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Abstract—In smart grids, the expected increase of electrical
vehicle (EV) penetration will impose sizeable charging load,
which can critically overburden the distribution network (DN)
if the delivered power is non-pragmatically aggregated and
induce significant impacts on various important existing grid
assets. Among them, the residential distribution transformer is
considered as one of the most important components in the grid.
The ageing of the transformer is closely related to the temporal
evolution of the hot-spot temperature (HST), which is induced by
the operating load level history. We propose an optimal control
approach to obtain a new EV charging algorithm: the novel
aspect of this algorithm is that it takes inertial behavior of
HST into account, which is the key parameter to capture the
ageing. Though our formulation closely resembles to the linear
quadratic control problem that includes costs induced from the
state of the transformer and its present charging load, the natural
constraints which are imposed to the instantaneous charging
level (saturation constraints) induces intricate complicacy for the
analytical solution. Thus, we follow the Pontryagin maximum
principle approach to obtain the optimal charging policy and
resort to numerical methods to compute the optimal charging
trajectory. Numerical results allow us to evaluate and compare
the performance of the proposed algorithm with various existing
benchmark charging policies.

Keywords—distribution grid, electric vehicle (EV), smart grid,
transformer ageing, dynamic control

I. INTRODUCTION

The automotive industry is heavily investing in plug-in
hybrid electric vehicles (PHEVs) and fully electric vehicles
(EVs) mainly in order to reduce the CO2 emissions and oil
dependency of current automotive technology. The vehicle
electrification - 13% of the vehicles will be full-electric and
23% will have an alternative powertrain by 2020 according to
[1] - will have significant impacts on the power grid due to
the increase in electricity consumption [2]. The charging of
EVs has an impact on the distribution system because these
vehicles consume a large amount of electrical energy and this
demand of electrical energy can lead to large and undesirable
peaks in the energy consumption [3].

One of the underlying critical issues is that the EV charging
power is comparable to the maximum power corresponding
to a typical (household) consumers subscription to an energy
provider. In France, for instance, the former is typically about
3 kW at home while the latter is about 6 kVA, indicating the
potential impact of charging EV. In this paper, this impact is
considered as a linear combination of residential distribution
transformer ageing and the distribution Joule losses [4]. As
explained in [5], [6], optimizing a long-term cost such as
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the residential transformers lifetime becomes an important
concern in the presence of EVs. Indeed, transformers might
have to operate in a regime where ageing is accelerated.
Moreover, according to [7], about 70% of transformer failures
occurs because of this ageing and not because of fated events.
Concerning Joule losses in the distribution network (DN), they
represent the most important fraction of power losses in the
whole energy network; according to [8], in France, two thirds
of power losses is due to the DN.

In the recent literature, a number of scheduling schemes
for optimal EV charging have been proposed, e.g. [9], where
typically load reshaping is performed by peak shaving. In all
these approaches instantaneous load level is accounted whereas
the ageing cost requires a dynamical approach because of the
historical load dependence. In [5], the ageing cost is studied
for EV charging via simulations. To capture the temporal
property of ageing cost, we follow the dynamic optimal control
method, the Pontryagin maximum principle (PMP), to obtain
the optimal EV charging schedule.

Compared with the existing literature, this paper makes
the following main contributions: i) our model explicitly takes
into account the dynamic property of hot-spot temperature
(associated with thermal inertia) of the distribution transformer
which depends on the load level history besides the instan-
taneous load; ii) we provide a formulation rooted in optimal
control using Pontryagin maximum principle, which entails the
optimal charging algorithm that minimizes the cost including
physical and ageing components. To our knowledge, we are the
first to consider the distribution network ageing cost with its
dynamic behaviour and provide an optimal control approach
to obtain the optimal EV charging policy.

The remainder of the paper is structured as follows: we
introduce the model in Sec. II and propose the optimal control
based policy using PMP approach in Sec. III. We then eval-
uate the performance of relevant EV charging algorithms via
simulation in Sec. IV, and conclude in Sec. V.

II. PROPOSED MODELING

Consider a residential electrical DN in which a set of
households and EVs are powered by an electric transformer in
a community as in Fig. 1. The transformer (typically medium
to low voltage) load has two components: the household load
and the EV load. The electrical network operator is assumed to
precisely predict the inelastic base load profile of the household
and negotiates with the EVs to schedule their charging profiles
over the T time slots of length ∆T in future.

Increased persistent peak load due to additional PEVs could
stress the residential transformer and degrade the transformer
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Fig. 1. Residential DN topology and load profile over a day (a typical case)

life. For example, if a transformer is overloaded during a time
slot which leads to a HST larger than 980C, the IEEE standard
level, then its life expectancy will decrease exponentially [7].
A PEVs penetration level as small as 10 % could overload
overhead distribution transformer [10] and increase distribu-
tion infrastructure costs. Transformers are among the most
costly components in the medium/low voltage distribution
infrastructure [2] and, therefore, transformer ageing is the
key consideration for taking into account the impact of PEVs
charging. The negative impact of PEVs can be minimized if
smart charging methods can be deployed taking into account
the distribution network cost [5]. In the following, we describe
the detailed model of distribution transformer ageing and
distribution network Joule losses.

Physical Modeling of Distribution Network Cost

Accurately estimating the impact of PEV charging on the
distribution infrastructure requires to account both for the
transformer life degradation as well as the physical losses in
the topology dependent circuitary losses (Joule losses) [4].

Residential Transformer Ageing: Transformer ageing or
deterioration results from insulation breakdown, which is di-
rectly related to the hot-spot temperature (HST) [11], [12],
the most influential parameter (Annex G IEEE C57.91-95) 1.
The estimation of HST at time t requires various other physical
characteristics, e.g. ambient temperature, thermal capacity, loss
ratio and thermal inertia [13]. Abstracting out the other factors,
[13] suggested a model of HST as a non-linear function of load
level, given by

θt = FHS
t

(

L[t]

)

(1)

where L[t] = (L0, L1, ..., Lt) represents the sequence of total
transformer load levels up to time t; the quantity Lt is related
to the charging power levels at time t. The measured time is
normalized in the unit of time-slots. From [13, eq. (8)], [4]
and with some approximation, we can express the temporal
evolution (the inertial property) of the HST by the following
simple and tractable form of difference equation:

θt+1 = αθt + βtL
2
t (2)

where α and βt depicts the thermal inertial constant and inertial
load loss factor (refer [13] for more details). For a typical
residential transformer, the operating values of α and βt lies in
the range of (0, 1] . Henceforth, we assume α > 0 and βt > 0
for the purpose of our analysis. A non-inertial version of (2)
is considered in [4] in which HST was given as θt = βtL2

t .

The transformer ageing acceleration factor (ageing in short)
at time t can be expressed as an exponential function of HST
as At = ea1θt+a2 . Typically, when operated close to nominal
load, a Taylor series expansion (at θt ! a−1

1 > 0 and a2 ≈ 0)
yields tractable form of the transformer ageing (see [12], [4]
for more details)

1Typically, the HST also depends on ambient temperature history, which is
an uncontrolled exogenous parameter (summer or winder, etc.) [12].

At = 1 + a1θt +
1

2
(a1θt)

2 =: f(θt). (3)

Distribution Network Joule loss: We consider both the
losses: i) in the distribution transformer; and ii) over the
distribution lines between the transformer and the active elec-
trical receivers; which include various electrical devices and
the EVs (an example network of Fig.1). We assume that
the transformer losses, e.g. iron losses, no-load losses, are
negligible in magnitude as compared to line losses (for both
fix frequency and voltage analysis). This assumption is also
motivated by the fact that the transformer short circuit power
is much more than the EV charging power. Moreover, the line
losses are in proportion to the additional load of the EVs.
Assuming constant current over the time-slot t ∈ T , Joule
losses (the mean square losses) are expressed as

J(Lt) = Req

(

∑

i

Li
t + Lb

t

)2

(4)

where Req = Rtransfo +Rline is the equivalent resistance com-
posed of transformer and line resistances (topology dependent),
and Lt =

∑

i L
i
t + Lb

t , the aggregated transformer load.

III. OPTIMAL EV CHARGING PROBLEM FORMULATION

Consider the set of EVs, denoted by I = {1, · · · , I},
associated with the residential distribution network. Each EV
can charge after it plugs in and needs to chafe a pre specified
amount of electricity by its deadline. For instance, an EV may
plug in for charging at 9:00 pm, specifying that it needs to be
fully charged by 6:00 am, or reach at least 70% state of charge
(SOC) by then. Assume, during a time slot the charging rate of
an EV is constant, denoted by Li

t (often called EV load level).
Let Lb

t denote the base load at time slot t. The key quantity to
evaluate the impact of the charging policy on the distribution
network is the total transformer load or consumed power.
The T + 1−dimensional sequence of the total load levels is
L := (L0, L1, · · · , LT ) and charging rate at which current is
delivered to the ith EV is denoted by Li = {Li

0, · · · , L
i
T } (we

refer as Li
(.) at times).

Each EV i ∈ I can only charge after it plugs in(arrival)
at ai and before its deadline(departure) di, i.e. Li

t = 0 if t /∈
[ai, di]. We consider continuous level charging for a time slot
during t ∈ [ai, di], i.e., an EV can be charged at any rate
between 0 to maximum charging rate Lmax (but constant Li

t in
a time-slot) that is determined by the charger of the individual
EV. For instance, for single-phase Level I charger Lmax = 1.4
kW and for Level II charger Lmax = 3.3 kW [14]. Defining
the charging profile upper bound L̄i

t for a time slot t ∈ T as

L̄i
t =

{

Lmax if ai ≤ t ≤ di,
L otherwise

where L denotes the minimum charging rate. Without loss of
generality, we assume L ≥ 0 reflecting nonzero load offered
by charging circuitry setup at no charging load. We consider
same maximum charging rate for all EVs for simplicity (can
be easily extended), i.e., 0 ≤ L ≤ Li

t ≤ L̄, t ∈ T ,
i ∈ I. Based on the initial SOC and the final required SOC,
a permissible optimal charging policy faces a constraint of
minimum charging sum rate

∑

t∈T Li
t ≥ qi for each i ∈ I,

where qi reflects the charging need to reach the final SOC.



Consider the DN loss as a weighted combination of
At(Lt), the ageing acceleration loss (with inertial compo-
nent) and J(Lt) the Joule losses, given by gDN (L) =
∑

t∈T ηAAt(L[t]) + ηJJ(Lt). Let gEV
i (Li) = ηE

∑

t∈T Li
t
2

be the individual local cost of the ith EV, e.g., the impact
of individual battery aging or the individual electricity fare.
Let pi(.) denote the pricing function which is an increasing
function for the cost to the ith EV, then the cost to the ith EV
is Ci(L) = pi(gDN(L) + gEV

i (Li)). Due to space limitation,
we omit the details of the intermediate terms (refer [4] for
details) and directly express the cost to the ith EV in terms of
HST and the load level as

Ci(L) =
∑

t∈T

(

ηf(θt) + η̄L2
t

)

. (5)

where we denote η ∈ [0, 1] as the weighting factor which
balances the sensitivity of the DN cost with long term load
θt vs the short term or immediate load Lt. We assumed equal
DN cost sharing among EVs for (5), i.e., pi(x) = x/I .

In what follows, we formulate the optimal charging prob-
lem for a single EV which optimizes the distribution network
(DN) cost. Before proceeding, we emphasize that studying the
single user charging problem than multi user is motivated due
to many reasons. The foremost reason is the ease of exposition
of the intricacy involved and the detailed insights of the opti-
mal control problem (we provide in the next section). Secondly,
we aim the scenarios where EVs are not imposed to follow the
same charging policy but they have knowledge of each other’s
policy before its realization. Moreover, one possible way to
implement our charging policy is by considering the base load
and other EVs load as an exogenous load. Without any claim,
we expect that a sensible asynchronous iterative algorithm will
lead several EV’s to achieve the optimal policy in a centralized
manner by pre negotiation type mechanism.

A. Dynamic Optimal Control Problem for EV Charging

In order to obtain the optimal charging policy for the ith
EV, we want to minimize the aggregate DN cost Ci(.) by con-
trolling the charging load level Li

t during t ∈ {0, T } subject to
the minimum charging sumrate requirement and under the HST
dynamics (2). We assume that the ith EV has the knowledge
of the exogenous load, i.e., the residential base load and the
charging load of other EVs (Lb

t +
∑

j #=i L
j
t ). Mathematically,

the optimization problem can then be formulated as follows.

Problem 3.1: Find the control policy for ith EV charging
level Li

(.) = (Li
0, L

i
1, · · · , L

i
T ) which solves:

minimize
Li

(·)
∈L

Ci(L), subject to

{ ∑

t∈T Li
t ≥ qi,

θt+1 = αθt + βtLt
2,

(6)

where qi ≥ 0 is dictated by the charging requirement, and θt
represents the HST dynamics from (2). In the above, we de-
noted the admissible continuous charging load by L = [L, L̄]T .

Though problem 3.1 resembles to a standard LQ control
in the first instance, any classical approach is inapplicable be-
cause of the bounded admissible control with the compounded
complexity due to minimum charging constraint. This is a non-
standard dynamic optimization problem formulated to capture
the thermal inertia. Therefore, we provide the explicit solution
in the following where we use PMP. We note that even the
single user case is complicated enough to obtain the structure
of the optimal dynamic policy analytically. Moreover, the

multi user problem formulation may require difference game
approach, which is beyond the scope of this paper.

HST Evolution: To study the optimization problem, we
need to characterize the HST evolution. From (2), the dynamics
of the HST can be expressed as a difference equation

θt+1 = α θt + βt L
2
t , where θ0 = θ(0). (7)

Recall that the HST initial state is positive 2 , i.e., θ(0) ≥ 0,
and βt ≥ 0 for all t ∈ T (from the assumption).

Lemma 1: Consider the dynamics of the HST state θt
given in (7). The HST dynamics, given by (7), is always
positive, i.e. θt > 0 for all t ∈ {0, T }.

Proof: From (7), the HST state is given by the following:

θt = θ0α
t +

t
∑

k=1

αt−kβk−1L
2
k−1, ∀ t > 1. (8)

From the above equation θt > 0 for all t ∈ {0, T } is directly
established by noting the assumption βt > 0 and α > 0.

In the following, we obtain the optimal charging level
L(.) in each time slot. We assume L(.) ∈ L as a piece-wise
continuous function which remains fixed within a slot duration.
Denote Qi(T ) = L̄T (and Q

i
(T ) = LT ) be the charging sum

rate when the ith EV is charged at maximum (respectively
minimum) charging rate for entire duration.

Optimal Charging Policy: Consider the problem of mini-
mizing Ci(L) with respect to Li

(.) ∈ L subject to the constraint
∑

t∈T Li
t ≥ qi, then

i. If Qi(T ) < qi, then there is no feasible control policy.
ii. If Q

i
(T ) ≥ qi, then the optimal policy is Li

t = L.

iii. If Q
i
(T ) < qi ≤ Qi(T ), then the optimal policy is

computed by the Pontryagin maximum principle.

In the above, cases i and ii are trivial and follow directly
from (6). We thus proceed with the case iii, working under the
assumption Q

i
(T ) < qi ≤ Qi(T ). Fixing any charging policy

L−i, we need to solve the following problem

minimize
Li∈L

∑

t∈T

(

ηf(θt) + η̄Lt
2
)

+ µ

(

qi −
∑

t∈T

Li
t

)

,

s.t. θt+1 = αθt + βLt
2. (9)

Note, the minimum charging constraint is incorporated in
the objective function with µ ≥ 0 as a Lagrangian constant
[15]. Observe, the Lagrangian constraint is active (from the
assumption of part iii) which implies a positive µ. To solve
the above minimization, we use the maximum principle (in
discrete time) [16, Chap 6]. Introduce the Hamiltonian

Ht(θt, L
i
t,λt+1) = (ηf(θt) + η̄(Li

t + L−i
t )2)

+ λt+1(αθt + βt(L
i
t + L−i

t )2)− µLi
t (10)

where λ(.) is the co-state variable and L−i
t = Lb

t +
∑

j #=i L
j
t

denotes the total complementing load at time t to the i th EV.
Let Li∗ be the optimal control and θ∗ be the associated state.
By the Maximum principle, the Hamiltonian system is given
by

2A positive initial HST state assumption is from the fact that in a typical
window of observation, from evening to morning, the nominal residential load
would be enough even if ambient temperature becomes negative [12], [11].



{

θ∗t+1 = ∂
∂λt+1

Ht(θ∗t , L
i
t
∗
,λt+1),

λt =
∂

∂θt
Ht(θ∗t , L

i
t
∗
,λt+1),

(11)

and the optimal control is such that for all t ∈ T ,

Li
t

∗
= argmin

L∈[L,L̄]

Ht(θ
∗
t , L,λt+1). (12)

Note that the first equation of (11) is nothing but rewrit-
ing the state variable of (7) from Hamiltonian. Recall, this
represents the evolution of the HST state (lemma 1), which
is a positive function. The second equation of (11) is the co-
state variable (often called as adjoint equation) that regulates
the multiplier λt, which is in backward progression. Writing
the explicit form of the second co-state variable, we have the
difference equation

∀ t ∈ T , λt = αλt+1 + ηf ′(θ∗t ), λT+1 = 0. (13)

The terminal condition λT+1 = 0 in the above equation is
because of the free terminal state under the optimal control
[16]. A simple observation of (13) reveals that λt. is positive
for t < T (recall α ∈ (0, 1] and θt > 0, ∀t).

Having noted the state and the co-state variable, we discuss
the optimal control. The Hamiltonian H(.) is convex in Li

(.),
as a consequence of (10) and from the positivity of λt+1. In
a discrete-time framework, the Hamiltonian is only stationary
at Li∗, but since it is convex, it is also minimized by Li∗, and
here the minimum is unique. In order to satisfy the constraints
L < Li∗

(.) < L, the optimal control takes the value either on
the extremum or the interior point as per the following rule:

Li
t

∗
=











L, if λt+1 > µ

2βt(L+L−i

t
)
− η̄

βt
,

L, if λt+1 < µ

2βt(L̄+L−i

t
)
− η̄

βt
,

l0t , otherwise.

(14)

In the above equation, the interior optimal control is the

solution to ∂H(.)
∂Li = 0 which yields l0t = µ

2(η̄+λt+1βt)
− L−i

t .

The value of the Lagrange multiplier µ is linked with the
identity (recall the active constraint)

∑

t∈T

Li
t

∗
= qi. (15)

By assumption, Li
t
∗

cannot take only one solution, either
L̄ or L, for the entire duration T . So, it must switch if it takes
either of the two. However, an interior optimal policy l0t may
retain for the entire duration.

The problem cannot be solved analytically. Further, in this
setting, it is even impossible to obtain some apriori information
on the structure of the optimal control, such as the number
of switches from one to another among the three possible
behaviours (given by (14)). This is because it involves the
interdependent co-state equations which further depend on the
dynamic complementing load L−i

t . Thus, we proceed to the
well known numerical approach, the shooting method [17], to
compute the optimal charging control from the above set of
equations. The key point is to solve the backward and forward
co-state set of equations numerically. We skip the mathematical
details due to space limitation, rather we provide the numerical
results in the next section with brief description.

One of the key relevance of the optimal control approach
described above is to show the methodology for the dynamic
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Fig. 2. Performance comparison of charging policies over a typical day

EV charging problem which is the core technique to capture
the inertial component of the DN cost. Though, obtaining
analytical solution appears difficult for the general scenario,
obtaining optimal charging control in special cases may be
feasible, e.g., the symmetric charging control for multi EV
in a centralized system. Due to space limitation, we skip
detailed discussion about the special case, but we mention
that our approach can be easily extended to such special cases
by simply considering the vectorial form. Indeed, we present
the multi EV charging performance in the next section using
numerical method.

IV. PERFORMANCE EVALUATION

We consider an urban distribution network with a 50kVA
residential transformer using the ANSI/IEEE linearized Clause
7 [13]. The night time between 5 pm to 7 am of the next day is
observed with a time step of 3 minutes. For the residential base
load Lb, French data of 11-12th october 2011 night (available
on RTE3) is scaled down to a district consumption level.
It is assumed that the transformer’s base load corresponds
to 100% of its full load4. This relates to a district of 15
to 20 households. Initial transformer temperature of 800C
is used for the simulations. It is further assumed that each
EV’s charging requirement is approximately 20kWh and we
consider 1 − 5 EVs for evaluation (a penetration rate of
5 − 25%). There are about 1 million such urban transformers
in France, each costing about 5k$s with 40 years of standard
lifetime (according to IEC). The inertial parameters used for
evaluations are α = 0.95 and β = 0.05 (from [18]). Following
are the charging policies adopted for performance evaluation,
in which:
i) Off peak charging (OPC) policy: charging of EVs is
triggered during the off peak hours with a constant charing
rate5, typically linked with the load valley.
ii) Immediate charging (IC) policy: charging of EVs begins as
soon as they arrive and plug-in (the arrival time is normally
distributed with mean at 8pm and standard deviation of 1 hour)
at a slow charging rate (P = 3kW ).
iii) Dynamic optimal charging (DOC) policy: the proposed op-
timal charging policy which includes the key inertial property
of transformer ageing.

In order to calculate the DOC policy, we use a shooting
method [17]. The key idea is to determine λ0 and µ such
that λ is a solution of (13) and the charging need constraint
is simultaneously verified. Given an initial guess of (λ0, µ),
the dynamical system of (11) is solved using the the optimal
control from (14). The initial guess is then iterated with

3The french electric TSO website: http://clients.rte-france.com/.
4In [5], the 25kVA transformer considered was subject to a peak load of

25.97kVA.
5In France, Off peak charging is operational even for elastic residential

appliances, e.g. water heaters.



a descent method to satisfy (15) and to yield λT+1 = 0.
Algorithm 1 summarizes this approach.

Algorithm 1: Shooting methodology for the calculation
of DOC policy.

while Charging need constraint is not satisfied, i.e.,
∑

t∈T Li
t
∗
< qi or |λT+1| > ε do

Increase µ from a small ∆µ

Find λ0 st |λT+1| ≤ ε:
1) Fix two initial values λiter=1

0 ,λiter=2
0 ;

2) Calculate the solution of the coupled
differential equation system for (θ,λ) from
(θ0,λiter

0 ) (and (θ0,λ
iter−1
0 ) at the first

iteration);
3) If λiter

T > ε, update λiter+1
0 as

λiter+1
0 = λiter

T
λiter

0 −λiter−1
0

λiter

T
−λiter−1

T

and go to 2.

end

The performance evaluation comparison of different charg-
ing policies is depicted in Fig. 2 with 5EVs. For the DOC
policy, all EVs are considered arriving at the same time. The
load in Fig 2(a) refers to the transformer aggregated load which
is composed of both the EV load and the existing residential
base load. The base load is also explicitly depicted in Fig. 2(a)
as RB Load.

In Fig 2(a), it appears that the DOC uses the “night valley”
with a slightly delayed charging which is because of the ageing
factor, the key aspect of DOC. This delay is mainly because of
the thermal inertia of the HST. This induces the charging load
towards the end which is reflected by the significant increase
of both load and HS temperature (in Fig. 2(b)) to the morning
time 7pm when all EV must depart. We also emphasize that the
particular deep of base load in the night valley doesn’t allow
DOC to show significant improvement over OPC. However, in
favorable situation we can expect DOC to perform better.

The final metric to measure the benefit of the charging
policies is the transformer’s lifetime, which is shown in Table
IV. Observe, the lifetime decreases with increasing number
of EVs (depreciated up to 23 years). Notice that both DOC
and OPC policies show improvement as compared to IC. At
the same time, the performance of DOC policy and OPC
policy closely follow each other, which is because of their
ability to exploit the night valley. Again, these policies may
be significantly distinguished with other types of load profiles
e.g., during the day.

TABLE I. TRANSFORMER LIFETIME IN YEARS

(LIFETIME WITHOUT EV - 40 YRS)

Number of EVs/tansformer DOC OPC IC
1 37 36.5 35
3 31 29.5 29
5 25.5 23.5 17

V. CONCLUDING REMARKS

In this paper, we proposed an optimal control approach for
scheduling EV charging by taking into account the distribution
network stress with the key inertial component of the hot-
spot temperature. Using Pontryagin maximum principle, we
obtained the optimal charging policy, which is unique, and
evaluated its performance. For special cases, the optimal

charging policy can be expressed analytically. For instance,
when Joule losses are dominant, the obtained solution is a
valley-filling solution over the exogeneous demand profile.
But, in general, when the transformer ageing is non-negligible
or even dominant, it is seen that we have to resort to a
numerical technique (namely, a shooting method) to determine
the optimal policy. For the case where the transformer ageing
is dominant, our proposed optimal policy shows significant
benefit in terms of transformer lifetime via simulations. Note
that we have adopted a single agent optimal control approach
whereas the number of EVs is generally greater than one.
In fact, the proposed approach can be seen as a way of
determining in a centralized manner the set of charging policies
which should be used by a given set of EVs or a single-user
approach of a multiuser problem. However, it is of interest in
devising decentralized charging policies for the problem under
investigation in this paper. This constitutes a relevant extension
of this work.
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