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ON WARING'S PROBLEM: g(4) <21

By R. BALASUBRAMANIAN

{Dedicated to the Memory of Dr. S. S. PILLAI)

§ 1. Developing the ideas of Chen-jing-run [2] we prove the
following

Theorem :

Every natural number is expressible as a sum of atmost
twenty one fourth powers.

In the usual notation, our result reads : 19 < g(4) < 21.
This is an improvement of the result of Thomas [9] who proved
that g(4) < 22. We recall that the general problem for the k®®
powers in the place of fourth powers is nearly complete, which
is due to Dickson [5] and Pillai (independent of each other);
tsee “‘S. S. Pillai”” by K. Chandrasekharan : Jour. of Indian
Math. Soc. 15 (1951} (1-10) for the list of complete works of
Dr. S. S. Pillai). On the other hand, in the case of G(4), it has
been proved by Davenport [4] that G(4) = 16. Incidentally, we

remark that Auluck [1] proved that every integer > 101"89 * isa
sum of nineteen fourth powers. It was improved by Thomas {8]
who proved that every integer > 104083 js representable as a
sum of 19 fourth powers (Theorem 12.1; pp. 152 of [8]). Our
method improves the bound ; but since it does not prove any
thing substantial, we are not including the proof of this fact.
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§ 2. Notations :

2Wix and

Let e (x) stand for e
 2mix
eg(x) for e 9
q 2wiax*
Define  So,q = z’e & where the accent here (and'
x=1

elsewhere) shows that the summation is restricted to only
those x for which (x, ) = 1.

Let N (= 10°5%) be a given integer to be represented as
a sam of 21 biquadratics. Define two integers N, and N; by

No<N<2N,and N, - P <N, <N,

Define P = [N*] and T (a) = p e.axt)
I<x<P

For any real number 0, 0 < @ < 1, there exist two integefs
h,g with 1<h<qg<8P, (hg)=1 suchthat

la" ?l<8qP”'

N1

The major arc () = { a/ for some q<P* } \

8q P8

and the minor arc ® = % ——’< 8q 8q Ps for some gq,.

Plogcs P’}
The singular series S (n ; m) is defined by

S(n) = S.n, m) = z z (3"")"'

q=1 a=1

— 2®ign
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The truncated singular series S, (7, m) is defined by

Sl (m) = S, (n, m) —z z S""’)m

g pt 2=

Qis a constant (depending on various parameters), such that
101 <.

— 2K ian

P o
V=Y =S TN gy

1 m . AT
Wy = S T, e~ 2TIBNT 44

Wy Ny = f T™ o= 20N 4q
(o) a

v -] m .
R(No) = S ¥ e 2F0No 44
—

§ 3. An upper bound for S,

.9
Let us recall that Sa,q = 3 €4 (axt).
x=1
(x.qv=1
We then have,

Lemma | : S, isa multiplicative function of

Proof: A proof can be found in Davenport [3] (lemma 6
in page 31).

Because of lemma 1, it is sufficient to have the bound for

S o - In this direction, we have
a’p
Lemma 2: (a) For any prime p=2, | Sep | < (3—-))1)*

where 8 =4, p— 1)

(by For any prime p#2, | Sa,p¥ |=p"_l

If2<r<4
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(c) Forany prime p> 2,
[§ ,1=p1S
a,p a,p
if »>4. '

:'—4"

Proof : A proof can be found in Davenport [3}
(lemma 12 in page:42, lemma 13 in page 43, and  lemma 14
in page 44).

One can now get a bound for | Sasg| from lemmas I and 2.
But, for small primes (namely p < 79), we find the bound for
Sa,p by actual computation (and the bound is better than the
one given by lemma 2) and deduce

Lemma 3: We have | Sa,q| < (4-3) q% if (a,q) ="1.

Proof : A proof of the lemma can be found in Thomas [8}
{ Theorem 2.1, Page 38).-

§ 4: A bound for T (a) in the minor arc:

Let us recall that T (@) is defined by
T(a) = 3 e (a x*)
‘ I1I<x<gP
Minor arc is defined by A
1

LN ..
= 8q P*

p

<

o = {a i for some g, P}<q<8P‘§

Lemma 4: Let d (m) be the number of divisors of m.
Then 3 (d(i))i < 4;n (j + log m)*'-
where Aj depends only on j In particular one can take

1
24%192

A =1; A, =% Az =45, A=

Proof : The values of 4; for every integer j is given by
Mardjanichvili [7]. The values  of 4,, 4,, A4, and A, are
discussed in Chen [2] (lemma 8)
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Ltemma 5: Let hy (n) denote the number of solutions of the
equation n=11,, 1<, <P; 1< < P in integers.

Then, 3%  (hy (m)2<2P2(log P + 3)
n < P2 o

Proof : We have

3 (hhm) = 3 ( = D
n P* ne< P* d|n
n
- ng; ng
= 3 3, 3 1L
nSP' di|n d, | n
d<pP; <P d,<p, "<p
I 7 —
<2 3 3 > |

d\<P d,<d, n< Pd,
n=0(mod [d,,d,])
<2 3 % Pd,
<P d,<dy [4,, d,]

<2 ;- 3 >
<P nd, d,<d, dd
]

< 2P* (log P+3).
Lemma 6: Let h, (n) denote the number of solutions of the
equation n=1,1,, 1<!l, <P; V<!, < P*4inintegers.
Then "

P3
p (ks (M))* < — (log P + 31
”5 Ptl4 12
Proof: We have
= )= 3 ( 31 )¢
n<P3j4 n<P3/4 Iin

I<P;T< P4
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24 3 3 3 % P,
L<pP <l Li<l, L<ly 41,1, 1, 1,}

6P

M

3
ds |l l,ly de< d, 1lg L1,

6P* b 3 P
1<l <P d|l 1,5‘1 d,11,1,

5 d(l,)d(l,)d) d,
Iy = dyly I i

3 d(l,)d,)-(log P + 1)
da”l la Y l1

6P* (logP +1) 3 3
1£11£P dyily

ox d(hydil) d,
L< I I,
: d

2P* (log P+ 1) -3 s d*(l,)-(log P+ ;¥
1 < le P d |l

2p2

!

(log P + 2)* > dc (1)
, 1<h < p

P? (log P +3)'*
12 '
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0 : )
_,7] - Then, if P > 10%,

a
Lemma 7: Let G = ;+8P

we have $ o (P e ! ) 4f3
0<n< Pa p et
< 50P 5 provided 8P®* > q > P ;
P Let ) Th be brok
. P et over n can be broken
roof et g 24, 9) € sum
ps

into not more than + 1 ) parts, in each of which »

4q’
runs over atmost ¢’ consecutive integers. Let us consider the

" . i 1 %
typical sum sayB e jB $3 L ( L i| 24 an || ) »

Then it is easily seen that, there are atmost (% + 4 ) values

: 1
for n for which 20 24an] > P and these values of n
1/3 4/3

contribute atmost ( q; + 4 ) P4/3 =qg'P " 4+4°P

to the sum. The remaining values of »n contribute

b3 q’ \4/3 B
A
m = P
Hence
: 1 4;3 13 43
2 s P SRS e y . 4
B<n<3+q'mm(’2uz4=an!l e e h G

Hence the total sum is atmost

U3 4m g Pt '
ser” s (L +1-) < 50 PV
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Lemma 8: If h, (n) denotes the number of solutions of the
equation n = 1,1, 1 <1, < P; 1<, < P4, in integers,

then

) 1
; <2P°/4 hg (n) min ( P, 2124 an | )

18 11

< 11 P% (log P + 3)%.
a 0

where 0 = ?+‘8P'q

; P>10%agnd P < g < 8P°
Proof : If P << q < 8P%, then

1
s honmin (2 giorart )
wapys RS P4

: i . - 3
e GO A L (P’ 2112 4an | ))é)‘

4 ' 4
and the result follows from lemmas 6 and 7.

. ‘ a
Lemma9: Let a = ’q‘+2; (a,9)=1; P> 10'°°, P<q<8 P*

1
|z|<8q},3. Then

P R o -
T(@) = | 2132max4 | < (2.86) Pl‘% (log P+3)%%
X =

Proof: Let ly emx —y; f(x,y) = 4x3y+6x*y+4xy*
h(x;y;z)=12xyz (x+y+2).
h, (n) and A, (n) are as defined in lemmas 5 and 6.
Then
' P P " :
(TE)|*<P+2] 3 3 2™oki—yY,

x=% y=1
yF=Xx
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P P—1 .
cpi2y | 3 miafxD |
I=1 | x=1
= P‘*‘2S1, say
P P 2
‘lSll’<(21)(z 2 g2 f(x,1 )
=1 I=1 ]
P -1, | P-1,-1 .
< P342P 3 Pz y 3t 2mia hix; ll,l,)|
llzl I,:l x=1
= P3 + 2PS say
Now
P-1I,-1 . )
'SI < 3 hl (n) max P ’ezﬂla'h(xillsla) l
l<n<£ Lilg=n x=1
4
Hence | S|® < ( ] hy (1) \*
l<n< P4 )

i 3 Imax
(ISnSP’M LI «=n

x =1

P—lzl—laez»m'a h(x; 1, 1) , )

Now using lemma §,

181 < 2P® (log P + 3) %

max
1<n<PY4 Ll ,=n
P 1
(P+2 3 m'n( ———)
=1 " \P 2en )’
< 2P* (log P +3) 3

1<i< P24

P
P 3.2 _—
NS R, m'"(P’zuzwhn)’
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< 2P"(log P+ 3)X

s
( % 2 0<n i Ptj4 Syl ( P, Eﬂlvlv2?l*ah||) ‘)‘
and using lemma 8, ,

IS|* <2P*(log P + 3) (P*/4 + 2 p (log P + 3)'%_1)
and this gives \

| Tw@)| < (2:86) P¥i. (log P + 3,3

a 1
. " — P —
Lemma 10: Ifa__—q+3,whereq< ’IB|<8q .,

and P > 6, then
IT@] <q % (1 +logg)min (16 P, 3| B> P?)

Proof : This is lemma 9.5 (page 139) of Thomas [8]-
A similar result is proved in lemma 9 of Davenport {4].
Even though the result in [8] is proved under the condition:

1
181 < 6aq P it holds, in fact, for | B | < 8q P° -

a ,
Lemma ll: Ifa = Z +8, Péqul’,

1
| <
1Bi< 8 P

and P > 10'%0, then

3>

| T (@) | < (2.86) P¥¥ (log P+3)%

Proof : This follows from lemma 10.
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Lemma 12 : In the minor arc, the following estimate holds :
29 %5
| T (a | < 2.86 P31 (log P+3)%9
Proof : The result follows from lemmas 9 and 11.

§ 's. A lower bound for R (N,)

Let us recall that

P S
eZ‘Klax‘ .

v=v@=S
0

(v o] 5
R(Np)y= f ™ e~ 2Ny g
-~

Define B = B(a) = { P ifla] < P

v2la| "% ifja|> P

Then it is easily seen that | V| <B

1 m . ’
WNYy= f T, e 2™ON" gq
0

Lemma I13: (van der Corput): Suppose f(x) is a real
function which is twice differentiable for A < x < B
Suppose further that, in this interval 0 < f' (x) <} and
/" x>0

B

Then z e(f(n))=J elf(x)) dx+ 49
A<n<B A

Proof :  This is lemma 16 (page 65 of Davenport [3].

For the O — constants see lemma 13 (page 34) of Vinogradov
[10].
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Lemma 14: If N, — PP < N'< N,, then

1

8P m = vy
W(N')=R(NY+ f T, e 3TN gq.
1

8 p3

+29.10% . pM—3+34,

where m = 9 or 100 and P > 10190

1 1
Proof: In — 3 P* <e< 3 pr e have, by lemma 13,
Ariaxt P Iwiaxt
I<x<g<P 0
=Y + 90

hence [T (@) ) —VY"| < (9m) (B+ 5~*
Consequently we have

e-z«iaN — e—z'm'aN0 |

1 (T (a))
m . ’ . ’
L l aaa e—Z‘KlaN _ \‘,m e—Z'RlaN
L me “2RION' _, , —2miaN, |

< 9m (B + 5-* 4 B» (2ra) P31

Hence
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1 -
<2 ((9m) (B + 3)"* + B» 2ma). P7%) da
0

—4
P
<2f  Om(P+ 5+ @nay. P ga
U

1
+2 S OmW2 o=t 4 5)m-1
p—4

3%

4+ 2% P (vza*i ™ .a) da

<100 pM—3TE

Now, we have

1
: g P T p——
W(N) = f (T@). e~ 2™ 4q
1
g pe
1
LT ImiaN’
. (T@))yme da
1
~ 8P*

Now, replace the integrand

(T (a) )m e—2ﬂiaN’

\Pm e——21‘iaN°

of the first integral on the right by

and we have just proved that the error is

m—5-+3/4

atmost 103 P . Hence we havé

.
ap3
W(N') = [ N
1
8 p3

m = 2®iaN da +
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1
1= "gps N
+ f (T (@) _)m e—;wzal\ da
1
gp3
+10%9. PS5 T

Now we replace the first integral on the right by R} (N,).

The error invelved is at most,

o]
2 fI 1" da

gpe
< 257 2am H ga
1
8P
3—711
. =3
< 10°P

< 100 PP ST

and this proves the lemma.

L]

33 .
]and apply lemma 14 with

P
We now take M = [ E
N =N - N — N", 0<N’", N"< M and add the M*

equations. This gives

p3
Lemma I5: We have, with M = [ 5 ]

5z 2 W(N— N — N") =M R(Ny) +
N” NIII
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1

18P —miaN R
+.{' (T (a))™ e > e‘-2maN) da
. . N7
8P

4+29.10°. M+ pM—STi

Lemma 16 :  The integral on the right of lemma 15 is atmost
8 Pm+3.
; —2miaN |
Proof: Since | T(a)I < P, |e | <1,
—2KiaN” 1
Z e o J—
N* . ia

the result is clear. .

Lemma 17: If K, (Ni denotes the number of integer solutions

of the equation x,® + x4 + ...... + x," < N, then
r =1
Kr(N-‘:Tr--Nn"’0~r n,
T(5)
where T, = ( (*) i and 0<QO<1
F(] + —4—

Proof : This is lemma 3 in (page 22) in Vinogradov [10].
Lemmal8: If 9<m< 1],
M M

2 2 W/(N__ Nn _ Nll)
N,:l Nllr:l

PN
|

; > 0.102. AM* N
Proof : We have

M
T W - N —=N")

»

M
= " (Kn (N=N°"—=N") — Ky (N=N"—=N"—1)})
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= Kn(N— N") — Ku(N — N" — M)

m m

4 4
=Tm (N=N") —(N-N"-M).)

m—1
4
— 20m. N
m m— 1
m a1 4
> Tn 3 MN . — 28.m N
= 1
T, "3—MN4
= ™ 10
\ 1
7 =1

> 0.102.M. N
and hence the result.

Lenima 19 :  The following inequality holds

z-—l

IR(No)| > 15 N

Proof : The inequality follows from lemmas 15 and 18.

§ 6: A lower bound for the singular series

Let us recall that the singular series is defined by

— 2ian
” 5 S, m ¢
Sy =Sn;my= 3 s (_ﬂ) . !
qg=1a=1 q i
and the truncated singular series
| —2®ian

q S
Sy(n) £ S, (n;m = 2* 3 (_Lq—)me 1
q<P? a=1 q :
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Here (and elsewhere), the accent shows that the summation
is restricted to only those a’s, for which (g, ¢) = 1.

—2ian
q Sea \M o4
Define An(n;q9) = 3 (——q‘) e 1
Let us define
® i
Xpn,m)= 3 An(n;p’)
i=0

Lemma20: We have S (n;11)> 0.5304 L, (n, 11)

Proof : This is Theorem 4.1 of Thomas [ 8] (page 98)

Lemma 2l : Suppose 1< n< m<15. Then

Xs(n;m) = 16 mc 2=,
n

m!

Mp, = =~
where a nl (m—n)!

Proof : This is Theorem 4.2 of Thomas [8] {page 98"

Lemma22: [f n=23,4,56,7 or 8 (mod 16), then
Xe (1, 11) = 0.42

Proof: If n, = n, (mod 16), then

Xq (1, my = X4 (n,, m). Hence it follows from

lemma 21, that Xgln,ll)>l6.llc 271> 0.42
2

Lemma 23 :  The singular series | S (n) | > 0.222 if m = 11

provided n =2,34,5 6,7 or 8 (mod 16)

Proof . The result follows from lemmas 20 and 22
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Lemma 24 : The truncated singular ;veries
1S:1(m(>022 ifm=11
provided n=2,3,4,5,6,7 or 8 (mod 16)
Proof : We have
IS —S:(m]|

B¢ B

s 4, saar ;
q:p* (ail(s_f) ’ q)l

< 3 s .q'—%
g>p?

'8
< S x2x P 8

< 0.01, since P > 10%°

and hence the result.

§ 6. The estimate on the major arc

Let us recall that the major arc is defined by

a
a— —

q

Q={a}

1 ' .
< 8qPs ’ 1<a<g; (a,9)=1;9<P*

and the integral

Wy (N,) = f(T(@)m. e NG gq



ON WARING’S PROBLEM :- g (41 < 21 19
Ltemma 25 : The following appr_o:girﬁation_ holds :
If a= -‘; + 2z, and| N,- N, | QPH, then
~;2_1yia N,

: . Sao g — 2mizN,
m o -2WING _ ym ( a
(T(a) " e ¥ p ) e

5. m. i-m
4 4
+ 0 (5"”‘ q Bm-1 + 5m 5 .q B"'(ZRZ)P3%)

Proof: We have

ayt
qg-1 2'"1'( P +zqt+y)4)
Tay= 3 2 e
=0 —yg i<t P-pyya *
2Xiay*

q -1 q
= 3 e D, (z), say

y=0

d
since 5 (z(qt + y)*) < §, we have, by lemma 13,

(P —yq?* .
Dsz)= S ' PRl UE DA A
- yqt

1 . 4
= —f e2'mzx dx + 49
70
Hence T a, = ¢y —= 4 4 9q

Sine . . ¥ —1
mece |z < 8qP,,q<p we have zq > 8¢
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Hence l (T@))m — ( ¥ %L )m l

< -4dm.q !4q—% B~ 1

< smt1 ., 4 pn=1

" —7wiN.a \Y -,
Hence (T(_G))’"e “ ' —("’f‘)
a
— 2®i — N, — 2®izN,
e q
m .
& l T e—2‘mN1a_ ( \’, qu )m
a q

a
— 27X ; N, — 2wizN,

a
-2®i — N, — 2®izN
Sa,q \m ; 1 o
(e

5—m Sarqg |m—5
2z gl 4 pgm—-1 I q l
me(z'Kz)PH
S—m D=~
53 5m+1q 4 Bm—1+5m—5q 4

x B™ (imz) P
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‘Lemma 26: We have

1
qv' 8qP' S m.
W,(N)= = s S (\Ir—;"—)x
g<pta=1 _ 1
8q P*

45" g 4 Pm—5+i‘0
Proof : From lemma 25, we have

Wy (N) = S (T(@)" e~ 2 N1 @ g
Q

a
—2mi Ny~ 2mizN,

(5 :

m—>5

45 q B™. (2r2) P3i) dz

Now, using the value of B, the integral in the error term is
<asily seen to be at most

1 S—m 5—m

2 [l 4 pm-Uygm=5 4 g ame Py 4
0
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P-4 zm 5-m
” 2[ (5m+1q 4 Pm—li+5m—5 q 4Pm2ﬂz. PZ%) "y

1 S—m S—m
_ 1 m—1 —
r2f "7l vaiaTh T e S g
P>4
"
s (W21z] 45" onz. PP yar
m
< Sm-q 4 Pm'5+%'

Lemma 27: We have

[o =]
q S,
Wo(N1)= p- % 3’ f (\"“'*l)mx
q<P? a=1 4
— @

a
—2mi —=N, - 2WizN,
e q dz

+9.25".pm5tE 4

where
pt if m= 9
4 = log P if m=10
1 Cif me=y

The result follows almost immediately from lemma 26 ; we
have only to prove that the error in extending the range
of integration to [— o, ] is small.

Actually the error is atmost

0

} q

¥ = 3 J S, m

gart ot 1 (v )| e
8q P*°
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- q m 1 m
< 2 3 > w2z e H"az
qu% a =1 1
8q P*

< 3% Pm—5+<% A.

Lemma 28: If [N, — N, | < P°%, then
- 1
W, (N)) = Si(N) R(N,) + 20 5™ P™ 7517 where

a
g —2mi — N,
S, (Ny) = 3 z’(&g)’"e 4
qu% a=1 q

and R(N,) = S ym o~ 2™izNo
-— 0
Proof : This follows from lemma 27. B

Lemma 29: If (N, — Ny| < P'%, and N, = 2,3,4,5,6,7,
m— 1

or 8 (mod 16) then Wy (N,) > 0.02 N 4 form = 11.

Proof :  This follows from lemmas 19, 24 and 28

§ 8: A lower bound for the number of integers less than

a given integer which are representable as a sum of five
biquadratics.

Lemma 30: Let P be a positive integer and assume P > 100.
Let 5 and C be fixed positive reals. Let [* be a fixed number in
the interval (0, 1) and suppose |

U= {u,u, ... Uy Y is a set of (distinct) integers in
the interval |0, p3+f‘] where

U> c.p3a-£-3
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Then the number of solutions M of the equation
X4+ u=yt 4y |
where u, and u; varyover U and
P x, y<<2P
and x,y have the same fixed parity modulo 2 does not exceed

38 3 B+H) =

gy > L
fc~tpt ip.p *

(1K (). (1997% 1Y

In particular if we take

>

T 3qp

then

Mc—ip ur PRV colak, a5
Here K, (€) is defined by
d,(m)< K, (g)m® forall m>2
and we have
11020, § _ s
{ K, (0.20). (144) }* < (6.2124170) 10
Proof : This is lemma (7.1) of Thomas [8] (page 118).

3
The bound for M when € = Py is given in +7.7) in Thomas

{8] (page 119). The bound for K,(0.20) is given
in page 127 of Thomas [8].

Ltemma3l: Let 1< 1< 16; Let f be a fixed integer in
0, I, wucie I). Let f, bea fixed integer in the set (0, 1,......
1+ 1). Let it be given that, for all integers X > X,, the
number of integers less than X, which are congruent to
f(mod 16) and which are representable as a sum of 1| biqua-

dratics is atleast C & PI . Then the number of integers less than
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Y, which are congruent to f, (mod 16) and which are

2

representable as a sum of (I + 1) biquadratics is atleast

Cl+l P I+1 where

3 1 _
Cppp = 4G (€T @) x 100

R |
and ”1+l—-'z

Provided Y > 10°* . X3+'u
3(L =7~ ¢)

L Frry

Here <€ is any positive number.

Proof : Define 8 =(3 + #) ¢
Note that 3(1 — ¥) —~ 5 =03 + #) 7,
and —4ﬂ1+l.=_4+3p+3

ki

‘We observe that [ Y % 1>X

Choose f, frorﬂ the set (0, 1) such that

fn +f=fl'
34 p

LetU= {x; 0<xs<][Y . 1;

4 4 4 4
x = x +x +x +x
0 1 2

where xi = f, (mod 2) }

Let U = Card U.



26 R. BALASUBRAMANIAN
By the hypothesis,
(3+,“)2!l ' 30 -H) -3
u>cy ¢ - ¢ 4
Let r (m) denote the number of solutions of M = U, + yi,

where uy runs over the set U and

zi<y<22&; y = f, (mod 2)

Then % r(m) >} PU; with P = [ 2t ]
3 .

I+ p
4

m< 16z +y
Also 3 (r (m) )* does not exceed the number of solutions-
m
of x* 4+ up = y* + u; subject to the conditions of lemma 30
Hence 3 (r (m) )2
-1 W —4+3 )
<C -, PP P TY{CTE £ (23)x 105}
'
21> (2rim)?
m 2 (’. lm) )1

r(m)#=0

2

e

s1C . (€ "+ 23 x 15y~ 1, p= BGF-4+3)
l R

3
+

4y
>1Ch (€T 423 x 109 P 1+1

4y
>1 C;I (CI"% +(2.3) X 10°°% ([27] ke
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I+ 4

Choosing Z such that 16Z + Y 4 Y, we have

y
i} o
1> CF G 23 x 10007 Y
m<Y

rimj)=0

I+t

and hence the result.

Lemmma32: Let f be a fixed integer from the set
{0,1,2,3,4}. Suppose n = 2.10%. Then the number of
non negative m = f(mod 16) such that m < n and such
that m is the sum of four fourth powers is greater than

(1_1950) 10—18 B 10-745633624425

Proof : This is lemma 7.4 of Thomas [8] (page 127)

Lemma33: Let f, be a fixed integer from the set
{0,1,2,3,4,5}. Suppose n > 10°°. Then the number of
non negative m = f (mod 16) such that m < n and such
that m is the sum of five fourth powers is greater than

(0.8) x 10-3% , ;0+5168

Proof : The result follows from a direct application of
lemmas 31 and 32. In the notation of lemma 31, we have

€, = (1.195) x 10-
Hence

c (1195 x 10778 % ((1.195 x 10-1%) ~4

4 (2.3) % 105)-1

417 -

> 2.17 x 10-*,
7’[ = 0.745633

Hence » 0.25 + 3-i<ﬁ’&m§;>08'68
1:4= 08 + e = 08!

and hence the result.
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§ 7: Anasymptotic formula

Let N be an integer > 10°° and P = [N%];
Let N, and N, be integers satisfying

N 41
;<N°<N; N,— P &N, <N

1]

Let f be an integer in the set (0, 1, 2, 3, 4, 5) such that
N—-2f=2,3,4,5,6,7 or 8 (mod 16).

Let #,, ¥, go independently over the same sequence of

.N
numbers, which is less than a and can be represented as a sum

of five biquadratics.
Let U denote the number of numbers H.

Lemma 34: Every integer N > 1059 can be represented as a
sum of twenty one biquadratics

Proof : Let I(N) =

J‘l(T(a) oy 3 M+ Mo 2miNG g,
0 RS

It is sufficient to prove that 7 (N) > 0

Now I(M= S + [
Q ™

where Q is the major arc and ® is the minor arc.

By lemma 30
a ' e

= 3 3 Wo(N—= By —P)
Fy Py
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> U2 .(0.02) . N¥
> U*.(0.02). PT
By lemma 13, we have
(@@r . s 3 2T+ B)e —2miNa g,

™ FIP!

do

< max ‘ T(G) I 11 f , s ez'm',”a
as M o M

<max | T(a);**.U
dsm
29 15 11
< (3 P*7 (log P+3)%") .U
We have only to check that
U (0.02) P' > 31, P03 o0 pygpseds @

Now using the value
- U>4% P32672 % (0.8 x 10-2*

we have only to check that

Pe2984 > ]028-65 (}Og P+3)6<%§

Taking P > 100, we see that the inequality is satisfied and
this proves the result.

§ 8: Theascent

Lemma 35: Let [ be an integer > 0;
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Compute L, by

n t '
log L, = (n—l ) (log Ly +nlog?) —nlog»

If all integers between | and L, inclusive are sums of k
integral nth powers, then all integers between l and L., inclusive
are sums of (k + t) integral nth powers > 0.

Proof : This is Theorem 12 (page 711) of Dickson [5].

Lemma 36 : Every natural number in the range [13793, 1043]
is a sum of sixteen biquadratics.

Proof : Yhis is Theorem 3-4 of Thomas [9].

Lemma 37 :  Every natural number less than 10560 is a sum of
twenty one biquadratics.

Proof : In the notation of lemma 36, we take / = 13793;
L, =10; t=5; n = 4 and this proves the result.

§ 9: Completion of the proof

- The proof of the main theorem follows from lemmas 34
and 37.
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