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In this article, we determine when the large generalized de Bruijn cycles BGC(p, d, n) are Hamiltonian. These digraphs have been introduced by Gómez, Padró and Pérennes as large interconnection networks with small diameter and they are a family of generalized p-cycles. They are the Kronecker product of the generalized de Bruijn digraph GB(d, n) and the dicycle of length p, where GB(d, n) is the digraph whose vertices are labeled with the integers modulo n such that there is an arc from vertex i to vertex j if, and only if, j ≡ di + α (mod n), for every α with 0 ≤ α ≤ d -1.

Introduction

A Hamiltonian dicycle in a digraph D is a dicycle C such that each vertex of D appears exactly once in C (see [START_REF] Bang-Jensen | Digraphs: theory, algorithms and applications[END_REF]). Hamiltonian properties have been studied for digraphs modeling interconnection networks. For example, the so called de Bruijn digraphs (see [START_REF] Bermond | De Bruijn and Kautz networks: a competitor for the hypercube[END_REF]) were introduced to show the existence of de Bruijn sequences, that is circular sequences of d D elements such that any subsequence of length D appears exactly once. To prove the existence of such sequences, it was proved that de Bruijn digraphs are Hamiltonian (see [START_REF] Bermond | De Bruijn and Kautz networks: a competitor for the hypercube[END_REF]).

Since then, many generalizations of the de Bruijn digraphs have been proposed in the literature to build interconnection networks with small diameter. One of them is about generalized p-cycles: that is digraphs whose set of vertices is partitioned in p parts, that can be ordered in such a way that a vertex is adjacent only to vertices in the next part (see [START_REF] Gómez | Large generalized cycles[END_REF]). Those specific extensions of the de Bruijn digraphs are sometimes called large generalized de Bruijn Cycles, and they are denoted BGC(p, d, n).

It was proved that the digraphs BGC(p, d, n) are among the largest known p-cycles with given degree and diameter (see [START_REF] Gómez | Large generalized cycles[END_REF]). Their connectivity properties have been studied in [START_REF] Balbuena | On the superconnectivity of generalized p-cycles[END_REF][START_REF] Ferrero | Disjoint paths of bounded length in large generalized cycles[END_REF][START_REF] Pelayo | On the connectivity of generalized p-cycles[END_REF]; but unlike many other variants of the original de Bruijn digraphs, the Hamiltonian properties of this class of digraphs have not been studied yet. The aim of this article consists in determining when BGC(p, d, n) is Hamiltonian.

Definitions and earlier results

We refer to [START_REF] Bang-Jensen | Digraphs: theory, algorithms and applications[END_REF] for graph theory notions. Especially, we use the notion of line digraph:

Definition 1 ([2]
). Given a digraph G = (V, E), the line digraph L(G) of G has as vertices the arcs in G. There is an arc from e = (u, v) to e = (u , v ) in L(G) if, and only if, v = u .

In this article, we use the following well-known property of line digraph operation:

Email address: gducoffe@polytech.unice.fr (Guillaume Ducoffe) Proposition 1 ( [START_REF] Rumeur | Communications dans les réseaux de processeurs[END_REF]). The digraph G is Eulerian if, and only if, its line digraph L(G) is Hamiltonian.

We now define the so-called generalized de Bruijn digraphs, using arithmetical relations: Definition 2 ( [START_REF] Imase | Design to minimize diameter on building-block network[END_REF][START_REF] Reddy | Directed graphs with minimal diameter and maximal connectivity[END_REF]). The generalized de Bruijn digraph GB(d, n) (also called Reddy-Pradhan-Kuhl digraph), is the digraph whose vertices are labeled with the integers modulo n; there is an arc from vertex i to vertex j if, and only if, j ≡ di + α (mod n), for every α with 0 ≤ α ≤ d -1.

Those generalized de Bruijn digraphs can be extended in many ways. We briefly present two of them.

Definition 3 ([7]). Let 1 ≤ d, q ≤ n -1, and 0 ≤ r ≤ n -1, the consecutive-d digraph G(d, n, q, r)
is the digraph whose vertices are labeled with the integers modulo n, such that there is an arc from vertex i to vertex j if, and only if, j ≡ qi + r + α (mod n), for every α with 0 ≤ α ≤ d -1.

When q = d and r = 0, G(d, n, d, 0) = GB(d, n). The consecutive-d digraphs also include another subfamily of digraphs that was introduced in [START_REF] Du | Generalized de Bruijn digraphs[END_REF]. Let λ be a positive integer, with 1 ≤ λ ≤ d. Then, GB λ (d, n) is the subdigraph of GB(d, n) such that there is an arc from i to j if, and only if, j ≡ di + α (mod n), for every

α with 0 ≤ α ≤ λ -1. Actually, the digraph GB λ (d, n) is nothing else than the consecutive-λ digraph G(λ, n, d, 0), but the notation of GB λ (d, n) helps to understand that it is a subdigraph of GB(d, n).
The characterization of the Hamiltonian consecutive-d digraphs is nearly complete: [START_REF] Chang | The consecutive-4 digraphs are Hamiltonian[END_REF][START_REF] Du | The Hamiltonian property of generalized de Bruijn digraphs[END_REF][START_REF] Du | On Hamiltonian consecutive-d digraphs[END_REF][START_REF] Hwang | The Hamiltonian property of linear functions[END_REF]). Let G = G(d, n, q, r) be a consecutive-d digraph.

Theorem 2 ([
• If d = 1, then G is Hamiltonian if, and only if, all of the four following conditions hold:

1. gcd (n, q) = 1; 2. for every prime number p such that p|n, we have p|q -1; 3. if 4|n, then 4|q -1 too; 4. gcd (n, q -1, r) = 1.

• If d = 2, then G is Hamiltonian if, and only if, one of the two following conditions holds:

1. gcd (n, q) = 2; 2. gcd (n, q) = 1 and either G(1, n, q, r) or G(1, n, q, r + 1) is Hamiltonian.

• If d = 3, then:

1. if gcd (n, q) ≥ 2, then G is Hamiltonian if, and only if, gcd (n, q) ≤ 3; 2. if 1 ≤ |q| ≤ 3 and n and q are relatively prime, then G is Hamiltonian.

• If d ≥ 4, then G is Hamiltonian if, and only if, gcd (n, q) ≤ d. Corollary 1 ([6]). Let G = G(d, n, q, r) be a consecutive-d digraph. If λ = gcd (n, q) ≥ 2, then G is Hamiltonian if, and only if, λ ≤ d.
For the extension we consider here, we need to introduce the Kronecker product, also called conjunction or direct product (see [START_REF] Hammack | Handbook of Product Graphs 2 nd edition[END_REF]): [START_REF] Gómez | Large generalized cycles[END_REF]). The large generalized de Bruijn Cycle BGC(p, d, n) is the Kronecker product of the generalized de Bruijn digraph GB(d, n) with the dicycle C p whose length is p. In other words,

Definition 4. Let G 1 = (V 1 , E 1 ) and G 2 = (V 2 , E 2 ) be two digraphs. Their Kronecker product G 1 ⊗ G 2 is a digraph G = (V, E) such that: 1. V = V 1 × V 2 2. E = {((u 1 , u 2 ), (v 1 , v 2 )) : (u 1 , v 1 ) ∈ E 1 and (u 2 , v 2 ) ∈ E 2 } Definition 5 ([
BGC(p, d, n) = GB(d, n) ⊗ C p . If p = 1, then BGC(1, d, n) is isomorphic to the generalized de Bruijn digraph GB(d, n).

Existence of Hamiltonian dicycles

We now completely characterize the Hamiltonicity of the digraphs BGC(p, d, n): Theorem 3. For p ≥ 1, the digraph BGC(p, d, n) is Hamiltonian if, and only if, one of the four following conditions holds:

1. d ≥ 3; 2. d = 2
and n is even; 3. d = 2 and, for every prime number q such that q|n, q|2 p -1; 4. d = n = 1.

When p = 1, these conditions are exactly the necessary and sufficient conditions of Hamiltonicity of the generalized de Bruijn digraphs, and they are proved in [START_REF] Du | The Hamiltonian property of generalized de Bruijn digraphs[END_REF][START_REF] Du | Generalized de Bruijn digraphs[END_REF]. Furthermore, if d = 1, then we trivially verify that BGC(p, 1, n) is Hamiltonian if, and only if, GB(1, n) is Hamiltonian. So, the only solution is the degenerate case when n = 1.

For the rest of this paper, we assume that p ≥ 2 and d > 1. The proof of Theorem 3 follows from the four following lemmas. Observe that we omit the notation (mod n) in some parts of the proofs, when the context is clear. The vertices of BGC(p, d, n) will be labeled by Z n × Z p in the proofs.

Lemma 1. If λ = gcd (n, d) ≥ 2, then BGC(p, d, n) is Hamiltonian. Proof. Let n = n λ . We denote by BGC λ (p, d, n) the digraph GB λ (d, n) ⊗ C p . In [8] it is proven that L(GB λ (d, n )) = GB λ (d, n). Note that L(G ⊗ C p ) = L(G) ⊗ C p ; hence L(BGC λ (p, d, n )) = BGC λ (p, d, n). Moreover, GB λ (d, n
) is Eulerian, and so strongly connected [START_REF] Du | Generalized de Bruijn digraphs[END_REF]. Since there is a loop in GB λ (d, n ) in vertex 0, there is always a dipath in BGC λ (p, d, n ) from (0, 0) to any vertex (i, j) and also from (i, j) to (0, 0 If d ≥ 4, and n and d are relatively prime, then we can use the Hamiltonian properties of the consecutive-d digraphs. We consider a Hamiltonian dicycle in any consecutive-d digraph as a circular permutation σ of Z n . If j is the vertex that follows vertex i in the Hamiltonian dicycle, then σ(i) = j; similarly, if k is the vertex that follows vertex j in the Hamiltonian dicycle, then σ 2 (i) = σ(j) = k, and so on. Then, we consider the following dicycle C = (0, 0), (0, 1), . . . , (0, p -1), (σ(0), 0), (dσ(0), 1), . . . , (d p-1 σ(0), p-1), . . . , (σ i (0), 0), (dσ i (0), 1), . . . , (d p-1 σ i (0), p-1), . . . , (σ n-1 (0), 0), (dσ n-1 (0), 1), . . . , (d p-1 σ n-1 (0), p -1), (0, 0). It is effectively a dicycle as, by definition, there is an arc from vertex (i, k) to vertex (di, k + 1), when 0 ≤ k ≤ p -2. Furthermore, there is also an arc from vertex (d p-1 σ i (0), p -1) to vertex (σ i+1 (0), 0), as, by the adjacency relations of G, there exists α,

0 ≤ α ≤ d -1, such that σ i+1 (0) ≡ d p σ i (0) + α ≡ d(d p-1 σ i (0)) + α (mod n).
Let us note that, since gcd (n, d) = 1, the mapping (i, k) to its successor (di, k+1) is one-to-one. So, it suffices to verify that all the vertices with a given k, for example k = 0, are different, which follows from the fact the σ i (0), 0 ≤ i ≤ n -1, are all different in the Hamiltonian dicycle of G.

The only remaining cases are d = 2 and d = 3. If d = 2 and n is even, then there is a Hamiltonian dicycle in BGC(p, 2, n) by Lemma 1. Else: Lemma 3. If n is odd, then BGC(p, 2, n) is Hamiltonian if, and only if, for all prime number q such that q|n, q|2 p -1.

Proof. Let us assume that there is a Hamiltonian dicycle C in BGC(p, 2, n). Let k 0 be a fixed integer modulo p. We claim that if there exists a vertex (i, k 0 ) such that (i, k 0 ) precedes in C the vertex (2i, k 0 + 1), then this holds for all the vertices. Indeed, as, for j ≡ i -2 -1 (mod n), the successors of the vertex (j, k 0 ) are (2j, k 0 + 1) and (2j + 1, k 0 + 1) = (2i, k 0 + 1), the vertex (j, k 0 ) must precede the vertex (2j, k 0 + 1) in C. Furthermore, since 2 -1 is a generator element in Z n , each vertex (i, k 0 ) has to precede the vertex (2i, k 0 + 1) in C.

Otherwise, if there does not exist a vertex (i, k 0 ) such that (i, k 0 ) precedes in C the vertex (2i, k 0 + 1), then each vertex (i, k 0 ) has to precede the vertex (2i + 1, k 0 + 1) in C. In summary, there are only two possibilities for a given k 0 . At the end, there are only 2 p possible Hamiltonian dicycles, namely: C 0 , C 1 , . . . , C 2 p -1 , such that after a vertex (i, 0), the next vertex in C r whose label is also in Z n ×{0} following (i, 0) is (2 p i+r, 0). Then, observe that C r is a Hamiltonian dicycle if, and only if, i → 2 p i + r is a circular permutation of Z n , that is G(1, n, 2 p , r) is Hamiltonian. By Theorem 2, G(1, n, 2 p , r) is Hamiltonian if, and only if, every of the following conditions hold:

• n and 2 p are relatively prime;

• for all prime number q such that q|n, q|2 p -1;

• gcd (n, 2 p -1, r) = 1.
The first condition is verified as n is odd, and the third one can always be held by taking r = 1. Consequently, a necessary and sufficient condition for BGC(p, 2, n) to be Hamiltonian when n is odd is that for all prime number q such that q|n, q|2 p -1.

Remark 1. Especially when M p = 2 p -1 is a Mersenne prime number, BGC(p, 2, n) is Hamiltonian if, and only if, n is a power of M p , and there are always ϕ(M p ) = M p -1 possible Hamiltonian dicycles, where ϕ denotes the Euler's function.

Finally, if d = 3, we prove that BGC(p, 3, n) is always Hamiltonian by using a method of link-interchange. Definition 6. Let C 1 , C 2 be two dicycles that are subdigraphs of the same digraph D. A pair {x 1 , x 2 } with x 1 ∈ C 1 and x 2 ∈ C 2 is called an interchange pair if the predecessor y 1 of x 1 in C 1 is incident to x 2 in D, and the predecessor

y 2 of x 2 in C 2 is incident to x 1 in D too.
If {x 1 , x 2 } is an interchange pair, then we can build a dicycle containing all the vertices of C 1 ∪ C 2 by deleting (y 1 , x 1 ) and (y 2 , x 2 ) and adding the arcs (y 1 , x 2 ) and (y 2 , x 1 ). Lemma 4. BGC(p, 3, n) is Hamiltonian.

Proof. When 3|n, that is a direct consequence of Lemma 2. Consequently, we assume that 3 does not divide n. To every vertex (i, k) we associate the vertex (3i + 1, k + 1). As n and 3 are relatively prime, the digraph BGC(p, 3, n) is partitioned into pairwise vertex-disjoint dicycles C 1 , C 2 , . . . , C m . If there is only one dicycle, that is m = 1, we are done as it is Hamiltonian. Otherwise, we use interchange pairs to merge successively the dicycles till we have only one. But we have to be careful to do independent interchanges.

We first claim that, for every i ∈ Z n and for every k ∈ Z p , if the vertices (i, k) and (i + 1, k) are not in the same dicycle, then the pair of vertices {(i, k), (i + 1, k)} is an interchange pair. Indeed let (j, k -1) be the the predecessor of (i, k). So, 3j + 1 ≡ i (mod n) and as 3j + 2 ≡ i + 1 (mod n), (j, k -1) is incident to (i + 1, k). Similarly, let (j , k -1) be the the predecessor of (i + 1, k). Then, 3j + 1 ≡ i + 1 (mod n) and as 3j ≡ i (mod n), so (j , k -1) is incident to (i, k). Therefore, the claim is proved. However, we have to be careful not to use twice the same vertex in an interchange pair, as the predecessor has changed when doing the first merging.

Case 1: n even. Here we will only use some interchange pairs of the form: g(i) = {(2i, 0), (2i + 1, 0)} and f (j) = {(2j + 1, 1), (2j + 2, 1)}, with i, j ∈ Z n . These pairs are pairwise independent, because n is even. While there exists an i ∈ Z n such that (2i, 0) and (2i + 1, 0) are in different dicycles, we merge these two dicycles using the interchange pair g(i). After at most n/2 merge operations, we get a set of disjoint dicycles such that, for all i ∈ Z n , the vertices (2i, 0) and (2i + 1, 0) belong to the same dicycle. Then, for every i ∈ Z n , we now consider vertices (2i, 0) and (2(i + 3 -1 ), 0). Suppose that they are in two different dicycles, namely: C 1 and C 2 . By construction, the vertex (2i + 1, 0), which is also in C 1 , precedes the vertex (6i + 4, 1) of C 1 , and the vertex (2(i+3 -1 ), 0) precedes (6i+3, 1) of C 2 . Moreover, we have that {(6i+3, 1), (6i+4, 1)} = f (3i + 1) is an admissible interchange pair that we can use to merge the two dicycles, because 6i + 3 is odd whereas n is even, and so, 6i + 3 (mod n) is odd. Finally, since 3 and n are relatively prime, 3 -1 is a generator element in Z n , and so, we can successively consider the possible i ∈ Z n such that (2i, 0) and (2(i + 3 -1 ), 0) belong to different dicycles, and merge their dicycles. At the end of that final step, we get that all the vertices (i, 0), with i ∈ Z n , belong to the same dicycle. Therefore, all the remaining dicycles have been merged into one.

It is interesting to notice that no extra -interchange pairs {(i, k), (i + 1, k)} with k / ∈ {0, 1} are needed. We propose another set of interchange pairs when n is odd.

Case 2: n odd. The proof is quite the same as for the preceding case, except that we choose the set of interchange pairs P = {{(2i + 1, k), (2i + 2, k)} : 1 ≤ 2i + 1 < n}. Note that all the pairs in P are pairwise independent. In [START_REF] Du | The Hamiltonian property of generalized de Bruijn digraphs[END_REF], they proved that in the case p = 1, these interchange pairs {2i + 1, 2i + 2}, with 1 ≤ 2i + 1 < n, were enough to merge the dicycles (obtained by joining i to 3i + 1) into one Hamiltonian dicycle. To do that, they proved the graph G 1 , consisting of the undirected cycles of the decomposition plus the edges {2i+1, 2i+2}, 1 ≤ 2i+1 < n, was connected. Here, we similarly consider the graph G consisting of the undirected cycles C 1 , C 2 , . . . , C m plus the edges {(2i + 1, k), (2i + 2, k)}, with {(2i + 1, k), (2i + 2, k)} ∈ P . To prove that we can merge these dicycles into one Hamiltonian dicycle, it suffices to prove that G is connected.

We have that 3 * (-2 -1 ) + 1 ≡ (1 + 2) * (-2 -1 ) + 1 ≡ -2 -1 -1 + 1 ≡ -2 -1 (mod n) or, equivalently, one of the dicycles C i consists of all the vertices (-2 -1 , k), 0 ≤ k ≤ p -1. Let (i, k 1 ), (j, k 2 ) be any pair of vertices of G. As G 1 is connected, there is a path from i to -2 -1 in G 1 , and also a path from -2 -1 to j in G 1 . So, there is in G a path from (i, k 1 ) to some (-2 -1 , k 1 ), and also a path from some (-2 -1 , k 2 ) to (j, k 2 ). Moreover, as (-2 -1 , k 1 ) and (-2 -1 , k 2 ) are in the same dicycle C i , there is a path in G from (-2 -1 , k 1 ) to (-2 -1 , k 2 ); hence, we also have a path in G from (i, k 1 ) to (j, k 2 ). In other words, G is connected.

Conclusion

We completely characterized the Hamiltonian Properties of the digraphs BGC(p, d, n). A closely related family is the large generalized Kautz Cycles KGC(p, d, n), for which a partial characterization of their Hamiltonicity can be found in [START_REF] Ducoffe | Eulerian and Hamiltonian directed hypergraphs[END_REF]. The Hamiltonian Properties of both BGC(2, d, n) and KGC(2, d, n) have immediate applications for directed hypergraphs, that are also studied in [START_REF] Ducoffe | Eulerian and Hamiltonian directed hypergraphs[END_REF].

Lemma 2 .

 2 If d ≥ 4 and n and d are relatively prime, then BGC(p, d, n) is Hamiltonian. Proof. Consider the consecutive-d digraph G = G(d, n, d p , 0). Since gcd (n, d p ) = 1 and d ≥ 4, we know by Theorem 2 that G is a Hamiltonian digraph. Let 0, σ(0), σ 2 (0), . . . , σ n-1 (0), 0 be a Hamiltonian dicycle in G.
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