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Composite charging games in networks of electric

vehicles
Olivier Beaude, Cheng Wan, and Samson Lasaulce

Abstract—An important scenario for smart grids which encom-
pass distributed electrical networks is given by the simultaneous
presence of aggregators and individual consumers. In this work,
an aggregator is seen as an entity (a coalition) which is able to
manage jointly the energy demand of a large group of consumers
or users. More precisely, the demand consists in charging an
electrical vehicle (EV) battery. The way the EVs user charge
their batteries matters since it strongly impacts the network,
especially the distribution network costs (e.g., in terms of Joule
losses or transformer ageing). Since the charging policy is chosen
by the users or the aggregators, the charging problem is naturally
distributed. It turns out that one of the tools suited to tackle this
heterogenous scenario has been introduced only recently namely,
through the notion of composite games. This paper exploits for
the first time in the literature of smart grids the notion of
composite game and equilibrium. By assuming a rectangular
charging profile for an EV, a composite equilibrium analysis
is conducted, followed by a detailed analysis of a case study
which assumes three possible charging periods or time-slots.
Both the provided analytical and numerical results allow one to
better understand the relationship between the size (which is a
measure) of the coalition and the network sum-cost. In particular,
a social dilemma, a situation where everybody prefers unilaterally
defecting to cooperating, while the consequence is the worst for
all, is exhibited.

Index Terms—EV charging - Electrical Distribution Networks
- Composite game - Composite Equilibrium.

I. INTRODUCTION

EV charging can lead to significant impacts on the exist-

ing and future energy networks [1, 2]. Considering different

physical metrics, the smart grid literature pursued the goal

to mitigate these impacts optimizing EV charging schedules

using Demand Side Management [3], proposing charging

algorithms [4, 5] or pricing policies [6, 7].

The EV charging problem can be seen as a distributed

problem. Indeed, it is reasonable to assume that EV’s owners

can decide when they plug their vehicles and how they charge

their batteries. As a consequence, game theoretical tools have

been proposed to tackle the charging problem (see e.g., [8]

for a recent survey). Very relevant contributions include [6, 9–

11]. On the contrary, it may also be assumed that the charging

profiles of the EVs are decided by a coordinator, often called

aggregator [6, 12], who is much more informed about the

real constraints of the electrical network. In this case, the

decision is centralized and optimization tools are used to

find the optimal policy. The present work deals with the
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situation in between, when a fraction of the EVs is supposed to

independently decide their charging policies, while the rest is

governed by an aggregator. This framework has been recently

introduced in the game theoretic literature [13] with the notion

of composite equilibrium and, to the best of our knowledge,

our work is the first to propose an application of this concept

to the EV charging problem, or more generally to a smart grid

issue.

The contributions of this paper include

• the formulation of the EV charging problem as a com-

posite game,

• the characterization and proof of existence of its equilib-

rium,

• the description of its main properties in the particular case

of three time-slots,

• the numerical analysis of these properties in the case of

distribution network costs.

The paper is structured as follows. Sec. II provides the

model of composite games in the context of EV charging.

Sec. III defines and characterizes the composite equilibrium.

Sec. IV treats a particular case, and conducts an equilibrium

analysis. A thorough numerical analysis is then provided in

Sec. V and the paper is concluded by Sec. VI.

Notations. Bold symbols stand for vectors. For all d ∈ N
∗,

∆d = {z = (zi)
d
i=1 ∈ R

d|z ≥ 0,
Pd

i=1 zi = 1}; for all

D > 0, ∆d
D = {z = (zi)

d
i=1 ∈ R

d|z ≥ 0,
Pd

i=1 zi = D}.

For all m,n ∈ N such that m ≤ n, Jm,nK = {m,m +
1, . . . , n− 1, n}.

For x = (x1, x2, ..., xd),x
′ = (x′

1, x
′
2, ..., x

′
d) ∈ R

d,

〈x,x′〉 =
Pd

i=1 xix
′
i denotes the inner product of x and x′.

II. COMPOSITE EV CHARGING GAME

A. EV charging game

There are T time-slots, labeled by t ∈ T = {1, 2, . . . , T }.

We consider a set of EVs which have to choose C consecutive

time-slots, C ≤ T , to charge. Each EV is considered as a

player, i.e. aims to minimize his charging cost taking into

account the impact of the other EVs’ charging decisions using

the framework of Game Theory [14]. The assumption of

choosing consecutive time-slots is mathematically restrictive1

and thus provides a less general mathematical structure than

with freely varying charging vectors [15]. It is nonetheless

1Indeed, the charging vector is only defined by the time to start charging
while a more general case would be to consider charging vectors in the T−1-
dimensional simplex.
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very important to mitigate impact of the charging policy on the

battery lifetime because highly time varying charging currents

can increase battery temperature much more and lead to a

shorter lifetime [16].

B. Composite game

In this paper, we consider EVs as nonatomic players who

have weight zero and who are called individuals. Nonatomic

means that an EV alone cannot have an impact on the cost

perceived by other players. This holds in particular when there

is a large number of EVs. A group of individuals of positive

total weight form a coalition if the behaviour of its members is

coordinated by an aggregator [6]. A charging game with both

nonatomic players and coalitions is called a composite game

[13] and its equilibria are called composite ones accordingly.

This corresponds to the practical situation where some of EVs

decide their charging policies independently, while the others

are coordinated by one or several aggregators. Without loss of

generality, the total weight of all the EVs is assumed to be 1.

C. Charging flows definition

We suppose that there are K coalitions. For any coalition k

of size Mk > 0 (1 ≤ k ≤ K), let xk
t denote the weight of the

EVs sent by it to start charging at time t ∈ J1, T−C+1K. Thus

the vector xk = (xk
t )

T−C+1
t=1 ∈ F k = ∆T−C+1

Mk characterizes

the strategy, or charging flow, of coalition k.

For t ∈ J1, T K, let ykt denote the quantity of EVs from

coalition k charging at time t, and define yk = (ykt )
T
t=1. It is

called the charging load induced by its strategy xk. Indeed,

ykt =
tX

s=max(t−C+1,1)

xk
s , ∀ 1 ≤ t ≤ T . (1)

Let F̂ k be the set of charging loads of coalition k induced

by its strategies. It is not difficult to verify that F̂ k is a convex

and compact subset of RT .

For the individuals of total weight M0 ≥ 0 (M0 = 1 −PK

k=1 M
k), let x0

t be the weight of the individuals starting

charging at time t ∈ J1, T−C+1K. Define x0 = (x0
t )

T−C+1
t=1 ∈

F 0 = ∆T−C+1
M0 , which can be viewed as the strategy profile

of the individuals.

Let y0 be the charging load induced by x0 and F̂ 0 the set

of charging loads induced by the strategies of the individuals.

Finally, let x = (xi)Ki=0 ∈ F = F 0×F 1×· · ·×FK denote

the strategy profile of all the players and y = (yi)Ki=0 be the

system charging load. Denote F̂ = F̂ 0 × F̂ 1 × · · · × F̂K the

set of feasible system charging loads.

The total weight of EVs charging at time t is denoted by

zt :=
KX

k=0

ykt . (2)

Define the aggregate charging load as z = (zt)
T
t=1.

D. Cost definition

Let us now introduce the (per unit) charging cost function at

each time-slot, f . If there are EVs of total weight zt charging

at time t, then the charging cost for each of them is f(Lt+Pzt)
during that time-slot, where

• L = (Lt)
T
t=1 is the non-EV load, assumed to be known;

• P the total EV charging power in the district, i.e. the

number of EVs in the district multiplied by the charging

rate of an EV assumed constant between EVs here for

simplicity2;

• and f is a real-valued function defined on [0,W ] for W

sufficiently large, i.e. bigger than the potential maximal

load in the district.

This expresses the fact that EV charging cost depends on

the impact measured in the elctrical network, which is one of

the main ideas of smart grids. Notice that f is common for

all the EVs.

Assumption 1. The charging cost function f is of class C1,

convex, strictly increasing and nonnegative on [0,W ].

Assumption 1 always holds in this paper.

For an individual EV, the charging strategy consists in

charging from time-slot t to time-slot t+ C − 1 (t ∈ J1, T −
C + 1K), and its cost function is

ut(x) =
t+C−1X
s=t

f(Ls +Pzs), ∀x ∈ F, ∀ 1 ≤ t ≤ T −C+1 ,

(3)

where the dependency between x and z is implicit in the

notations and comes from (1) and (2). The average cost to

coalition k can be written as a function of x

Πk(x) =
1

Mk

T−C+1X
t=1

xk
t ut(x) , (4)

or as a function of y

Π̂k(y) =
1

Mk

TX
t=1

ykt f(Lt + Pzt) . (5)

The average cost to the individuals can be similarly defined

as a function of flow x, denoted by Π0, or as a function of

load y, denoted by Π̂0.

Finally, the social cost is function of y

Π(y) =
TX

t=1

zt f(Lt + Pzt) , (6)

where, again, the dependancy between z and y is implicit in

the notations.

Let this (composite EV) charging game be denoted by

G(T,C, f, (M i)Ki=0).

2Typically 3kW in the residential case.



NETGCOOP 2014 3

E. Application to distribution network costs

In the context of residential distribution networks (the

system which delivers power from the generation points to the

end users, see [1] for an illustration), two particular classes of

physical cost functions f will be considered:

• Joule losses, which is a quadratic one: f(Lt + Pzt) =
(Lt + Pzt)

2 [4];

• equipment ageing (transformers for example), which can

be approximated by an exponential function (when the

transformer power is close to its nominal level) [2]:

f(Lt + Pzt) = exp[β(Lt + Pzt)], with β > 0.

Note that the standard "mathematical" linear case will also

be studied, which corresponds to a standard approximation

of practical applications. Observe that Assumption 1 holds in

these three cases and also when considering a weighted sum

of these objectives.

III. DEFINITION AND CHARACTERIZATION OF COMPOSITE

EQUILIBRIUM

We are now interested in defining and characterizing a

configuration of equilibrium at which neither the individuals

nor the coalitions have incentive to deviate from their current

strategy.

A. Composite equilibrium conditions

At equilibrium, if strategy t is used by individuals, i.e. x0
t >

0, then

ut(x) ≤ us(x), ∀s ∈ {1, 2, ..., T − C + 1} , (7)

according to the standard Wardrop equilibrium conditions [17].

Notice that in this case the cost of all the individuals is

common and equal to the average cost Π0.

At equilibrium, a coalition k minimizes the average cost of

its members3, given the strategies of the other coalitions and

individuals:

Πk(xk,x−k) = min
x

′k∈Fk
Πk(x′k,x−k) (8)

where x−k = (xi)0≤i≤K, i6=k denotes the strategies of other

players than coalition k.

Definition III.1. In a composite charging game

G(T,C, f, (M i)Ki=0), a configuration x ∈ F is a composite

equilibrium (CE) if conditions (7) and (8) are satisfied.

Composite equilibria can also be characterized via varia-

tional inequalities. Denote the gradient of coalition k’s cost

w.r.t. its strategy (or flow) xk by

Uk(xk,x−k) := ∇
x

kΠk(xk,x−k). (9)

Define also U0(x) = Π0(x) and let U = (U i)Ki=0.

At the minimum, the first order (necessary) condition of

the minimization problem (8) is

∀x̃k ∈ F k,
¬
Uk(xk,x−k), x̃k − xk

¶
≥ 0. (10)

3This is obviously equivalent to minimizing the total cost of its members.

Proposition III.2. If for all coalition k, Πk(xk,x−k) is

convex with respect to xk on F k for all x−k ∈ F−k, then

x∗ ∈ F is a composite equilibrium if and only if¬
U0(x∗0,x∗−0),x0 − x∗0

¶
≥ 0, ∀x0 ∈ F 0,¬

Uk(x∗k,x∗−k),xk − x∗k
¶
≥ 0, ∀xk ∈ F k, ∀ k = 1, . . . ,K ,

which is equivalent to

〈U(x∗),x− x∗〉 ≥ 0, ∀x ∈ F . (11)

Proof: The proof is similar to the one of Prop. 1 in [13].

It can be shown that the necessary and sufficient condition

(11) remains the same if the cost function f undergoes an

affine transformation f 7−→ af + b with a > 0, b ∈ R. In

turn, x∗ is a composite equilibrium of G(T,C, f, (Mk)Kk=0)
if and only if it is a composite equilibrium of G(T,C, f +
b, (M i)Ki=0) (or G(T,C, af, (M i)Ki=0) for a > 0). This is why

the simulations at the end of this paper are restricted to the

case f(Lt + Pzt) = (Lt + Pzt)
2 in the quadratic case and

f(Lt + Pzt) = Lt + Pzt in the linear case.

With formulation (11), the existence of an equilibrium in

the charging game G(T,C, f, (Mk)Kk=0) is easily obtained.

Theorem III.3. If for all coalition k, Πk(xk,x−k) is convex

with respect to xk on F k for all x−k ∈ F−k, then the charging

game G(T,C, f, (Mk)Kk=0) has a composite equilibrium.

Proof: Because of the continuity of f , U is continuous

on the compact and convex set F . The variational inequality

(11) thus has a solution [18]. Given Prop. III.2, this (eventually

these) solution(s) is (are) a composite equilibrium(s).

We also have an important property concerning the com-

parison between the cost of individuals, the average cost in a

coalition and the social cost. Indeed, by the definition of CE,

individuals choose the least expensive alternative(s) at the CE,

therefore one obtains the following general result immediately.

Proposition III.4. At a composite equilibrium,

Π0(M) ≤ Π(M) ≤ Πk(M), ∀M ∈ (0, 1], ∀k, 1 ≤ k ≤ K.

(12)

IV. PARTICULAR CASE OF THREE TIME-SLOTS

In this section, the properties of composite equilibrium are

studied for a charging game G(T,C, f, (M i)Ki=0) with T = 3
time-slots, a charging duration C = 2, a unique coalition of

size M ∈ (0, 1] and a group of individuals of total weight

1−M . This corresponds to a situation where there are a peak,

an off-peak and a standard time-slot. This also suits the case

of charging places where EVs do not stay a long time, e.g. a

parking. Indeed, because the charging rate will not vary with

a small time step, this leads to situations where the number

of time periods considered is very small. Finally, this is a first

step to determine some intuitive theoretical results that could

be then observed by simulations of cases with a bigger number

of time-slots.
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A. Notations of this particular case

An EV has two alternatives:

• alternative 1: charging at t = 1 and t = 2;

• alternative 2: charging at t = 2 and t = 3.

For the individuals, these are just their strategies. In the

coalition, the aggregator assigns an alternative to each EV.

Time indexes are omitted to simplify the notations. Let

x1 (resp. M − x1) denote the weight of EV to which the

aggregator assigns alternative 1 (resp. alternative 2), and x0

(resp. 1 − M − x0) the weight of the individuals choosing

alternative 1 (resp. alternative 2). Therefore, x1 ∈ [0,M ],
x0 ∈ [0, 1−M ], and they respectively characterize the strategy

of the coalition and the choices of the individuals. To simplify

the notations, we set here P = 1 without changing the

essential nature of the results provided here4. Since all the

EVs are charging at time-slot t = 2, the per-unit cost for this

time-slot, f(1 + L2), is common to all the EVs. Thus, we

simply need to study the following costs8><>:Π̃0 = Π0 − f(1 + L2)

Π̃1 = Π1 − f(1 + L2)

Π̃ = Π− f(1 + L2)

. (13)

Considering the choice made by the coalition, Π̃1 is a
function of (x0, x1), defined on [0, 1]2:

Π̃1(x0
, x

1) =
x1f(L1 + x1 + x0) + (M − x1)f(L3 + 1 − x1 − x0)

M
.

For example, in the Joule losses case, f(L) = L2,

Π̃
1
(x

0
, x

1
) =

x1(L1 + x1 + x0)2 + (M − x1)(L3 + 1 − x1 − x0)2

M
.

B. Configuration of composite equilibrium

Without loss of generality, suppose that L1 ≥ L3. This

means that the cost of the first time-slot (resp. alternative 1)

is higher than that of the third time-slot (resp. alternative 2)

without EV charging.

The explicit computation of the CE x∗ using the conditions

(7) and (8) is omitted. We summarize the results here. Observe

that the individuals’ common cost, Π0, the coalition’s average

cost, Π1, and the social cost Π are the key variables for

analyzing the efficiency of the CE.

a) Case 1: L1 ≥ L3 + 1:

• For M ∈ (0, f(L1)−f(1+L3)
f ′(1+L3)

] (or M ∈ (0, 1] if
f(L1)−f(1+L3)

f ′(1+L3)
≥ 1)

x∗1 = 0, x∗0 = 0 (14)

Π̃ = Π̃0 = Π̃1 = f(1 + L3) (15)

4This can be done without loss of generality because this is equivalent to
scaling L.

• For M ∈ ( f(L1)−f(1+L3)
f ′(1+L3)

, 1] (possible only if
f(L1)−f(1+L3)

f ′(1+L3)
< 1)8>><>>:0 < x∗1 < M :

f(L1 + x∗1) + x∗1f ′(L1 + x∗1)

= f(1 + L3 − x∗1) + (M − x∗1)f ′(1 + L3 − x∗1)

x∗0 = 0.
(16)8><>:Π̃ = x∗1f(L1 + x∗1) + (1− x∗1)f(1 + L3 − x∗1)

Π̃0 = f(1 + L3 − x∗1)

Π̃1 = 1
M

�
x∗1f(L1 + x∗1) + (M − x∗1)f(1 + L3 − x∗1)

�
(17)

b) Case 2: L3 ≤ L1 < L3 + 1:

• For M < 1 + L3 − L1(≤ 1)

x∗1 =
M

2
, x∗0 =

1 + L3 − L1 −M

2
(18)

Π̃ = Π̃0 = Π̃1 = f
�1 + L1 + L3

2

�
(19)

• For M ≥ 1 + L3 − L1(> 0)8>><>>:1+L3−L1

2 < x∗1 < M
2 :

f(L1 + x∗1) + x∗1f ′(L1 + x∗1)

= f(1 + L3 − x∗1) + (M − x∗1)f ′(1 + L3 − x∗1)

x∗0 = 0
(20)8><>:Π̃ = x∗1f(L1 + x∗1) + (1− x∗1)f(1 + L3 − x∗1)

Π̃0 = f(1 + L3 − x∗1)

Π̃1 = 1
M

�
x∗1f(L1 + x∗1) + (M − x∗1)f(1 + L3 − x∗1)

�
(21)

C. Properties of composite equilibrium

Using the configuration of the CE obtained previously, its

main properties, namely existence, uniqueness, and variation

with the size of the coalition, are now investigated.

Proposition IV.1. For all M ∈ (0, 1], there exists a unique

composite equilibrium (x∗0, x∗1).

Proof: The existence results from Thm. III.3 given that

Assumption 1 holds. The uniqueness directly follows from the

summary of the results given just before.

Observe also that the individuals’ weight on the first al-

ternative at CE is independent of the charging cost function

verifying Assumption 1.

Since the equilibrium (x∗0, x∗1) is unique for each coalition

size M ∈ (0, 1], one can now consider the following quantities

as functions of M and omit the superscript ∗: the quantity of

EV charging from t = 1 in the coalition, x1, the quantity

of individuals taking strategy 1, x0, the individuals’ common

cost, Π0, the coalition’s average cost Π1, and the social cost,

Π.

Additional properties of the CE configuration

(x0(M), x1(M)) can be deduced easily from the results in

Section IV-B. To this end, an additional hypothesis on the

charging cost function will be needed.
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Assumption 2. Charging cost function f is of class C2 on

[0,W ].

Proposition IV.2. Under Assumption 2, function x1 is contin-

uous and increasing in M on (0, 1]. More precisely,

1) if L1 ≥ L3 + 1 and
f(L1)−f(1+L3)

f ′(1+L3)
≥ 1, then x1 is

constant on (0, 1];

2) if L1 ≥ L3 +1 and
f(L1)−f(1+L3)

f ′(1+L3)
< 1, then x1 is con-

stant on (0, f(L1)−f(1+L3)
f ′(1+L3)

] and it is strictly increasing

in M on ( f(L1)−f(1+L3)
f ′(1+L3)

, 1];

3) if L3 ≤ L1 < L3 + 1, then x1 is strictly increasing in

M on (0, 1].

Proof: Both the continuity of x1 on (0, 1] and the mono-

tonicity are obtained by using the implicit function theorem

on the equations characterizing x1.

The proofs of the following results of this paper, which are

also based on the application of the implicit function theorem,

are omitted. Considering the weight of individuals using

strategy 1, a similar result, but with the opposite monotonicity,

is obtained.

Proposition IV.3. Function x0 is continuous and decreasing

in M on (0, 1]. More precisely,

1) if L1 ≥ L3 + 1, then x0 is constant (x0 = 0) on (0, 1];
2) if L3 ≤ L1 < L3 + 1, then x0 is strictly (linearly)

decreasing in M on (0, 1+L3 −L1) and it is constant

(x0 = 0) on [1 + L3 − L1, 1].

An intuitive interpretation of Prop.IV.2 and Prop.IV.3 is as

follows. The bigger the coalition, the more EV it puts on the

more expensive charging alternative, and the less individuals

who choose the more expensive alternative. This highlights

that bigger coalitions integrate more externalities. When the

coalition is of size one, this leads to the social optimum.

The following proposition now characterizes the convexity

of the EV put on strategy t = 1 at equilibrium, x1.

Proposition IV.4. If f is linear x 7→ x, quadratic x 7→ x2, or

exponential x 7→ eβx (β > 0), then function x1 is concave in

M on (0, 1].

This proposition expresses a phenomenon of saturation.

Although the coalition puts more EVs on the more expensive

alternative when its size increases, the additional weight on

this alternative decreases with respect to its size. Note that

some properties for the function x1 such as its linearity or strict

concavity are available for some choices of the parameters L1

and L3 as for Prop. IV.2.

D. Cost at the composite equilibrium

First of all, according to (14), (16), (18) and (20), the

continuity of x0 and x1 leads to that of Π0, Π1 and Π on

their domains of definition. In particular, (16) and (18) show

that Π0 can be extended to M = 1 in a continuous way. Thus,

one has the following corollary of Prop. IV.2.

Corollary IV.5. Under Assumption 2, the individual’s cost

Π0, the average cost of the coalition Π1, and the social cost

Π at the CE are continuous in M on (0, 1].

After this technical property, two issues arise to better

understand the influence of the coalition on the costs:

1) comparison between the cost of individuals, the average

cost in the coalition and the social cost;

2) analysis of the monotonicity of these costs with respect

to the size of the coalition M .

Concerning the first issue, the answer is given in the general

case by Prop. III.4: the cost of individuals is smaller than the

social cost which is itself smaller than the average cost in the

coalition. Let us now focus on the impact of the size of the

coalition on Π0, Π, and Π1. This is of primary interest for a

social planner who tries to analyze the cost of the different

entities under its supervision and to decide if it is worthwhile

to encourage the formation of coalitions.

Proposition IV.6. Under Assumption 2, the individual’s cost

Π0, the average cost of the coalition Π1, and the social cost

Π at the CE are decreasing in the size of the coalition M .

The previous proposition shows that the bigger the coalition

is, the better it is for everyone. However, considering Prop.

III.4, this leads to a "social dilemma", a situation in which

collective interests are at odds with private interests. Indeed,

the social optimum is attained when the coalition is global, i.e.

M = 1; meanwhile, according to Prop. III.4, each EV prefers

to act individually, leading to M = 0. This phenomenon is

similar to the one studied in [13]. Designing incentives to

encourage EV to join the coalition could constitute a relevant

extension of this work.

V. SIMULATION RESULTS

A. Quantifying the results of the particular case T = 3, C = 2

We first investigate the particular case T = 3, C = 2. The

non-EV load is supposed of the form L = (L1, 1, 1) with

L1 ≥ 1 representing the load at peak time of other electrical

consumptions, P = 1, and β = 1 when the exponential

charging cost function f is considered. In turn, this provides

a thorough application of the theoretical framework presented

in the previous part. The CE configuration is thus directly

given, by (14) for example, or calculated by solving implicit

equations, (16) for example. The variation of the configuration

of the CE and that of the equilibrium costs associated will

be analyzed and quantified according to the charging cost

function f and the size of the coalition M .

Fig. 1 and 2 present the weight x1 put by the coalition on

alternative 1 for the three standard charging cost functions:

linear, quadratic, and exponential. As theoretically claimed,

when L1 ≥ L3 +1 (cf. Fig. 1), x1 is zero for small values of

M , and it becomes positive from different thresholds of M for

different metrics f . When L1 < L3 + 1 (cf. Fig. 2), x1 is the

same for all the metrics f up to a common threshold M̄ = 1+
L3−L1, after which x1 is different for different metrics. Also,

one observes that x1 is greater when L1 is relatively lower or,

equivalently, when time-slot 1 is relatively less expensive. Take
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the linear cost metric as example. Fixing L3 = 1, if L1 = 2.3
(Fig. 1), x1 remains 0 till M = 0.3 then it increases linearly

to 0.18 when M = 1; while if L1 = 1.5 (Fig. 2), x1 increases

in a piecewise linear manner from 0 to 0.37 while M varies

from 0 to 1.

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Coalition size M

W
ei

gh
t c

ha
rg

in
g 

on
 t=

1−
2 

in
 th

e 
in

di
vi

du
al

s/
co

al
iti

on

 

 

Indiv. lin./quad./exp.
Coal. linear
Coal. quadratic
Coal. exponential

Fig. 1. Configuration of CE according to the size of the coalition M for
L1 = 2.3 ≥ L3+1: the individuals do not use the most expensive alternative

t = 1− 2.
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Fig. 2. Configuration of CE according to the size of the coalition M for
L3 ≤ L1 = 1.5 < L3 + 1.

Next, the cost of CE is analyzed in the case of an expo-

nential or quadratic charging cost function. Fig. 3 presents the

different normalized costs, i.e. the costs divided by the social

cost at M = 0. It shows the ranking between individual,

coalitional and social costs and their monotonicity. It also

quantifies the social benefit realized with respect to the size of

the coalition. In the quadratic case, for example, a small gain

of approximately 3% is made with a coalition of size M = 1
in comparison with the case with only individuals (M = 0).

However, in the situation of a global coalition (M = 1), this

figure also shows that any EV deviating to schedule alone its

charging policy will do a significant benefit of 0.97−0.88
0.97 ≈ 9%.

This highlights that the configuration with a coalition of size

one is very efficient but also very unstable in the sense that

each individual EV has a great interest to quit the coalition.
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Fig. 3. Individual, coalitional and social cost at CE for a quadratic or
exponential charging cost function and L1 = 1.5 < L3 + 1.

B. A first step towards larger dimensions

As one would expect, determining the CE of a game is rather

complicated. Even for some given charging cost function f

and for small instances, it may be impossible to give the

explicit form of the equilibrium configuration analytically.

Consequently, it is of interest to see whether there are simple

and distributed learning schemes that allow players to arrive at

a reasonably stable solution. One of these schemes is based on

an exponential learning behavior where players play the game

repeatedly and learn the best strategies by keeping record of

their strategies’ performance (see [19]). At each step denoted

by index n, the individuals update their cumulative cost for

strategy t, V
0,(n)
t , as

V
0,(n)
t = V

0,(n−1)
t + ut(x

(n−1)) , (22)

where x(n−1) = (x0,(n−1),x1,(n−1)) is the strategy profile

of all the players at the (n − 1)th iteration of the dynamics.

These cumulative costs reinforce the perceived success of each

strategy as measured by the average payoff it yields. Hence,

the players will lean towards the strategy with the smallest

cumulative cost. The precise way in which this is done is by

playing according to the exponential law:

x
0,(n)
t =

e−V
0,(n)
tPT−C+1

s=1 e−V
0,(n)
s

. (23)

Similarly, the coalition updates its cumulative cost V
1,(n)
t

for strategy t replacing ut(x
(n−1)) by ∇

x
1Π1(x(n−1)) in (22)

and its weights according to (23) with V
1,(n)
t instead of V

0,(n)
t .

When players update their cumulative costs in continuous

time, we obtain the standard replicator dynamics [19]. In-
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terestingly, this dynamics has been shown to converge5 for

composite games in the case of linear cost functions [20].

First, this dynamics has been tested on the simple cases

analyzed in Sec. V-A and we find the same results as the

ones obtained with the analytical formula, not only for the

linear case for which it is theoretically proven but also for the

quadratic and exponential cases. This is of primary interest for

practical applications and also leads to the open problem of

the convergence in the quadratic and exponential cases.

Then, we propose a first realistic application studying

the EV charging during the night time in a district with

T = 7 considering a two hours time step; t = 1 corre-

sponds to 5pm − 7pm, t = 2 to 7pm − 9pm, ..., t = 7
to 5am − 7am the next day. The sequence of non-EV

loads is a normalized version of the global consumption

profile in France for the aforementioned period of time;

the data are available on the RTE website "http://clients.rte-

france.com/lang/fr/visiteurs/vie/courbes.jsp". The other param-

eters are set to C = 3 and P = 0.2 which corresponds to the

case where EVs need to charge until 75% of their battery

capacities6 and a penetration rate of approximately 40%7.

Finally, the linear charging cost function f(L) = L, for which

convergence of the replicator dynamics holds, is considered.

We first observe the total load during the considered night, as

the sum of the non-EV load, the individual nonatomic charging

load and the coalition charging load. It can be observed that

while individuals charge mainly during the night when the

non-EV load is small, coalition’s load is more uniformly

distributed.
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Fig. 4. Total load at a CE for EV night charging (T = 7 > 3) with a linear
charging cost function f(L) = L: individuals’ load is put on the "valley" of

the non-EV load, coalition’s load is more uniformly distributed.

The two following figures are dedicated to study if the main

theoretical properties established in the particular case of three

5Furthermore, if the convergence point is an interior point, it is a composite
equilibrium.

6A full charging of a battery of 24kWh at 3kW needs 8hours.
7Given that the maximal household electricity consumption is typically of

6kW and the EV charging rate at home of 3kW, the ratio
0.2/3
1/6

= 0.4
approximates the EV penetration rate in the district under the assumption that
all houses consumes at their full contracted power at peak time.

time-slots are still observed when considering this larger case.
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Fig. 5. Configuration of CE for EV night charging (T = 7 > 3) with a linear
charging cost function f(L) = L according to the size of the coalition M :
the monotonicity properties theoretically established for T = 3 and C = 2
still seem to hold.

Fig. 5 (respectively Fig. 6) shows that the monotonicity

properties of the charging weights (respectively costs) at CE

proven in the case T = 3, C = 2 still seem to hold: a

next step of this work will be to confirm these observations

with theoretical arguments. Finally, this again exhibits the

phenomenon of "social dilemma".
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Fig. 6. Individual, coalitional and social costs at a CE for EV night charging
(T = 7 > 3) with a linear charging cost function f(L) = L according to the
size of the coalition M : the monotonicity properties theoretically established
for T = 3 and C = 2 still seem to hold.

VI. CONCLUSION

In this paper, we introduce the game-theoretical framework

of composite games as a tool to analyze the situation where

both autonomous EVs and coalitions of EVs, i.e., groups of

EVs which are coordinated by a unique aggregator, coexist

when taking their charging decisions. In this context, the

existence of a stable configuration, a composite equilibrium,
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is proven to exist. At equilibrium, the cost of individuals, the

average cost in the coalition, and the social cost have been

compared.

Then, more detailed properties of the composite equilibrium

are established in the illustrative case of three time-slots as a

first step to validate some intuitions. In particular, it is shown

that the charging weights on the time-slot with the largest

non-EV demand/load increases with the coalition size for the

coalition, while it decreases for the individuals. This highlights

the different behaviour of the individuals and the coalition,

expressing in particular that larger coalitions integrate more

externalities. Furthermore, all the costs are proven to decrease

with the size of the coalition supporting the idea of forming

big coalitions for EV charging but leading also to a standard

“social dilemma”: The social optimum is obtained for a

coalition of maximal size but then each EV prefers to act

individually. A relevant extension of this work would be to

design incentives to make the configuration with a coalition

of maximal size stable.

Finally, simulations both quantify these phenomena in the

simple case of three time-slots and are also conducted in the

realistic case of EV night charging with a larger number of

time-slots. Interestingly, the theoretical results proven in the

case of three time slots seem to hold in the simulation realized

in this latter case: this shows that there is still room for

improving the understanding of the properties of this problem

in a general setting. The framework of composite games seems

to be particularly promising for understanding heterogenous

distributed networks such as smart grids.
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