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PROGRESS TOWARDS A CONJECTURE 
ON THE ·MEAN-VALUE OF TITCHMARSH 

SERIES-II 

By· K, RAMACHANDRA 

I I. Introduction 

The result of this paper may be considered as comple­
mentary to that of my earlier paper [2], on Titchmarsh series. 
Although not as interesting as the earlier result, the result of 
the present paper finds a nice application, (See [1]). In [3] I 
defined a class of series called Titchmarsh series and I now 
start by recalling its definition. 

Tltchmarsh Series. (or briefly K D T series). 

Let A > 10 be a constant. 

1 
Let A < f' 

1 
< f' 2 < ... where 

1 . 

A 
<. f' 

1 
- /1- ..;;; A (for n = 1,2,3, ... ). n 1- n 

(In [2] the notation is slightly different and we have used there 
>.. n instead of /1- nand for simplicity assumed A. 1 = 1. Also we 

have used therea1, a2, ... in place ofour·present b 1, b2 ... and 

assumed for simplicity a1 = 1. We have written there F (s) 

instead of F0 (s) ). Let bl' b2, ... be a sequence of complex 

numbers possibly depending on a parameter H > 10 such that 
oo -s 

1 bn I <. (f' n H)A. Put F0(s) -= ~ bn f' where s = u + it. 
n; 1 n 
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F 
0 

(s) is called a KDT series if there exists a constant A> 10 

and a system of rectangles R (T, T + H) defined by { 0'>0, 

T <. t .;;;; T + H } where 10 < H <; T, and T (whis::h may be 

related to H) tends to infinity, and F0 (s) admits an analytic 

continuation into these rectangles and the maximum of 

IFo (s)l taken over R (T, T + H) .does not exceed Exp (HA). 

I then made the following corrjecture 

Conjecture 

For a KDT suies F0 (s), we have. 

_!_ f IF (it) 12 
dt > CA ~ lb 12, 

H L 0 flno;;;;;X n 

where X " 2 + D A H, L denotes the side (0' = 0, T<; t<; T +H) 

of R (T, T + H), and C A a~d D A are positive constants 

depending only on A, provided J1 1 = b1 ..., I. 

I proved the following theorem. 

Theorem I 

Under the restrictions P 1 = b1 1, wehuve, 

__!__ f \Fo (it)1
2 

dt > C A ll lb 1
2 ~ 

HL p~ -~X .0 
~( log J.l--~ 1· · ) "'1- + - ---log H log log H ' 

where X = 2 + D A H and, C A and D A are e§ective 

positiv~ constants depending only on A. 

I now prove the following theorem. 
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Theorem 1 

For some convenience let UJ assume in the definition of 

Titchmarsh series' F0 (s) the ref/angles R (T, T + H) to be 

(cr ;a. /3, T <;; t < T + H) where 13 is a positive constant such 

that 0 < J3 < o(I < i, where cl 1 is another ccm1tant. Let 

k ;;;.. 2 be an integer and write F (s) =- (F0(s)) k-= 

co -s 
~ (a X. ), a series which is surely convergent where F0 (s) 

n::: I n n 

A 
is absolutely convergent. Pur Y ::= (M + H) where 

IOO - 10 
A= kA (oL1 - /3) and M = maximum of IFo (s) 1 

taken Ol'er R (T, T + H) . Define the entire function~ (s) by 

QO 

~ (s) = 2 an x.;s ~ ( ~ ) 
n .::- 1 n 

where for X > 0, b. (X) is defined by 

2 + ; QO 

~ (X) = 
2 1t i f XW 4a+2 dW 

. E'(p (W ) W , 

2 j 00 

a being a suitable positive integer constant at our choi•e. We 

now suppose that cl, /3 , ;:£1 , ct2 , ;:£3 are constants satisfying 

I 
oL < 13 < ell < o(2 < o(3 < cl. -+ 2 . 

-A- 100 
Put X - [ 2 H ] + 2 and 

V (cr) "" _I ~ I b 12 (_!!__) 2cr. 
H ~ n fl 

P..,..;;x 11 
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Then we have, 

-1 
1 f 2k II · l~(cl+it)l dr 

L 

1-2a( 
>>V(ci)H 

cl2- J. 

{: :~:: J ~3 - .L2 

provide:! only that V (oL) ~ 0 and ( log V (oL) ) ( log H ) -l i., 
bounded below by a rieglltive constant. Here the constant implied 

by the Vinogrador symbol>> depends only on A. k, a(, B. al1 , 

cL 2 , a( 3 and the negati11e constant referred to just now. Furthtr 

it is effective. 

Remark: It will be clear from the proof that if 

fL n = n (n =- 1 ,2,3, ... ) then we can choose X = [ 1~] + 2. 

The object of this paper is to prove theorem 2. The proof 
of the theorem is fairly long. The proof depen~s upon a 
special case of a convexity theorem of R. M. Gabriel which 
we state below (in the notation of D. R. Heath-Brown's paper 
[21 ; for the more general theorem of Gabriel see the reference 
in [2] or Titchmarsh's famous book [5) pages 203 and 337.) 

Theorem 3 

Let / (z) be regular in the infinite strip c( < Re z < {j 
and continuous for c( < Re z <:; B. Suppose f (z) -+ 0 as 
1 Im z I -+ ao, uniformly in .t <:; Re z .-;; {j. Then for a( .;; '( c;; {3, ..._ ..._ 
and any q > 0, we hav~ 
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B-Y 
OD q 

f 1/(Y+it)l 
00 q 13-J. 

dt <: ( f 1 I ( J. + it) I dt ) 
-OD -ao 

Y-J. 
00 q 13-J. 

( f If ( 13 + it) I dt ) • 
-oo 

provided the right hand sile is finite. 

Apart from this we have to use a well-known theorem of 
Montgomery and Vaughan. For reference see for instance my 
paper [4), where I give a simple proof of a weaker result which 
is sufficient for the purposes of this paper. 

We now split up the proof of theorem 2 into several 
steps and give a brief sketch of these steps. 

I l. Proof of Theorem 2 

Step I. Let 

T+H ao 

I (•) = ~ f ( f I ~ (s) ?fk 
T -oe 

1 Exp ( ( s - it0 )
40 +- 2 ) 1 dt) dt0 , 

and assume that I (oL) <; V (al) ul-2J.. The constant a 
shall be a sufficiently large positive integer. As already stated 
we set 

-A-100 
X = [2 H] + 2, and 

1 ~ 2 { H )2cr 
V(cr) ~ H L Ibn! p 

p c;;;X n 
n 

and 

we impose c1, < {j < caLl < aL2 < Cl(3 < a( + ~. 
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Step 2. Next we write 

TtH 00 2/k 

J(u) :: ~ J 
T 

Cf I 
-00 

k 
'/>(s) - p (~) I 

I 4a+2 I ) Exp( (s-it
0

) ) dt 

where P(s) :::. l b !-'- 8
. It is easily seen that 

~-'n<:.X n n 

{).(X) = 0 (XB) and also 1 + 0 (X -B) where B > 0 is an 
arbitrary constant and the 0-constant depends only on Band a. 

Again a = L (bn bn 
n f' ···~-'n =X 1 2 

nl k n 

bn ) and for 
k 

all N > 1, we have L 1 0 (Nk). From 
N < f' n ... f' n <;; 2N 

1 k 

these remarks it is clear that '/> (s) - Pk (s) decays fast enough 
to ensure J(u) < 1 when u is large enough. Now from an 
easy application of a theorem of Gabriel (Theorem 3 above) it 

follows that in u > J.., J(u) is <<s [J (cO] 1 - s for every 

positive constant E uniformly in u, and so in (u > {3, 
T < t ~ T +H), ' I'/> (s)l is bounded above by a constant 
power of H. (Here for getting the last bound we have to use 

the fact that for any analytic function '/> (s), !'/> (s)i 2fk is 
bounded by its mean value over a disc of (positive but 
sufficiently small) constant radius with s as centre). 

Step 3. An easy application of a well-known Montgomery­
Vaughan theorem (refer [4] for instance) shows that 

T+H oo 

~ f ( r IP(s)I21Exp[(s-ito)4a+2],dt) dto 

T -oo 
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From this and the estimate J(u) <<
6 

(J(cL)) l-
6 

it 

follows that · 

A3 T+H oo 

J (~ f ( f k 2/k 
(I~ (s) - P (s)J 

T -oo 

2 4a+2 ) 
+IP(s)l)fExp((s-it

0
) )idt dt0 

= 0 ((J(aL))I - ,. + V(aL) H 1 - 2cl). 

Note that V(u) and V* (u) HI- 2
0' are respectively monotonic 

increasing and monotonic decreasing functions of u, where 

V* (u) is the same as V(u) with the terms f' n < I omitted. 

From now on we assume that V (ol.) is bounded below by a 
constant negative power of H. Under this assumption it 
follows th.at the integral just considered is 

0 
6 

(V(cl) HI - 2r.l-+ E) for every positive constant £. 

Hence there exist intervals II and I2 contained in 

( T, T + Th) and ( T + H - ~ , T + H ) respectively) for 

which the lengths are 4 HE (~ being any fixed constant 
I 

satisfying 0 < ~ < 
100 

) each,and further I(I
1

, cl) 

A1 oo 

=f (~f f k 2/k 
(l~ {s) - P (s)\ 

cl 11 -00 

2 4a+2 ) + IP (s) J )\Exp ((s-it
0

) ) !dt dt
0 

t!u 

and 1{12, cl) defined similarly (by replacing II by 12) satisfy 

l(ll' cl) + I(I2,.L)= O(V(c£) HI-2ol+ 6
). 
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Hence by the principle for the mean value over discs 

referred to in the second step, we see that in ( 13 ~ f1 ~ A2 
, 

'- ..... 
t in any of the intervals 11 , 12 ) we have 

ltf>(s)l2/k.= O(V(cl) H-Zcl+ 2 f; +~). 

Step 4. Let HI and H2 be the mid points of 11 and 12 

respectively. We now obtain a lower bound for at least one 
of the mean-values K (oL1) or K (oL2) where K(•) is defined 

by 
H 

1 2 2 . 2 
K (cr) = H

2 
_ HI J I F0 (s) I dt, (/3 ~cr.:;; A ) . 

HI 

Note that when we replace HI and H2 by other points in II 

and 12 the mean value K (cr) changes by an amount which is at 

most 0 (E) where E = V (cl.) H-2o(+ 26 + 2~. Hence if f1 

denotes any of oL2 or .t3 and HI .;;;; t .;;;; H2 , we see that if j 

is a large positive integer constant, 

(I) 
., 
J. 

21fi f 
F0 (s+w) (2X)w 

-----------------dw 
w(w+I) ... (w+j) 

where L0 is the line Re w = A2. Deform the line L0 to the 

contour described by the lines LI , L2 , L3 , L4 , L5 (in 

a this order) defined as follows. Let H3 = H1 - H 

H 
4 

= H2 + HS where ~ is a small positive constant. L1 and 
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L 
5 

are the portions lm w !! - H3 and Im w ~ H4 respectiv­

ely of L0 . L2 is the line segment 

2 ( lm w := - H3 , o£ 1- u ..;;;; Re w ..:;;; A . ) 

and L4 is the line segment 

2 ( Im w = H4 , o£1 ~ u .;;;; Re w < A ). 

L3 is the line segment (Re w = o£ 1 - u, - H3 <1m wo;;;;H4). 

Taking the mean square after deformation of L0 we find 

from the equation (1), (Note that the only pole to be taken 
care of is w - 0), r K (cr) << V1 (cr) H 1- 2u + (K (oL

1
)+E) H-2(u-o£1) 

I 
(2) ~ (where V 1 (u) is defined below) and also 

l V (u) H 1- 2u << K (u)+(K (ct
1
) +E) H- 2 (u-c(1). 

The reason for this is that the mean square of the RHS of 

(1) is>> and<< V1 (u) H 1 - 2u where V 1 (u) i's defined by 

V 1 (u) = ~ L lb n\2 ~-'!::~. yj ( _!!_)2u. 
fn..;.X 2X fln 

Since V (c() c;;;; V (u) we may omit the term containing E 
in the second of the equations (2), provided o£ 1 - c{ < t 

(which is true because of our assumptions). This gives us 

V (u) H l- 2u << K (u) + K (.1
1
) H - 2(u-o( I); (u o:c(

2
,ot

3
) 

If we put u = o£ 2 we get a lower bound fot one at least 

of the quantities K (ol 1) or K (ol2). 

We now deduce from the last inequality 

V (cr) H 1- 2u << I (cr) + I (ct
1
) H - 2 (u-o£1), 

(u =ctf. J. /). 
L l 
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This is possible since in the range (u ;;> .L1 , H3<t<H4), 

1F0 (s) ! 2 is a very good appwximation (in the mean) to 

lcf> (s) : 2/k and we leave the details as an exercise. From the 

last inequality it follows that I(u) >> V(u) H 1- 2u, for one 

at least of the values u .., c£ 1 or c£2. 

Next by the convexity theorem of Gabriel (Theorem 3), 

we find that with the value of u (..L 1 or oL2 determined), 

J.. .-cL J.. -a u -cL 
{3) (I(u) ) 3 ..;;; (I(.L)) 3 (I(ol.3)) 

Moreover by the arguments used in the first of the 

inequalities in (2) we 3et (by taking X in place of 2X in {1)). 

1-2.;,( -2(cL -0') 
l(J..3) <<V(c£3) H 3 + (I(u)+E)H 3 +E. 

- 2ol. + 2a + 2l 1 - 2o( 
Now E "'· V(J..) H < V(oL3) H . 3 

(since by our assumptions, c(
3 

- e( < ~ ) by a small choice 

of the positive constants e, ~· Thus we get 

1-2c(3 - 2(.( - u) 
l(ol.3) « V(ot3) H + I(u) H 3 , 

and so by (3) 

(4) (I(u)) c(3 - c( 

J.. -u( 1- 2e( -2(c:l -cr)J' cr -J. << (I(al)) 3 V(at 3) H 3 + I(u) H 3 . 

This holds for either u = cL1 or u = cL2 and gives us 



( 
I 

(5) ~ 
I 

l 
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Either I(.:L) >> V(a) H1- 2cl > V(.:L) Hl- 2al, 

cL -a 1-2a cl3 -cl 
or (I(d)) 3 >> (V(a) H ) 

1-2.(3 J..-fl 
(V(cL3) H ) 

The second of these inequalities gives 

1- 2el ~ V (a) ~ 
I ( g{) >> H V (a) l V( el3) 5 

u-J. 
Since V (.:l) ..;; V ( cL 1) < V (a) < V (cL

3
) and since g(

3 
_ u 

is an increasing function of u in 13 ..; u < cl3 , we get finally 

Step 5. Step 4 nearly completes the proof. For we could 
have started with a slight modification of I {a) by averaging 

over a slightly smaller interval contained in ( T, T +H) 
instead of ( T, T +H) . For instance by cutting off bits of 

length H~ on either side. The decaying factor 

Exp ( ( s - it0 ) 4a + 2 ) enables us to replace the modified 

T+H 

I (a) by 1 f 2/k H If/> (s) I dt 

T a=cl 

m the last lower bound. 

Steps 1, 2, 3, 4 and 5 complete the proof of theorem 2. 
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Theorem 4 

With the notation of theorem 2, we have, 

T+H 

~ f I ~ ( c{ + it ) 1
2 

dt >> 
T 

where the constant implied by the Vinogradov symbol is effective 

Rem at k • This theorem w i 11 be used in [1] . 
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