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ON WARING'S PROBLEM : g (4) < 21 

By R. BALASUBRAMANIAN 

~Dedicated to the Memor4 of Dr. 5. 5. PILLAI 1 

·~ 1. Developing the ideas of Chen-jing-run [2] we prove the 
following 

Theorem: 

Every natur'll number is expressible as a sum of atmost 
twenty one fourth powers. 

ln the usual notation, our result reads : 19 ...; g(4) < 21. 
This is au improvement of the result of Thomas [9] who proved 
that g(4) ..;;;;; 22. We recall that the general problem for the kth 
powers in the place of fourth powers is nearly complete, which 
is due to Dickson [5] and Pillai (independent of each other); 
(see "S. S. Ptllai" by K. Chandrasekharan : Jour. of Indian 
Math. Soc. 15 (195l) 11-lOJ for the list of complete works of 
Dr. S. S. Pillai}. Oo the other hand, in the case of G(41. it has 
been proved by Davenport [4] that G(4i = 16. Incidentally. we 

89·39 
remark that Auluck [I] proved that every integer> 1010 is a 
sum of nineteen fourth powers. It was improved by Thomas [8] 
who proved that every integer ;;;:;;, }01408 · 3 is representable as a 
sum of 19 fourth powers (Theorem 12.1; pp. l S2 of [8]). Our 
method improves the bound; but since it does not prove any 
thing substantial, we are not including the proof of this fact. 
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§ 2. Notations : 

Let e (x) stand for e2«ix and 

2«ix 

' eq (x) for e q 

q 2«iax• 

Define Sa,q = 2' e-q- where the accent here (and' 

X= I_ 

elsewhere) shows that the summation is restricted to only
those x for which (x, q1 ,;, 1. 

Let N (> 10°60 ) be a given integer to be represented as 
a sum of 21 biquadratics. Define two integers N 0 - and N 1 by-

Nf} ~ N ~ 2 N. and N 0 - P 31.;;; N 1 <No · 

Define P = [Nl] and T (a) = ~ e ,ax•) 
J.;;;x..;P 

For any real number a, 0 < a < I. there exist two integer's. 
h, q with 1 .;;; h .;;; q ..;; 8 P 3, (h, q) = 1 such that 

1 4
- ; I < s/pa. 

The major arc n = { a I I a - ; /..;; 8q ~s for soiii;e q.;;;pl} . 

and the minor arc ~ = l a I ·1 o- : I< Bq
1
P 3 for some q~. 

pt < q < 8 P 3 J 
The singular series S (n ; m) i~ defined by 

oo q - 2« ian 

S (n) "" S •n, m) = L 2:' (S~")m e q 

q=l a=l 
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The truncated singular series S 1 (n, m) is-defined by 

q - 2'rf ian 

· · "' "'' (·s.,q)m q sl (n) = s I (n, m) ~L L -q e 

q<.Pt a=l 

e is a constant (depending on various parameters), such that 
I 9 I< I. . 

'/~' = '¥ (a) = f p e2'1fiax£ dx 
0 

1 m 2 . N' 
W(N')=f Ta e- 'lfta da 

0 

Wo(N) = f Tm e- 2'1tiaN' da 
n a 

00 m 2"N R (N0l = f 'f' e- 'lfla 0 da 
- C1J 

§ 3. An upper bound for S.,,q 
q 

Let us recall that s., q ~ eq ( ax4 ). 

We then have, 

X=} 
(x,ql= I 

Lemma I : s.,q is a multiplicative function of q 

Proof: A proof can be found in D1venport [ 3] (lemma 6 
in page 31)~ 

Because of lemma J, it is sufficient to b1ve the bound for 

S a . In this direction, we have 
a,p 

Lemma 2: (a) For any prime pr:-2, I s •. p I...;,; (8-l)pf 
where 1l = (4,p- I) 

S 
,_, 

(b 1 For any prime p 'F 2, I .,,, I= p 

If 2..; 11 <. 4 
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(c) For ·any prime p > 2, 
I S , I = P3 I S , _ 4-1 

a,p a,p 

if , > 4. 

Proof.: A proof can be found in Davenport [ 3 J 
(lemma I? in page 42, lemma 13 in page 43, and ' lemma 14 
in page 441. 

One can now get a bound for I Sa,q I from lemmas 1 and 2. 
But, for small primes (namely p .;;;;; 79), we find the bound for 
Sa,,. by actual computation (and the bound is better than the 
one given by lemma 2)and deduce 

. II 

t.emma 3: We have I Sa,ql < (4·3)q'~' if(a,q) = · I. 

Proof: A proof of the lemma can be found in Thomas [8} 
(Theorem 2. I, Page 38).· 

§ 4: A bound for T (a) in the minor arc: 

Let us recall that T (a) is defined by 

T (~) = ~ e (a x 6 J 
l~x..;P 

Minor arc is defined by 

~ = f a I I a - ; I < P.q 'p• for some q, pi<q..;;SP• J 
Lemma 4 : Let d (m) be the number of divisors of m. 

Then ~ ( d (i) )i ..;;;; Ai n V + log n)•i- 1 

l<i<n 

where Ai depends only on j In particular one can take 

1 

Proof: The values of Ai for every integer j is given by 
Mardjanichvlli [7]. The values of .1 1, A,, A. and A! are 
.discussed in Chen [2] (lemma 8J 
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t.emma 5: Let h1 (n) denote the number of solutions of the 

~quation n = 11 11 , I < 11 ..;;;; P; I < 12 <£_ P in integers. 

Then, ~ 
I)< p2 

(h 1 (n) )2 < 21'2 (log P + 3) 

Proof: We have 

<2 

<2 

<2 

..;; 2P1 

< }i u· 
din 

n 
d.;;;;P; d..;;;P 

}i }i 1. 
d1 In d. I n 

d 1<P; 
n 

d.<P; 
n 

-<P --<1' 
dl - d'l. -

}i }j }i 1 
d 1<P d.<dl n<Pd1 

n=O(mod [d~~d.]) 

}i }i Pd. 
d1<P d,<dt [dt. d.] 

}i ~ ~ Pd2l 
d1<P II d 1 d.<dl dld. 

-~ 
(log P+3). 

'Lemma 6: Let h1 (nl denote the number of solutions of the 

.equation n = 11 z., l < 11 < P; I ~ z. < P 1 /4 in integers. 

Then 

~ 
n<P1 /4 

ps 
(h. (n) )£ < 12 (log p + J)ll 

Proof: We have . 

~ (h1 (n) )£ = ~ ( 
n <PIIJ4 n<P3J4 

}i 1 
II n 

n 
I<P; - < P 1/4 
- l- ' ' 

)' 
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< ~ ~ ~ 

12</, 1L<l. l~<la 

< 6P" ~ ~ ~ ~ 

l.;;;;;l 1 .;;;;;P ddlt 1, <. II d.fll I, 
d; 

< 6P" ~ ~ ~ ~ 
I-::1 1 <P d 1 11 1 1.< /1 d,J/ 1 1~ 

d 

"·· 
< 6P• ~ ~ ~ 

1 ~ l1 < P d, I /1 /2 < !_t 
d 

< 6P• (log P + 1) ~ ~ 
l < l1 < P d1, I /1 

~ d,2(f,),d26/2) -d1 -
1. < /1 /1 

d 

< 2P• (log P + 1) __ -~ ~ d• (I d : (log P + 2)8
' 

1 < [1 < p d 1 J, 11 

< 2P 2 (log P + 2)! ~ d· (ld 
1, <.Zl < p 

< p,a (log p + 3.)'1 

12 
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Lemma 7: Let a - ~ + BP~ • Then; if P > 105o, 
q . q 

we have 

) 0 
< SOP T provided 8P8 > q > p ; 

Proof: . Let q' = C.24~ q) • The sum over n can be broken 

( 
ps '> 

into no~ more than 
4
q' + i ) parts, in each of which n 

runs over atmost q' consecutive integers. Let us consider the 

typical sum say ~ min ( P. 
B < n < B + q' 

'1 ). 
2 i 1 24 an II I • 

( P
q' + 4 ) value~ Then it is easily seen. that, there are atmost ... 

1 
_for n for which 2 11 

l4oa n II ;;;;.. P and these values of n 

contribute atmost ( ~ + 4) P
413 

• q' pf/J + 4 p
4

/
3 

to the sum. The remaining values of n . contribute 

~ ( q' )4/'3 pl/3. 
q' ! - < 4 q' 

m;;;;.. - m 
. P 

l . min c· p _ __ ! ------ \413 <.. 5 q' pl/3 +4P 4/3 
B < n < B + q· ' 2 II 2~ a n ! I f 

Hctn~ the. total sum is atmost 

(5q' P
113 +4P4/~ ( :; + 1) 

If 
<SOFT 
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Lemma 8 : If h. (n) denotes the number of solutions of the 

equation n = 11 11 , 1.;;;;; 11 · .;;;;; P; 1 < 12 <; P•f4, in integers • 
.then 

( 
I • ) 

~ h1 (n) min P, -
n.;;;;;P•t4 21124an JI 

18 li 
.;;;;; 11 p-r (log p + 3fr. 

a 9 
where a = - + - - · P:;;;.. 1oao and P .;;;;; q ..;;; gpa q . gpa q ' 

Proof: If P ~ q..;;; 8P11
, ~hen 

~ h 1 (nl min ( P, 
1 

) 
n < ps/4 2 II 24 an II 

' ( n..; ~· (h •• (n) )' )! ~..;;;~a (min (P, 2 II 2 ~an II ) ) !)f 

4 4 

and the result follows from lemmas 6 and 7. 

.Lemma 9: 
a 

Let a= - +z; (a,q)-1; P> 10100
, P<q<.8 p• 

q 

I 
I z I < Sq ps . Then 

T(a). 1 i e2'1':iax" I <; (2.86) pl\ (log P+3lH 
X=l 

Proof: Let l1- x- y; f(x, y) = 4x3y+6x•y+4xy• 

h (x; y; z) • 12 xyz (x+y+z). 

h 1 (n) and hJ (n) are as definedin lemmas 5 and 6. 

Then 

I T(a) I • ..;;;; P+21 
p p 2 . ( • 6) 
.1: 1: e 'K '" x - y I 

x=l Y=l 
y¢x 
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p I P-1 2 . f l .:;;;;; P+2 ~ ~ e 'Ftla (x, ) 

ki x=l 

= P+2SI, say 

I Sd • .:;;;;; ( : 1 ) ( ~ \ 
1=1 !::1 

P-1 
~ e21'tiaf(x,l 

X=l 

= P 3 + 2PS say 

Now 

Is I < ~ h 1 (n) 
l<;;n.:;;;;P" > I p - ~~ - z. 2 . h( 1 l I ~ e 'Ftla. x; I• .) 

X= I 
4 

Hence I s1•.:;;;;; ( ~ h 1 (n) )• 
1 < n < P•t4 

Now using lemma 5, 

"I Sl" < 2Pa (log P + 3) ~ max 
1 < n < P•/4 11 1. - n 

p 
( p + 2 ~ 

la .. 1 

< 2P" (log P + 3) ~ 
1.;;;; i.;;;; P2/4 

p ( 1 ( P + 2 l min . p~ 
I == 1 2 II 24 a li II 
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< 2P• (log P + 3 ) X 

and using lemma 8, 

and this gives 

~9 1& 
l T (lt) 1 < (2:86) PH. (Jog p + 3,n 

a I 
Lemma 10: !fa = - + /),where q < 1:._. I {3 I < --s q - 8q p ,. 

and P ;;;;.. 6, then 

I T(a) I < q-! (1 +log q) min (16 P, ! 1 /31 -1 P- 3
) 

Proof: This is lemma 9.5 (page 139) of Thomas [8]· 

A similar result is proved in lemma 9 of Davenport [4J. 

Even though the result i~ [8] is proved under the conditioD<-

1 1 
I 13 I ~ 644 pa it holds, in fact , for I {3 I < -

8
-q-p-a-. 

Lemma II: If a= : +/3, pl~q<P, 

1/3 \ < Sq 
1
p• , and P ;;;. JOIO O, then 

t9 15 
i T (a) I ~ (2.86) pu 'log P+3)n 

Proof: This follows from lemma 10. 
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Lemma 12 : In the minor arc, the following estimate holds: 

'9 i' 1 T (a , 1 < 2.86 PBI (log P + 3) q 

Proof: The result follows from lemmas 9 and 11. 

§ 5. A lower bound for R (N 0 ) 

Let us recall that 

00 

R (No) = f 'I'm 
-00 

Define B = B (a) = p if I a I ,;;;;;; .p-4 

..[2 I a I -1 if I a I> P- 4 

Then it is easily seen that I 'I' I ~-B 

t m 2 . N' 
W ,N') = f T e- 1tza da 

0 a 

Lemma 13: (van der Corput): Suppose f(x) is a real 

function which is twice differentiable for A < x < B 

Suppose further that, in this interval 0 < f' (x) < i and 

r (x) > 0. 

B 
Then 2: e (/(n)) = f e (/(x)) dx + ,;;0 

A<n<B A 

Proof: This is lemma 16 (page 65• of Davenp .> rt [ 3] . 
For the 0 - constants see lemma 13 (page 34) of Vinogradov 
[ 10] . 
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- 1 
1- 8 p• m . , 

W (N')- R (N
0

): + f T
4 

e~~'ltnsN d4· 
' 1 

8 pa 

+ 29. lO• . pm-5+3/4, 

where m = 9 or 10 and P > 10100 

l 1 
Proof: lo -

8 
p• <;;4<; 

8 
p• we have, by lemma 13, 

2 . • p 2 . 4 
T-(4) = ~ e 'ltz4 x =f e 'lttctx dx+99 

l;o;;;;x<;P 0 

='/'+90 

bence llT (4) )18 - 'I'm I < (9 m) (B + S)m- 1 

Consequently we have 

m 2 · N' - t rr e- 'ltza 
- 4 

Hence 

f 
1 

I 
spa. 

8 p• 

rrt 
IT G · 

~r,m -2'1tictN' -..,. e 
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<. 2 fl ( (9m) (B + 3)"'- 1 + Bm (27tct). p '3!t ) da. 
0 

p-4 
< 2 f (9m (P + 5)m- 1 + (27tct) . pm+ 31) da. 

u 

1 
+ 2 f (9m {v2 a.-i + S)m- 1 

p-4 

3!1 + 27\' p 4 

Now, we have 

I 
8 p• 

W(N').,.. f 
I ---8 pa 

1 
1 - 8P3 

13 

+f 
I 

- 21fictN' 
(T {a.))"' e da 

Now, replace the integrand 

(T{a.) )"' e-2'1\'ictN' of the first integral on the right by 

-27tictN . 'I'"' e 0 and we have JUSt proved that the error is 

atmost 103 p"'- 5+314. Hence we hav~ 

1 
8P3 

.W(N') = f 

8P3 

, 1,m -21fictN8 d 
"1' e a+ 
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+f 
1 

gps 

1 
gpa 

R. BALASUBRAMAN IAN 

(T (a} tz e- 27t iaN' da 

Now we replace the first integral on the right by R;(N0 ) •. 

The error involved is at most, 

00 
2f 

I 
8P3 

00 

< 2 f 
1 

gpa 

3m 
4 - 3 

~ 103 p 

and this proves the lemma. 

p 3~ "] 
We n ow take JH =~ [ 2 _ and apply lemma 14 with 

N' = N - N" - N'", 0 ~ N", N'" ~ M and add the M• 

equations. This gives 

p3!] 
Lemma 15: We have, with M = [-2. , 

l l W (N- N" - N"') - M• R (N0) + 
N" N"' 
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1 
1- 8P5 

+f 
I 

gp• 

+ 29. 103 • M' Pm- 5+! 

IS. 

Lemma 16 : The integral on the right of lemma 15 is atmost 
8 pta+3. 

Proof: Since IT (a) I< P, 1 e- 27'\ia N 1 ~ I, 

I 

i! a II 

the result is clear. , 

Lemma 17: If K, (N i denotes the number of integer solutions 
of the equation x 1• + x1 " + ... ... + x,n..;; N, then 

r r-l 
n n 

K, (N1 = T, . N - 9 . r . N , 

(f(!)' 
where T, = -(- .- ---,----) and 0 < 9 <: 1 

r I-+- -
. 4 / 

Proof •' This is lemma 3 in (page 22) in Vinogradov [ 10 ]. 

Lemma 18 : If 9 < m < 11, 

M 
~ 

N"=l 

M 
~ W(N- N"- N"') 

N"'=l 

Proof: We have 

M 
~ W ( N - N• - N") 

N"=l 

M 

m 

> 0.102. M" • I'•?;-

= ~ (Km (N-N•-N"') - Km (N-N"-N"'-1 ) ) 
N"=l 
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= Km (N - N") - K, (N - N" - M) 

m 

4 
= T m ( (N - N") 

m 

m 

4 
~ (N- N"- M). ) 

m -· 1 
-~ 

29m. N 

- 2().m.N 

4 

m- 1 

4 

m 4 
- 1 

> Tm lO M N 

m 
4 - I 

> 0.102.M. N 

and hence the result. 

Lemma 19 : The following inequality holds 

m 
-- 1 
4 

I R (N0 ) I > -i-. N 

Proof: The inequality follows from lemmas IS and 18. 

§ 6 : A lower bound for the singular series 

Let us recall that the singular series is defined by 

- 2Ttian 

a q ( sq.,q )m. e S (n> = S (n; m) = ~ l' 
q=l a=l 

q 

.and the truncated singular series 
- 2'1tian 

q ( s.q,q )m ... S 1 (n)doS 1 (n;m}= ~~ l' .. 
q.;;;;.P a= 1 

q 
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Here (and elsewhere), the at;cent shows that the summation 

is restricted to only those a's, for which (a, q) = l. 

-21fian 

Define Am (n ; q) = i, ( So~ )me q 
a=l q 

Let us define 

00 • 
I X, (n, m) = ~ Am (n ; p ) 

i=O 

t.emma 20: We have S (n; II)> 0.5304 X. (n, I 1) 

Proof: This is Theorem 4.1 of Thomas [ 8] (page 98) 

Lemma 21 : Suppose 1 c;;; n < m ~ 15. Then 

Xs (n; m) = 16 me 2-m, 
n 

m! 
where me -11

- n! (m- n)! 

Proof: This is Theorem 4.2 of Thomas [ 8 J (page 981 

Lemma 22 : If n = 2, 3, 4, 5, 6, 7 or 8 (mod 16), then 

X, (n, 11) ~ 0.42 

Proof: If n 1 = n. (mod 16), then 

Xs (n1, m 1 = X, (n., m). Hence it follow:> from 

lemma 21, that Xs In, 11);;;;.. 16 .lle . 2 11 ;;;;.. 0.42 
2 

l.emrna 23 : The singular series 1 S (n) 1 > 0.222 if m = ll 

provided n = 2, 3, 4, 5, 6, 7 or 8 (mod 16) 

Proof. The result fol!ows from lemmas 20 and 22 



.8 R. BALASUBRAMANIAN 

Lemma 24 : The truncated singular series 

I S 1 (n) I > 0.22 if m = 11 

provided n = '1, 3, 4, 5, 6, 7 or 8 (mod 16) 

Proof: We have 

I S (n) - S 1 (n) I 

( . I s •.• ") < ~ ~' -

q;;;;.pi a-1 q 

' ..;: ~ s1l.q--. 
q>pt 

a 
..;: 511 X 2 X P ~ 

..;: 0.01, since P ;a. 1 Q3t 

and hence the rrsult. 

§ ,;. The e~timate on the major arc 

let us recall that the major arc is defined by 

n = {a I I a- -i 1..;: 8q'P· ; I <:,a..;:q; (a,q)= l;q._;pl . 

and the integral 

w. (N I) = f (T (a) ;m . e- 2'1tiNla da 
n . 
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Lemma 25: The following approx.imation holds: 

If a = !!_ + z, and I N 1 - N 0 I .;;;; P3!, then 
q 

- 2"ia N 1 - . - ·· ··~ - 2'1CizN
0 

2 .N (S .. q,q )m q . (T(«) 1m . e- 'rt1 ,a = '/t m e 

Proof: We have 

q -1 
T .«l = :S 

Y=O 

2'1Ciay" 
q -1 q 

= :S e D1 (z) , say 
Y=O 

d 
since dt (z (qt + yj4) < !, we have, by lemma 13, 

D. \ZI = 

1 p 
=-f 

q 0 
2 . 4 

e nzzx dx + 40 

H 
s.,q 

ence T a, = 'It -······- + 4 Oq 
q 

1 i -! 
Since I z 1 .;;;; · Sq ps-, q ..;;; p we have zq ;;;;. 8q 
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Hence 1 (T ~a) )m - ( '/' s~.q )'" I 

· m 
T 

" 

5-m 
4 

5- m 
4 

~· 4m. q r4q-i BJm- l 

< 5m + I. q 

5- m 

4 

a 
- 21ti -- N - 21tizN0 q I 

e 

e 

S~q I m- 5 

x Bm (21tz) p3! 

5- m 

8 m - 1 + 5m- 5 q 4 

x Bm (:'ltzl p3i 
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Lemma 26 : We have 

q 
~ l;' 

Ia=1 q<p 

f 

I 
8q p• 

I 
8q p• 

a 
-21ti N 1 ._. 2'1CizN0 

e q dz 

5- m 
---

+ 5m q 4 pm - 5 + 1. 9 

Proof: From lemma 25, we have 

Wo (N) = f (T(a.l )m e-2'1CiNI ada 

n 

q 
+9 ~ ~I 

lt q<p- 0= 1 

1 
8qP3 

f I 

' 

5-m 

dz 

+ 5m-5 q 4 Bm. (2'1Cz) p3l) dz 

Now, using the value of B, the integral in the error term is 
easily seen to be at most 

1 ~~1n 5-m 

2 J(5m+l q 4 B m-11+5m-5 q4 Bm. 2Kz.P31) dz 

0 
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p-• 5-m 5-m 

.;;. 2 J (5m+lq 4 plf'l-l1+ 5m-5 q 4 pm 2'1tz. p3t) dz· 

0 

I 5-m 5-m 

-t- 2 J (5m-Iq 
p-~ 

4 ~ m-l · 
(v'2J z I -4) + sm-5 q 4 

5 m 

.;;;;; 5m • q 4 pm- 5 + i-. 

Lemma 27: We have 

-00 

where 

a 
-2~i-N 1 - 2'1f.i::N 0 

e q dz 

A log P 

if m = 9 

if m = 10 

if m ='I 1 

Tbe result follows almost immediately from lemma 26 ; we 
have only to prove that the error in extending the range 
of integration to [- oo, oo] is small. 

Actually the error is atmost 

2 ~ 

q.;;;; pi 

q '>0 

~, f 
a= 1 1 

Sq ps I ( Sa, q ) I m v-q-- dz 
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q 
..;;; 2 ~ ~· 

q,.;;; pl a= 1 
8q p• 

11 
Lemma 28: If I N 1 - N 0 I ..;; p·•, then 

Wo (Nd = S 1 (N1) R (N0 ) + 205m Pm -S+-t where 

a 
q - 2ni - N 1 

S 1 (Nd = ~ ~' ( s., q )m e q 

q,.;;; pl a= 1 q 

and R (N
0

) = f 00 'I'm e- 21(izNo dz 
-CCI 

Proof: This follows from !emma 27. 

2J 

11 
Lemma 29: If I N 1 - N 0 I ,.;;; p· •, and N1 - 2, 3, 4, 5, 6, 7, 

m- 1 

or 8 (mod 16) then W 0 (N 1) > 0.02 N 
4 

form 11. 

Proof: This follows from lemmas 19. 24 and 28 

§ 8 : A lower bound for the number of integer~ less than 
a given integer which are representable a~ a sum of five 
biquad ratics. 

Lemma 30: Let P be a positive integer and assume P :> 100. 
Let a and C be fixed positive reals. Let f' be a fixed number in 

. the interval (0, I) and suppose 

U = { u 1, u, .••••• u
0 

} is a set of (distinct) integers in 

the interval [ 0, p 3 + f' ] where 

u ;;;;. c . p3 (1- f''- a. 
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Then the number of solutions M of the equation 

x' + Uj c: y .. + Uj 

where u~ and Uj vary over U and 

P < x, y .,;;;; 2P 

and x, y have the same fixed parity modulo 2 does not exceed 

3~ ~ 
3 31'-4+ - 1 

C-"4p• u• P 4 (C-"I"P 4 +i·P 

(3+fl) e. 

4 

{ ;\- K
9 

(e.). (192)-e} ~) 
In particular if we take 

~ 
e. = 3+fl , then 

M.;; c-i p• u• p31'- 4+~ { C -l +iHK.(e.).(I92)-e.)!} 

Here K. (e.) is defined by 

e. d .. (m).;;;;; K 1 (e.) m for all m:;;;;.. 2 

and we have 

{ K1 (0.20). (rh) 0·20 } { ,;;;;; (6.2124170) 10• 

Proof: This is lemma (7.1) of Thomas [ 8] (page 118). 

The bound for M when e.= 
3
:fl is given in •7.7) in. Thomas 

(8] (page 119). The bound for K,(0.20) is given 

in page 127 of Thomas [ 8 ]. 

Lemma 31 : Let 1 .;;;; I < 16; Let f be a fixed integer in 
(0, 1, .••••. /). Let / 1 be a fixed integer ;, the set (0, 1, ....•. 
1 + 1). Let it he ~iven that, for all integers X> X 0, the 
number of i'Jtegers less than X, which are congruent to 
f(mod 16) and which are representable as a sum of I biqua-

dratics is at/east c1 . PI • Then the number of integers less than 
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Y, which are congruent to 
.representable as a sum of 

f 1 (mod 16) and which are 
(/ + 1) biquadratics is at/east 

C Pi+ 1 where 
1+1 

3 1 

c I+ 1 = T4. c1"' <C1 --. + (2·3) x to•)-1 

3 "I 
and 

4 

Provided Y ;:;;.. 10• . x3 + f' 
3 (t - , r ·· E) 

fl =-----
3+v,+e 

with 

Here E is any positive number. 

Proof: Define ~ = t3 + fl) E 

Note that 3 (I - f')- ~-= (3 + /l) "1 

and - 4 vI+ 1 -= - 4 + 31' + 8' 

3+1' 

We observe that [ Y 4 
] >X 

Choose f. from the set (0, I) such that 

fs + f = f1• 

3 + fl 

Let U = { x ; 0 ..;,; x ~ [Y 4 1 ; 
4 4 4 4 

x = x +x +x +x 
0 1 2 

where x; = f 1 (mod 2) } 

Let U = Card U. 
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By the hypothesis, 

(3 + P) vI 
4 

U > CzY 

3 (l - fl) - () 
4 

Let r (m) denote the number of solutions of A-f = uh + y 4
"' 

where uh runs over the set U and 

~ .1 
z~ ~ y ~ 2z4 ; y = f. (mod 2) 

Then ~ r (m) ;;;;;. l P U; with P = [ zt ] 
m 

'3 + p 

m ~ I6z + y 
4 

Also ~ (r (m) )• does not exceed the number of solutions-
m 

of x4 + uh = y4 + Uj subject to the conditions of lemma 30. 

' 

Hence ~ (r (m) )2 

~ I > (~ r lm) ,• 
111 ~ (r (m) )" 

r (m) ~ 0 

i 
;;;;.{-C 

I 
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3+/l 

Choosing Z such that l6Z + Y 4 = Y, we have 

~ I ;;;;> "&14. Cf (Cl- i + (2.3) X t0•)- 1 ~ l+l! 
m.;;;;;Y 

r(m) ;t. 0 

and hence the result. 

Lemma 32 : Let f be a fixed integer from the set 
{ 0, I, 2, J, 4 }. Suppose n;;;;, 2.JOH. Then the number of 
non negative m = f(mod 16) such that m .;;;;;; n and such 
that m is the sum of four fourth powers is greater than 

(1.1950) 10-18 • n0-745533524425 

Proof: This is lemma 7.4 of Thomas [ 8] (page 127) 

Lemma 33 : Let f 1 be a .fixed integer from the set 
{ 0, 1, 2, 3, 4, 5}. Suppose n > 1080

• Then the number of 
non negative m = f (mod 16) such that m .;;;;;; n and such 
that m is the sum of five fourth powers is greater than 

(0.8) X }0-•1 • nO·Slo8. 

Proof: The result follows from a direct application of 
lemmas 31 and 32. In the notation of lemma 31, we have 

c1 = (1.195) x JO-ls 

Hence 

Cl+l = "«1'i. (1.195 X I0- 18) ~- ( (1.195 X 10-1~) -l. 

:> 2·17 X IO-st. 

vI = 0·745633 

+ (2.31 X 10 5)- 1 

3 X 0· 745t113; 
Hence v 1 + 

1
""' 0·25 + 

3
_
945633 

;;;;. 0·8!68 

and hence the result. 
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§ 7 : An asymptotic formula 

i 
Let N be an integer > 10~6° and P = [N"~"]; 

Let N 0 and N 1 be integers satisfying 

N 41 
2 .;;;; No < N; N 0 - P-,; < N 1 .;;;; N 0 

Let f be an integer in the set (0, I, 2, 3, 4, 5 t such that 

N - 2 f = 2, 3., 4: 5, 6, 7 or 8 (mod 16). 

Let f-1 1 , fL. go independently over the same sequence of 
. N 

numbers, which is less than 4 and can be represented as a sum 

~f five hi quadratics. 

Let U denote the number of numbers fl. 

l.emma 34: Every integer N > 105M can be represented as a 
sum of twenty one biquadratics 

Proof: Let I (N' 

f\T(a) }11 ~ ~ e2'1{i(fL1 + fl 1 )a e-21tiNa da 

0 flt 1'. 

It is sufficient to prove that T (N) > 0 

Now /(N} = f 
n 

+ 

where n is the major arc and (Vi is the minor arc. 

By lemma 30 

J<r(a) )11 ~. ~ e21(i(fL 1+f'.)a e-2'1{iNa da 
n 1'1 fl. 

4 ~ Wo (N- flt -P.2) 
fL 1 1-'2 
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v 
> u2 . (0.02) . N 6 

> u• . (0.02) . P 7 

By lemma 13, we have 

J<T(a))". ~ ~ e21ti(fl,+fl,)a e-21tiNa da 

M fll fl, 

.;;; max I T(a) I 11 

U£M 

< max I T (a) j 11 
• U 

U£M 

tt 1~ 11 < (3 pn (log P+3)"~ ) . U 

We have only to check that 

10- 1 lS 
U 2 (0.021 P 7 > 311 • P n tlog P+3)a+U U 

Now using the value 

U > i p3·2572 x (0.8 1 x 10- 21 

we have only to check that 
II 

po•29s4;;;;. J02S·55 (log P+3)a .n 

29 

Taking P :> 10140, we see that the inequality is satisfied and 
this proves the result. 

§ 8 : The ascent 

Lemma 35 : Let I be an integer ;;;;. 0 ; 

I 
l 

Let v = 
n 

n 

n-1 
L,. > I; 'v L 11 ) ;;;;. L 0 • 
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Compute Lt by 

log L, = ( n n 1 Y (log L0 + n log v) - n log " 

If all integers between I and L 0 inclusive are sums of k 
integral nth powers, then all integers between I and L 1 , inclusive 
are sums of (k + lJ integral nth powers > 0. 

Proof: This is Theorem 12 (page 71l) of Dickson [5]. 

Lemma 36 : Every natural number in the range [13793, JOH3] 
.is a sum of sixteen biquadratics. 

Proof: 1'his is Theorem 3·4 of Thomas [9]. 

'Lemma 37 : Every natural number less than tQ5M is a sum of 
twenty one biquadratics. 

Proof: In the notation of lemma 36, we take I = 13793; 
L 0 = 10143 ; t = 5 ; n = 4 and this proves the result. 

§ 9: Completion of the proof 

The proof of the main theorem follows from lemmas 34 
:and 37. · 
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