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Abstract

In this article, we determine when the large generalized de Bruijn cycles BGC(p, d, n) are
Hamiltonian. These digraphs have been introduced by Gómez, Padró and Pérennes as large
interconnection networks with small diameter and they are a family of generalized p-cycles. They
are the Kronecker product of the generalized de Bruijn digraph GB(d, n) and the dicycle of length
p, where GB(d, n) is the digraph whose vertices are labeled with the integers modulo n such that
there is an arc from vertex i to vertex j if, and only if, j ≡ di+ α (mod n), for every α with
0 ≤ α ≤ d− 1.
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1. Introduction

A Hamiltonian dicycle in a digraph D is a dicycle C such that each vertex of D appears
exactly once in C (see [2]). Hamiltonian properties have been studied for digraphs modeling
interconnection networks. For example, the so called de Bruijn digraphs (see [3]) were introduced
to show the existence of de Bruijn sequences, that is circular sequences of dD elements such that
any subsequence of length D appears exactly once. To prove the existence of such sequences, it
was proved that de Bruijn digraphs are Hamiltonian (see [3]).

Since then, many generalizations of the de Bruijn digraphs have been proposed in the literature
to build interconnection networks with small diameter. One of them is about generalized p-cycles:
that is digraphs whose set of vertices is partitioned in p parts, that can be ordered in such a way
that a vertex is adjacent only to vertices in the next part (see [11]). Those specific extensions
of the de Bruijn digraphs are sometimes called large generalized de Bruijn Cycles, and they are
denoted BGC(p, d, n).

It was proved that the digraphs BGC(p, d, n) are among the largest known p-cycles with given
degree and diameter (see [11]). Their connectivity properties have been studied in [1, 10, 15]; but
unlike many other variants of the original de Bruijn digraphs, the Hamiltonian properties of this
class of digraphs have not been studied yet. The aim of this article consists in determining when
BGC(p, d, n) is Hamiltonian.

2. Definitions and earlier results

We refer to [2] for graph theory notions. Especially, we use the notion of line digraph:

Definition 1 ([2]). Given a digraph G = (V,E), the line digraph L(G) of G has as vertices the
arcs in G. There is an arc from e = (u, v) to e′ = (u′, v′) in L(G) if, and only if, v = u′.

In this article, we use the following well-known property of line digraph operation:
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Proposition 1 ([5]). The digraph G is Eulerian if, and only if, its line digraph L(G) is Hamilto-
nian.

We now define the so-called generalized de Bruijn digraphs, using arithmetical relations:

Definition 2 ([14, 16]). The generalized de Bruijn digraph GB(d, n) (also called Reddy-Pradhan-
Kuhl digraph), is the digraph whose vertices are labeled with the integers modulo n; there is an arc
from vertex i to vertex j if, and only if, j ≡ di+ α (mod n), for every α with 0 ≤ α ≤ d− 1.

Those generalized de Bruijn digraphs can be extended in many ways. We briefly present two
of them.

Definition 3 ([7]). Let 1 ≤ d, q ≤ n− 1, and 0 ≤ r ≤ n− 1, the consecutive-d digraph G(d, n, q, r)
is the digraph whose vertices are labeled with the integers modulo n, such that there is an arc from
vertex i to vertex j if, and only if, j ≡ qi+ r + α (mod n), for every α with 0 ≤ α ≤ d− 1.

When q = d and r = 0, G(d, n, d, 0) = GB(d, n).
The consecutive-d digraphs also include another subfamily of digraphs that was introduced

in [8]. Let λ be a positive integer, with 1 ≤ λ ≤ d. Then, GBλ(d, n) is the subdigraph of
GB(d, n) such that there is an arc from i to j if, and only if, j ≡ di+ α (mod n), for every
α with 0 ≤ α ≤ λ− 1. Actually, the digraph GBλ(d, n) is nothing else than the consecutive-λ
digraph G(λ, n, d, 0), but the notation of GBλ(d, n) helps to understand that it is a subdigraph of
GB(d, n).

The characterization of the Hamiltonian consecutive-d digraphs is nearly complete:

Theorem 2 ([4, 6, 7, 13]). Let G = G(d, n, q, r) be a consecutive-d digraph.

• If d = 1, then G is Hamiltonian if, and only if, all of the four following conditions hold:

1. gcd (n, q) = 1;
2. for every prime number p such that p|n, we have p|q − 1;
3. if 4|n, then 4|q − 1 too;
4. gcd (n, q − 1, r) = 1.

• If d = 2, then G is Hamiltonian if, and only if, one of the two following conditions holds:

1. gcd (n, q) = 2;
2. gcd (n, q) = 1 and either G(1, n, q, r) or G(1, n, q, r + 1) is Hamiltonian.

• If d = 3, then:

1. if gcd (n, q) ≥ 2, then G is Hamiltonian if, and only if, gcd (n, q) ≤ 3;
2. if 1 ≤ |q| ≤ 3 and n and q are relatively prime, then G is Hamiltonian.

• If d ≥ 4, then G is Hamiltonian if, and only if, gcd (n, q) ≤ d.

Corollary 1 ([6]). Let G = G(d, n, q, r) be a consecutive-d digraph. If λ = gcd (n, q) ≥ 2, then G
is Hamiltonian if, and only if, λ ≤ d.

For the extension we consider here, we need to introduce the Kronecker product, also called
conjunction or direct product (see [12]):

Definition 4. Let G1 = (V1, E1) and G2 = (V2, E2) be two digraphs. Their Kronecker product
G1 ⊗G2 is a digraph G = (V,E) such that:

1. V = V1 × V2
2. E = {((u1, u2), (v1, v2)) : (u1, v1) ∈ E1 and (u2, v2) ∈ E2}

Definition 5 ([11]). The large generalized de Bruijn Cycle BGC(p, d, n) is the Kronecker product
of the generalized de Bruijn digraph GB(d, n) with the dicycle Cp whose length is p. In other
words, BGC(p, d, n) = GB(d, n)⊗ Cp.

If p = 1, then BGC(1, d, n) is isomorphic to the generalized de Bruijn digraph GB(d, n).
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3. Existence of Hamiltonian dicycles

We now completely characterize the Hamiltonicity of the digraphs BGC(p, d, n):

Theorem 3. For p ≥ 1, the digraph BGC(p, d, n) is Hamiltonian if, and only if, one of the four
following conditions holds:

1. d ≥ 3;

2. d = 2 and n is even;

3. d = 2 and, for every prime number q such that q|n, q|2p − 1;

4. d = n = 1.

When p = 1, these conditions are exactly the necessary and sufficient conditions of Hamiltonic-
ity of the generalized de Bruijn digraphs, and they are proved in [6, 8]. Furthermore, if d = 1,
then we trivially verify that BGC(p, 1, n) is Hamiltonian if, and only if, GB(1, n) is Hamiltonian.
So, the only solution is the degenerate case when n = 1.

For the rest of this paper, we assume that p ≥ 2 and d > 1. The proof of Theorem 3 follows
from the four following lemmas. Observe that we omit the notation (mod n) in some parts of the
proofs, when the context is clear. The vertices of BGC(p, d, n) will be labeled by Zn × Zp in the
proofs.

Lemma 1. If λ = gcd (n, d) ≥ 2, then BGC(p, d, n) is Hamiltonian.

Proof. Let n′ =
n

λ
. We denote by BGCλ(p, d, n) the digraph GBλ(d, n) ⊗ Cp. In [8] it is proven

that L(GBλ(d, n′)) = GBλ(d, n). Note that L(G⊗ Cp) = L(G)⊗ Cp; hence L(BGCλ(p, d, n′)) =
BGCλ(p, d, n). Moreover, GBλ(d, n′) is Eulerian, and so strongly connected [8]. Since there is
a loop in GBλ(d, n′) in vertex 0, there is always a dipath in BGCλ(p, d, n′) from (0, 0) to any
vertex (i, j) and also from (i, j) to (0, 0). Consequently, BGCλ(p, d, n′) is also strongly connected.
Furthermore, it is a λ-regular digraph too. Therefore, BGCλ(p, d, n′) is Eulerian, and so, its
line digraph BGCλ(p, d, n) is Hamiltonian by Proposition 1. As a consequence, BGC(p, d, n) is
Hamiltonian too.

If d ≥ 4, and n and d are relatively prime, then we can use the Hamiltonian properties of
the consecutive-d digraphs. We consider a Hamiltonian dicycle in any consecutive-d digraph as a
circular permutation σ of Zn. If j is the vertex that follows vertex i in the Hamiltonian dicycle,
then σ(i) = j; similarly, if k is the vertex that follows vertex j in the Hamiltonian dicycle, then
σ2(i) = σ(j) = k, and so on.

Lemma 2. If d ≥ 4 and n and d are relatively prime, then BGC(p, d, n) is Hamiltonian.

Proof. Consider the consecutive-d digraph G = G(d, n, dp, 0). Since gcd (n, dp) = 1 and d ≥ 4,
we know by Theorem 2 that G is a Hamiltonian digraph. Let 0, σ(0), σ2(0), . . . , σn−1(0), 0 be a
Hamiltonian dicycle in G.

Then, we consider the following dicycle C = (0, 0), (0, 1), . . . , (0, p−1), (σ(0), 0), (dσ(0), 1), . . . ,
(dp−1σ(0), p−1), . . . , (σi(0), 0), (dσi(0), 1), . . . , (dp−1σi(0), p−1), . . . , (σn−1(0), 0), (dσn−1(0), 1), . . . ,
(dp−1σn−1(0), p− 1), (0, 0). It is effectively a dicycle as, by definition, there is an arc from vertex
(i, k) to vertex (di, k + 1), when 0 ≤ k ≤ p− 2. Furthermore, there is also an arc from ver-
tex (dp−1σi(0), p − 1) to vertex (σi+1(0), 0), as, by the adjacency relations of G, there exists α,
0 ≤ α ≤ d− 1, such that σi+1(0) ≡ dpσi(0) + α ≡ d(dp−1σi(0)) + α (mod n).

Let us note that, since gcd (n, d) = 1, the mapping (i, k) to its successor (di, k+1) is one-to-one.
So, it suffices to verify that all the vertices with a given k, for example k = 0, are different, which
follows from the fact the σi(0), 0 ≤ i ≤ n− 1, are all different in the Hamiltonian dicycle of G.

The only remaining cases are d = 2 and d = 3. If d = 2 and n is even, then there is a
Hamiltonian dicycle in BGC(p, 2, n) by Lemma 1. Else:

Lemma 3. If n is odd, then BGC(p, 2, n) is Hamiltonian if, and only if, for all prime number q
such that q|n, q|2p − 1.
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Proof. Let us assume that there is a Hamiltonian dicycle C in BGC(p, 2, n). Let k0 be a fixed
integer modulo p. We claim that if there exists a vertex (i, k0) such that (i, k0) precedes in C the
vertex (2i, k0 + 1), then this holds for all the vertices. Indeed, as, for j ≡ i − 2−1 (mod n), the
successors of the vertex (j, k0) are (2j, k0 + 1) and (2j + 1, k0 + 1) = (2i, k0 + 1), the vertex (j, k0)
must precede the vertex (2j, k0 + 1) in C. Furthermore, since 2−1 is a generator element in Zn,
each vertex (i, k0) has to precede the vertex (2i, k0 + 1) in C.

Otherwise, if there does not exist a vertex (i, k0) such that (i, k0) precedes in C the vertex
(2i, k0 + 1), then each vertex (i, k0) has to precede the vertex (2i + 1, k0 + 1) in C. In summary,
there are only two possibilities for a given k0. At the end, there are only 2p possible Hamiltonian
dicycles, namely: C0, C1, . . . , C2p−1, such that after a vertex (i, 0), the next vertex in Cr whose
label is also in Zn×{0} following (i, 0) is (2pi+r, 0). Then, observe that Cr is a Hamiltonian dicycle
if, and only if, i → 2pi+ r is a circular permutation of Zn, that is G(1, n, 2p, r) is Hamiltonian.
By Theorem 2, G(1, n, 2p, r) is Hamiltonian if, and only if, every of the following conditions hold:

• n and 2p are relatively prime;

• for all prime number q such that q|n, q|2p − 1;

• gcd (n, 2p − 1, r) = 1.

The first condition is verified as n is odd, and the third one can always be held by taking r = 1.
Consequently, a necessary and sufficient condition for BGC(p, 2, n) to be Hamiltonian when n is
odd is that for all prime number q such that q|n, q|2p − 1.

Remark 1. Especially when Mp = 2p− 1 is a Mersenne prime number, BGC(p, 2, n) is Hamilto-
nian if, and only if, n is a power ofMp, and there are always ϕ(Mp) = Mp−1 possible Hamiltonian
dicycles, where ϕ denotes the Euler’s function.

Finally, if d = 3, we prove that BGC(p, 3, n) is always Hamiltonian by using a method of
link-interchange.

Definition 6. Let C1, C2 be two dicycles that are subdigraphs of the same digraph D. A pair
{x1, x2} with x1 ∈ C1 and x2 ∈ C2 is called an interchange pair if the predecessor y1 of x1 in C1

is incident to x2 in D, and the predecessor y2 of x2 in C2 is incident to x1 in D too.

If {x1, x2} is an interchange pair, then we can build a dicycle containing all the vertices of
C1 ∪ C2 by deleting (y1, x1) and (y2, x2) and adding the arcs (y1, x2) and (y2, x1).

Lemma 4. BGC(p, 3, n) is Hamiltonian.

Proof. When 3|n, that is a direct consequence of Lemma 2. Consequently, we assume that 3
does not divide n. To every vertex (i, k) we associate the vertex (3i + 1, k + 1). As n and 3
are relatively prime, the digraph BGC(p, 3, n) is partitioned into pairwise vertex-disjoint dicycles
C1, C2, . . . , Cm. If there is only one dicycle, that is m = 1, we are done as it is Hamiltonian.
Otherwise, we use interchange pairs to merge successively the dicycles till we have only one. But
we have to be careful to do independent interchanges.

We first claim that, for every i ∈ Zn and for every k ∈ Zp, if the vertices (i, k) and (i+1, k) are
not in the same dicycle, then the pair of vertices {(i, k), (i+ 1, k)} is an interchange pair. Indeed
let (j, k−1) be the the predecessor of (i, k). So, 3j+ 1 ≡ i (mod n) and as 3j+ 2 ≡ i+ 1 (mod n),
(j, k−1) is incident to (i+1, k). Similarly, let (j′, k−1) be the the predecessor of (i+1, k). Then,
3j′ + 1 ≡ i + 1 (mod n) and as 3j ≡ i (mod n), so (j′, k − 1) is incident to (i, k). Therefore, the
claim is proved. However, we have to be careful not to use twice the same vertex in an interchange
pair, as the predecessor has changed when doing the first merging.

Case 1: n even. Here we will only use some interchange pairs of the form: g(i) = {(2i, 0), (2i+
1, 0)} and f(j) = {(2j + 1, 1), (2j + 2, 1)}, with i, j ∈ Zn. These pairs are pairwise independent,
because n is even. While there exists an i ∈ Zn such that (2i, 0) and (2i + 1, 0) are in different
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dicycles, we merge these two dicycles using the interchange pair g(i). After at most n/2 merge
operations, we get a set of disjoint dicycles such that, for all i ∈ Zn, the vertices (2i, 0) and
(2i + 1, 0) belong to the same dicycle. Then, for every i ∈ Zn, we now consider vertices (2i, 0)
and (2(i + 3−1), 0). Suppose that they are in two different dicycles, namely: C ′1 and C ′2. By
construction, the vertex (2i+ 1, 0), which is also in C ′1, precedes the vertex (6i+ 4, 1) of C ′1, and
the vertex (2(i+3−1), 0) precedes (6i+3, 1) of C ′2. Moreover, we have that {(6i+3, 1), (6i+4, 1)} =
f(3i + 1) is an admissible interchange pair that we can use to merge the two dicycles, because
6i+ 3 is odd whereas n is even, and so, 6i+ 3 (mod n) is odd. Finally, since 3 and n are relatively
prime, 3−1 is a generator element in Zn, and so, we can successively consider the possible i ∈ Zn
such that (2i, 0) and (2(i+ 3−1), 0) belong to different dicycles, and merge their dicycles. At the
end of that final step, we get that all the vertices (i, 0), with i ∈ Zn, belong to the same dicycle.
Therefore, all the remaining dicycles have been merged into one.

It is interesting to notice that no extra - interchange pairs {(i, k), (i + 1, k)} with k /∈ {0, 1}
are needed. We propose another set of interchange pairs when n is odd.

Case 2: n odd. The proof is quite the same as for the preceding case, except that we choose the
set of interchange pairs P = {{(2i + 1, k), (2i + 2, k)} : 1 ≤ 2i + 1 < n}. Note that all the pairs
in P are pairwise independent. In [6], they proved that in the case p = 1, these interchange pairs
{2i + 1, 2i + 2}, with 1 ≤ 2i + 1 < n, were enough to merge the dicycles (obtained by joining i
to 3i+ 1) into one Hamiltonian dicycle. To do that, they proved the graph G1, consisting of the
undirected cycles of the decomposition plus the edges {2i+1, 2i+2}, 1 ≤ 2i+1 < n, was connected.
Here, we similarly consider the graph G consisting of the undirected cycles C1, C2, . . . , Cm plus
the edges {(2i+ 1, k), (2i+ 2, k)}, with {(2i+ 1, k), (2i+ 2, k)} ∈ P . To prove that we can merge
these dicycles into one Hamiltonian dicycle, it suffices to prove that G is connected.

We have that 3 ∗ (−2−1) + 1 ≡ (1 + 2) ∗ (−2−1) + 1 ≡ −2−1 − 1 + 1 ≡ −2−1 (mod n) or,
equivalently, one of the dicycles Ci consists of all the vertices (−2−1, k), 0 ≤ k ≤ p−1. Let (i, k1),
(j, k2) be any pair of vertices of G. As G1 is connected, there is a path from i to −2−1 in G1, and
also a path from −2−1 to j in G1. So, there is in G a path from (i, k1) to some (−2−1, k′1), and
also a path from some (−2−1, k′2) to (j, k2). Moreover, as (−2−1, k′1) and (−2−1, k′2) are in the
same dicycle Ci, there is a path in G from (−2−1, k′1) to (−2−1, k′2); hence, we also have a path in
G from (i, k1) to (j, k2). In other words, G is connected.

4. Conclusion

We completely characterized the Hamiltonian Properties of the digraphs BGC(p, d, n). A
closely related family is the large generalized Kautz Cycles KGC(p, d, n), for which a partial
characterization of their Hamiltonicity can be found in [9]. The Hamiltonian Properties of both
BGC(2, d, n) and KGC(2, d, n) have immediate applications for directed hypergraphs, that are
also studied in [9].
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