

• An m-agent Ai manages a model mi and is in charge of interactions of this
model with the other ones (symbol in Figure 3a).

• An interaction from an m-agent Ai to an m-agent Aj is reified by a coupling
artifact Cij (symbol in Figure 3b). A coupling artifact Cij has two roles: forAi, it
is an output coupling artifact, whereas for Aj it is an input coupling artifact.
The coupling artifacts can transform the data exchanged between the models
using operations that can be for instance, spatial and time scaling operations, or
aggregation and disaggregation operations [2].

• The model artifact Ii reifies interactions between an m-agent Ai and its model
mi (symbol in Figure 3c).

5



(a) (b) (c) (d)

Figure 3: Symbols of the AA4MM components (a) m-agent Ai, (b) coupling artifact
Cij , (c) model artifact Ii (d) model mi.

Figure 4: A multi-model described with AA4MM.

Figure 4 is the equivalent of the multi-model of figure 1 described with the AA4MM
meta-model.

Different kinds of m-agents with different behaviors exist depending on the models
coupling. For instance, co-evolution m-agents coordinate the models execution with
other ones, whereas sequential m-agents monitor and dynamically adapt the multi-
model during the simulation. In this article, we restrict to the co-evolution m-agent.

In the following section, we present how these concepts are combined with the
DEVS formalism in order to manage multi-formalism integration.

5.3 Combining multi-agent concepts with the DEVS formalism
We map the AA4MM multi-model with the DEVS formalism as follows. Each m-
agent Ai sees its model mi as a DEVS atomic model thanks to its model artefact Ii.
Therefore, Ii acts as a DEVS wrapper [14] for mi. Each coupling artifact Cij between
the m-agentsAi andAj corresponds to an interconnection between the models mi and
mj .

In AA4MM, an m-agent only has a local knowledge of the coupled model’s inter-
connections. The coupled model’s interconnections set IC is split such as an m-agent
Ai only knows:

• which input coupling artifact corresponds to its model’s input ports. We define
the set of input links INi of Ai as being composed of the couples (j, k) mapping
the input coupling artifact Cji with the input port xk

i .

• which output coupling artifact corresponds to its model’s output ports. We define
the set of output links OUTi of Ai as being composed of the couples (n, j)

6



mapping the ouput port yni with the output coupling artifact Cij .

The connection of the output ports of a model mi with the input ports of a model
mj is done by the coupling artifact Cji .

The link from a model mi to a model mj (noted as Lij) corresponds to the tuple
(n, k, oi,nj,k). It maps the output port yni with the input port xk

j and applies the onk op-
eration to transform the event between these two models representation. By default,
an operation corresponds to the identity operation id. Table 2 shows how the coupled
model of table 1 is described within AA4MM.

Descriptions Notations
Output links of m1 OUT1 = {(1, 2), (2, 3)}
Input links of m1 IN1 = {(2, 1)}

Output links of m2 OUT2 = {(1, 1)}
Input links of m2 IN2 = {(1, 2), (3, 1)}

Output links of m3 OUT3 = {(1, 2)}
Input links of m3 IN3 = {(1, 1)}

Links from m1 to m2 L12 = {(1, 2, o1,12,2)}
Links from m1 to m3 L13 = {(2, 1, o1,23,1)}
Links from m2 to m1 L21 = {(1, 1, o2,11,1)}
Links from m3 to m2 L32 = {(1, 1, o3,12,1)}

Table 2: Formalization of the coupled model of figure 1 and Table 1 in the AA4MM
formalism.

In the next section, we present how the multi-agent concepts of the AA4MM meta-
model are implemented in the AA4MM middleware, according to the DEVS simulation
protocol.

6 The AA4MM Simulation Middleware : implement-
ing multi-agent concepts according to the DEVS sim-
ulation protocol

In this section we present the operational specification of the AA4MM middleware.
This section is articulated as follows. Section “Events communication through the en-
vironment” is concerned with m-agents communication through the artifacts. Section
“M-agents’ coordination through the environment” is concerned with the co-simulation
coordination.

6.1 Events communication through the environment
In AA4MM, the environment is the medium of m-agents’ communications. According
to the A&A paradigm, this environment is composed of artifacts.

7



A model artifact Ii contains primitives to manipulate a simulation software. This
artifact acts as a DEVS wrapper for the simulator. It implements the function of the
DEVS simulation protocol by the following functions.

• init() initalizes the model mi. It sets the parameters and the initial state of the
model.

• processExternalEvent(eini , ti, x
k
i ) processes the external input event eini at

simulation time ti in the kth input port of mi, xk
i .

• processInternalEvent(ti) processes the internal event of the model mi sched-
uled at time ti.

• getOutputEvent(yik) returns ekouti , the external output event at the kth output
port of mi, yik.

• getNextInternalEventT ime() returns the time of the earliest scheduled in-
ternal event of the model mi.

These functions have to be defined for each simulation software.
The coupling artifact functioning ensures the decentralized events communication

between the m-agents.
A coupling artifact Cij works like a mailbox: the artifact has a buffer of events

where the m-agents can post their external output events and get their external input
events. Cij proposes the post(ekout) function to Ai. This function stores and transforms
(according to Cij’s operation) the external output event ekout of output port yki , in the
artifact’s buffer. Cij proposes three functions to Aj :

• getEarliestEvent(k) returns the earliest external input event for the kth input
port of mj , xk

j .

• getEarliestEventT ime(k) returns the time of the earliest external event for
the kth input port of mj , xk

j .

• removeEarliestEvent(k) removes from the artifact’s buffer the earliest exter-
nal event for the kth input port of mj , xk

j .

6.2 M-agents’ coordination through the environment
According to our multi-agent approach, each m-agent is an autonomous entity. There-
fore, the m-agents perform the simulation of a multi-model in a parallel way.

A parallel simulation of a multi-model must respect the causality constraint: each
atomic model must process its events (internal and external) in an increasing temporal
order [9, 27].

8



Two types of approaches exist to fulfill the causality constraint [7]:

• Conservative approaches consist of insuring that the causality is never broken
during the simulation.

• Optimistic approaches consist of letting the models execute without taking care
of the causality constraint, detecting when the causality constraint is broken and
then rolling back the simulation to this point.

The optimistic approaches require all the simulators to have a roll back capability
implemented either with a state saving or inverse computation strategy [7]. As this
requirement strongly restricts the type of the simulators which can be used, we have
made the choice in the current AA4MM specification to take a conservative approach.

The parallel conservative DEVS simulator is based on the principle of the Chandy-
Misra-Bryant algorithm [3] [1]. Proofs that this algorithm is deadlock free and respects
the causality constraint can be found in [27]. The advantage of this algorithm for the
AA4MM approach is that it is fully decentralized. It is then compatible with the multi-
agent paradigm of the AA4MM meta-model.

We translate this algorithm in the AA4MM’s concepts as follows.
The behavior of each m-agent corresponds to the DEVS conservative parallel sim-

ulator’s one. Each m-agent Ai shares in its environment its own Earliest Output Time
estimated noted EOTi. EOTi corresponds to the date (in simulation time), below which
Ai guarantees it will not send new external output event. Therefore, each coupling ar-
tifact Cij can store an EOT (initially equal to 0). Ai shares its EOTi by updating the
EOT of its output coupling artifacts.

Each m-agent Ai uses the EOTs of all of its input coupling artifacts to compute
its Earliest Input Time estimated noted EITi. This EITi corresponds to the date (in
simulated time) below which Ai will not receive any new external input event. EITi

corresponds to the minimum EOT of all of Ai’s input coupling artifacts. Therefore,
each m-agent Ai accesses the EOT of all of its input coupling artifacts.

For each m-agent Ai, all the events (internal or external) with a timestamp inferior
or equal to EITi are said to be safe to process. In order to fulfill the causality constraint,
each m-agent must process only safe events, and in an increasing timestamp order.

The EOTi of each m-agent Ai is equal to the minimum between:

• the date of its model’s next internal event nti

• the date of EITi plus its model’s minimum propagation delay Di.

EOTi = min(nti, EITi +Di)

Di(Di > 0) corresponds to the minimum delay (in simulated time) below which
the processing of an external event can’t schedule a new internal event in a model mi.
Di has to be determined for each model mi in the multi-model.

To store and access its EOT, each coupling artifact Cij proposes two functions:

• Ai can use the setEOT to update EOTi in the artifact.

9



• Aj can use the getEOT to get EOTi.

To execute a conservative simulation of its model mi, each m-agentAi follows this
cycle:

1. Get the EOT of each of its input coupling artifact and compute its EIT

2. Process safe events in a temporal increasing order

3. Compute its EOT and update the EOT of its output coupling artifacts.

In order to process safe events in a temporal increasing order,Ai follows this cycle:

1. Getting the time nti of its next internal event (nti ∈ R).

2. Getting the time tini of eini , the earliest external event of all its input coupling
artifacts. (tini

∈ R)

3. Determining the earliest event between the next internal event and eini
.

4. If this event is safe to process, process it.

5. If this event is an internal event, propagate the resulting output external events to
other agents.

We developped a new version of the AA4MM middleware to integrate the new
behavior of the m-agents and their coordination with the coupling artifacts.

Implementing a multi-model requires the models’ simulators (assumed to exist),
their model artifacts and the transformation operations. We detail these aspects in the
next section.

7 Proof of concept
In this section, we illustrate the ability of AA4MM to describe and simulate a multi-
model composed of different formalisms (with individual-based, equation-based and
event-based models), different simulators (models are implemented in Netlogo and ad-
hoc simulators) and different perspectives (the models represents the system at different
time-scale and at different resolution levels).This proof of concept is inspired from the
hybrid traffic modeling of [6].

We want to simulate the car traffic of an highway decomposed into three different
parts (Figure 5), each described by a specific model:

• In part 1, the speed is limited to 90 km/h, overtaking is forbidden. This part
can be subject to traffic jam. It is described with an individual-based model (see
section “The individual-based model of the highway”).

• In part 2, the speed is limited to 130 km/h, overtaking is allowed. This part is
described by an event-based model m2 (see section “The event-based model of
the highway”).

10



• In part 3, the traffic can be considered as regular. This part is described by an
equation-based model m3 (see section “The equation-based model of the high-
way”).

For demonstration purpose, we consider this highway to be on a toric space: cars that
go out of part 3 enter into part 1. The multi-model is described with AA4MM in section
“The multi-model of the highway”.

Figure 5: The three parts of the highway.

7.1 The individual-based model of the highway
The individual-based model m1 is inspired from the traffic model of NetLogo [23] [22].
Within this model, each car is represented individually as an agent1. The agents are ar-
ranged along an horizontal road. Each agents is described by a position, an orientation
(the same for all the agents), and a speed. The behavior of each agent is the following:
each time it sees a car too close it decelerates, it accelerates otherwise (up to the speed
limit).

The model is based on a cyclic execution: the cars move according to their speeds
at each time-step. The model has one output port out1, and one input port in1. An
external output event sent through out1 corresponds to the list of the identifiers of cars
going out of the road section. An external input event received in in1 corresponds to a
list of the identifiers of cars entering the section.

7.2 The event-based model of the highway
The event-based model m2 is implemented in an ad-hoc simulator written in Java. This
model has three parameters: the length of the road, the minimum and the maximum av-
erage speed of a car. Within this model cars are represented individually and described
with an identifier and a speed.

It works as follow, when a car enters in the section, its average speed is set randomly
according to a given probability distribution between the maximum and minimum av-
erage speed of the cars. An internal event corresponds to the exit of a car of the section.

The simulator of the model maintains a stack of the internal event according to the
exit date of each cars. The model has one output port out2, and one input port in2. An
external output event sent through the model’s output port out2 corresponds to a list
of the identifiers of cars going out of the section. An external input event received in
the model’s input port in2 corresponds to a list of the identifiers of cars entering in the
section.

1not to be confused with the m-agent of the AA4MM meta-model

11



7.3 The equation-based model of the highway
The equation-based model m3 corresponds to the macroscopic model of traffic used
in [6]. Within this model, the traffic is described as a flow with a car flow rate, a car
density and an average speed. This model is a macroscopic representation of the system
compared to the representations of the models m1 and m2. This model takes input car
flow rate from its input port in3. The output of the model corresponds to the car flow
rate going out of the section.

The model m3 is implemented in an ad-hoc simulator written in Java. This sim-
ulator solves the flow equation by discretizing the simulation time. The simulator is
based on a cyclic execution. External input and output events correspond respectively
to input and output flow rate. A time step is equal to twenty time steps of m1.

7.4 The multi-model of the highway
In this section, we detailed how the intuitive multi-model of the highway of figure 6 is
described and implemented in AA4MM.

We start by the definition of the model artifacts I1, I2 and I3 for controlling re-
spectively the models m1, m2 and m3. As m2 is an event-based model, defining I2’s
functions is a straightforward process. For the models m1 and m3 which have cyclic
time-step scheduling policies:

• the getNextInternalEventT ime function of I1 and I3 returns the current
time of the model plus the duration of a time-step.

• the processInternalEvent function of I1 and I3 executes the model for one
time-step.

• the processExternalEvent function of I1 and I3 sends the external event into
the models’ input port.

• the getOutputEvent function of I1 and I3 collects the external event from the
models’ output port.

Figure 6: The multi-model of the highway described in an intuitive ambiguous way.

We add three m-agents A1, A2, and A3 for managing the execution of the models
m1, m2 and m3.

As m1 and m3 have cyclic time-step scheduling policies, external events can not
schedule new internal events. Therefore, the delays D1 and D3 are equal to +∞. D2

is equal to the minimum time needed by a car to cross the road, that is to say the length
of the road divided by the maximum average speed of a car in m2.

12



We add the coupling artefacts C12 , C23 and C31 managing the interactions between
the models. In order to pass from a micro to a macro representation of the system, we
add an aggregation operation agg to C23 transforming a list of cars into a flow rate. To
pass from a macro representation of the system to a micro representation, we add a
disaggregation operation disagg to C31 transforming flow rate into a list of cars. Figure
7 and table 3 shows how the multi-model of the highway is described using AA4MM.

Figure 7: The multi-model of the highway described with AA4MM.

Descriptions Notations
Output links of m1 OUT1 = {(out1, 2)}
Input links of m1 IN1 = {(3, in1)}

Output links of m2 OUT2 = {(out2, 3)}
Input links of m2 IN2 = {(1, in2)}

Output links of m3 OUT3 = {(out3, 1)}
Input links of m3 IN3 = {(2, int3)}

Links from m1 to m2 L12 = {(out1, in2, id)}
Links from m2 to m3 L23 = {(out2, in3, agg)}
Links from m3 to m1 L31 = {(out3, in1, disagg)}

Table 3: Formalization of the highway multi-model in AA4MM.

To develop this example, we only programmed the code for the interface artifacts
and for the operations.

In this proof of concept, we have shown how the multi-agent concepts are used in
order to describe an heterogeneous multi-model. Model artifacts manage interoperabil-
ity of the simulation software with the AA4MM middleware and act as DEVS wrapper.
Coupling artefacts’ operations manage the integration of macroscopic and microscopic
perspectives of the highway. As the middleware is based on DEVS specifications, we
can rely on this formalism to manage the parallel simulation of this heterogeneous
multi-model.

8 Conclusion
We have presented in this article the mapping of the DEVS formalism and simulation
protocol in the multi-agent concepts of the AA4MM meta-model. This combination

13



of DEVS with multi-agent concepts enables to integrate heterogeneous formalisms, to
perform the parallel simulation of the multi-model, to manage simulators interoperabil-
ity and to integrate multi-perspective in a multi-model.

We have illustrated these possibilities with a proof of concept.
In future works, we plan to take advantage of the expressive power of the A&A

paradigm to formalize dynamic adaptation of the multi-model. For instance, continuing
with the highway multi-model as a proof of concept, we wish to dynamically detect
when the traffic flow is regular or not, and to switch between a macro or a micro model
of the road as done in [24].

References
[1] Bryant, R. E. Simulation on a distributed system. In Proc. of the 16th Design

Automation Conference (1979), 544–552.

[2] Camus, B., Bourjot, C., and Chevrier, V. Multi-level modeling as a society of
interacting models. In Proceedings of the Agent-Directed Simulation Symposium,
ADSS 13, Society for Computer Simulation International (2013), 3:1–3:8.

[3] Chandy, K. M., and Misra, J. Distributed simulation: A case study in design and
verification of distributed programs. Software Engineering, IEEE Transactions
on, 5 (1979), 440–452.

[4] D. Chavalarias, P. Bourgine, E. Perrier, F. Amblard, F. Arlabosse, et al. French
Roadmap for complex Systems 2008-2009, 2009.

[5] Dahmann, J. S., Fujimoto, R. M., and Weatherly, R. M. The department of de-
fense high level architecture. In Proceedings of the 29th conference on Winter
simulation, IEEE Computer Society (1997), 142–149.

[6] El Hmam, M., Abouaissa, Hassane; Jolly, D., and Benasser, A. Macro-micro sim-
ulation of traffic flow. In Proceeding of the 12th IFAC Symposium on Information
Control Problems in Manufacturing, INCOM, vol. 12-1 (2006), 351–356.

[7] Fishwick, P. A. Handbook of dynamic system modeling. CRC Press, 2007.

[8] Fishwick, P. A., and Zeigler, B. P. A multimodel methodology for qualitative
model engineering. ACM Trans. Model. Comput. Simul. 2, 1 (1992), 52–81.

[9] Fujimoto, R. M. Parallel simulation: parallel and distributed simulation systems.
In Proceedings of the 33nd conference on Winter simulation, WSC ’01, IEEE
Computer Society (2001), 147–157.

[10] Hu, Y., Xiao, J., Zhao, H., and Rong, G. Devsmo: An ontology of devs model rep-
resentation for model reuse. In Proc. of the 2013 Winter Simulation Conference,
WSC ’13, IEEE Press (2013), 4002–4003.

14



[11] Klir J., S. J. Variable resolution modeling in interactive parallel discrete event
simulation. In Electronic computers and informatics., K. V. Press, Ed., no. ISBN:
80-8073-150-0 (2004), 353–358.

[12] Leclerc, T., Siebert, J., Chevrier, V., Ciarletta, L., and Festor, O. Multi-modeling
and co-simulation-based mobile ubiquitous protocols and services development
and assessment. In 7h International ICST Conference on Mobile and Ubiquitous
Systems: Computing, Networking, and Services, P. Sénac, M. Ott, and A. Senevi-
ratne, Eds., vol. 73 of Lecture Notes of the Institute for Computer Sciences, So-
cial Informatics and Telecommunications Engineering, Springer Berlin Heidel-
berg (2010), 273–284.

[13] OMG. Model Driven Architecture (MDA) Guide, 2003. OMG doc. ab/2003-06-
01.

[14] Quesnel, G., Duboz, R., Versmisse, D., and Ramat, É. DEVS coupling of spatial
and ordinary differential equations: VLE framework. In Proceedings of the Open
International Conference on Modeling & Simulation Conference (2005), 281–
294.

[15] Ricci, A., Viroli, M., and Omicini, A. Give agents their artifacts: the A&A
approach for engineering working environments in MAS. In Proceedings of the
6th international joint conference on Autonomous agents and multiagent systems,
AAMAS, ACM (2007), 150:1–150:3.

[16] Seck, M. D., and Honig, H. J. Multi-perspective modelling of complex phenom-
ena. Comput. Math. Organ. Theory 18, 1 (Mar. 2012), 128–144.

[17] Siebert, J., Ciarletta, L., and Chevrier, V. Agents and artefacts for multiple models
co-evolution: building complex system simulation as a set of interacting models.
In Proceedings of the 9th International Conference on Autonomous Agents and
Multiagent Systems: volume 1 - Volume 1, AAMAS ’10, International Foundation
for Autonomous Agents and Multiagent Systems (2010), 509–516.

[18] Sprinkle, J., Rumpe, B., Vangheluwe, H., and Karsai, G. Metamodelling: state
of the art and research challenges. In Proceedings of the 2007 International
Dagstuhl conference on Model-based engineering of embedded real-time systems,
MBEERTS’07, Springer-Verlag (2010), 57–76.

[19] Touraille, L. Application of Model-Driven Engineering and Metaprogramming
to DEVS Modeling & Simulation. Theses, Université Blaise Pascal - Clermont-
Ferrand II, Dec. 2012.

[20] Vangheluwe, H. Devs as a common denominator for multi-formalism hybrid
systems modelling. In Computer-Aided Control System Design. CACSD. IEEE
International Symposium on (2000), 129–134.

[21] Vangheluwe, H., De Lara, J., and Mosterman, P. J. An introduction to multi-
paradigm modelling and simulation. In Proc. AIS2002. (2002), 9–20.

15



[22] Wilensky, U. Netlogo traffic basic model.
http://ccl.northwestern.edu/netlogo/models/trafficbasic. Center for Connected
Learning and Computer-Based Modeling, Northwestern University, Evanston,
IL., 1997.

[23] Wilensky, U. Netlogo. http://ccl.northwestern.edu/netlogo/. Center for Connected
Learning and Computer-Based Modeling, Northwestern University, Evanston,
IL., 1999.

[24] Xiong, M., Cai, W., Zhou, S., Low, M. Y.-H., Tian, F., Chen, D., Ong, D. W. S.,
and Hamilton, B. D. A case study of multi-resolution modeling for crowd sim-
ulation. In SpringSim, G. A. Wainer, C. A. Shaffer, R. M. McGraw, and M. J.
Chinni, Eds., SCS/ACM (2009).

[25] Yilmaz, L., Lim, A., Bowen, S., and Oren, T. Requirements and design principles
for multisimulation with multiresolution, multistage multimodels. In Simulation
Conference, 2007 Winter (2007), 823–832.

[26] Yilmaz, L., and Ören, T. Dynamic model updating in simulation with multimod-
els: A taxonomy and a generic agent-based architecture. In In Proceedings of
SCSC 2004 - Summer Computer Simulation Conference, (2004), 3–8.

[27] Zeigler, B., Praehofer, H., and Kim, T. Theory of Modeling and Simulation: In-
tegrating Discrete Event and Continuous Complex Dynamic Systems. Academic
Press, 2000.

16


	1 Introduction
	2 Requirements for multi-modeling and multi-simulation
	3 The DEVS formalism for multi-modeling
	4 The AA4MM approach
	5 The AA4MM meta-model
	5.1 Generalities
	5.2 Multi-agent Concepts of the meta-model 
	5.3 Combining multi-agent concepts with the DEVS formalism

	6 The AA4MM Simulation Middleware : implementing multi-agent concepts according to the DEVS simulation protocol
	6.1 Events communication through the environment
	6.2 M-agents' coordination through the environment

	7 Proof of concept
	7.1 The individual-based model of the highway
	7.2 The event-based model of the highway
	7.3 The equation-based model of the highway
	7.4 The multi-model of the highway

	8 Conclusion

