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Quantifying uncertainties on excursion sets under

a Gaussian random field prior

Dario Azzimonti ∗, Julien Bect †, Clément Chevalier ‡, David Ginsbourger∗

Abstract

We focus on the problem of estimating and quantifying uncertainties
on the excursion set of a function under a limited evaluation budget. We
adopt a Bayesian approach where the objective function is assumed to be a
realization of a random field, typically assumed Gaussian. In this setting,
the posterior distribution on the objective function gives rise to a poste-
rior distribution of excursion sets. Several approaches exist to summarize
the distribution of the excursion sets based on random closed set the-
ory. While the recently proposed Vorob’ev approach leads to analytically
tractable expectations, further notions of variability require Monte Carlo
estimators relying on Gaussian random field conditional simulations. In
the present work we propose a method to choose simulation points and
obtain realizations of the conditional field at fine designs through affine
predictors. The points are chosen optimally in the sense that they mini-
mize the expected distance in measure between the posterior excursion set
and its reconstruction. The proposed method reduces the computational
costs due to simulations and enables the prediction of realizations on fine
designs even in large dimensions. We apply this reconstruction approach
to obtain realizations of an excursion set on a fine grid which allow us to
give a new measure of uncertainty based on the distance transform of the
excursion set. Finally we present an application of the method where the
distribution of the volume of excursion is estimated in a six-dimensional
example.

Keywords: Set estimation, distance transform, Gaussian processes, con-
ditional simulations

1 Introduction

In a number of application fields where mathematical models are used to pre-
dict the behavior of some parametric system of interest, practitioners not only
wish to get the response for a given set of inputs (forward problem) but are
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interested in recovering the set of inputs values leading to a prescribed value
or range of values for the output (inverse problem). Such problems are espe-
cially common in cases where the response is a scalar quantifying the degree of
danger or abnormality of a system, or equivalently represents a score measur-
ing some performance or pay-off. Examples include applications in reliability
engineering, where the focus is often put on describing the set of parameter
configurations leading to an unsafe design (mechanical engineering [15], [4], nu-
clear criticality [8], etc.), but also in natural sciences, where conditions leading
to dangerous phenomena in climatological [17] or geophysical [3] settings are of
crucial interest.

When tackling inverse problems involving costly-to-evaluate forward models,
the number of model evaluations affordable during a study is typically a limiting
factor. As a consequence, a systematic exploration of the input space, e.g.
on a fine grid, is generally out of reach, even in small dimensions. Therefore
reconstructions of the sets of interest have to be performed based on a scarce
number of evaluations, thus implying some uncertainty.

Various methods are available to interpolate or approximate an objective
function relying on a sample of pointwise evaluations, including polynomial
approximations, splines, neural nets, and more. Here we mainly focus on the
so-called Gaussian Random Field modeling approach.

Gaussian Random Field (GRF) models have become very popular in engi-
neering and further application areas to approximate, or predict, expensive-to-
evaluate functions relying on a drastically limited number of observations (see,
e.g., [38], [30], [5] and references therein). A major advantage of GRF models
over deterministic approximation models is to deliver a posterior probability
distribution on functions, not only enabling to get predictions of the objective
function at any point, but also to quantify uncertainties on the associated predic-
tions. Furthermore, posterior distributions of quantities non-linearly involving
the objective function may be estimated by conditional simulations.

The idea of appealing to conditional simulation in the context of set esti-
mation has already been introduced in various contexts (see, e.g., [25], [12]).
Instead of having a single estimate of the excursion set like in most set estima-
tion approaches (see, e.g., [14], [20], [29] and references therein), it is possible
to get a distribution of sets. For example, Figure 1 shows some realizations
of the excursion set (above the threshold t = 0) obtained by simulating the
Gaussian random field Z conditional on few observations of the true function f
at locations Xn = {x1, . . . ,xn}. A natural question arising in practice is how
to summarize this distribution by appealing to simple concepts, analogues to
notions of expectation and variance (or location and scatter) in the framework
of random variables and vectors. For example the notions of Vorob’ev expecta-
tion and Vorob’ev deviation have been recently revisited in [9] in the context of
excursion set estimation and uncertainty quantification with GRF models.

One of the key contributions of the present paper is a method to gener-
ate conditional realizations of the random excursion set based on simulations
of the underlying Gaussian random field at few points. By contrast, in the
literature, Monte Carlo simulations of excursion sets are often obtained by sim-
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(a) Real function, kriging mean and true
excursion set.
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(b) 3 realizations of the conditional GRF
and the associated excursion set. The re-
alizations are obtained with simulations at
1000 points in [0, 1].
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(c) 3 realizations of the conditional random
field and the associated random set gener-
ated by simulating at 30 optimally-chosen
points and predicting the field in the 1000
grid points design.

Figure 1: Example of a Gaussian random field model with few realizations of a
function defined on [0, 1].
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ulating the underlying field at space filling designs, as shown in Figure 1b.
While this approach is straightforward to implement, it might be too cumber-
some when fine designs are needed, especially in high dimensions. The pro-
posed approach reduces the simulation costs by choosing few appropriate points
Em = {e1, . . . , em} where to simulate the field and by approximating the field
on the full design with a suitable affine predictor. Approximations of the ex-
cursion set realizations are obtained as excursion sets of the approximate field.
Figure 1c shows realizations of the excursion set approximated with the best
linear unbiased predictor from simulations at m = 30 points, for the example
introduced in Figure 1. Simulation points are chosen in an optimal way in the
sense that they minimize a specific distance between the reconstructed random
set and the true random set. With this method it is possible to obtain arbitrar-
ily fine approximations of the excursion set realizations while retaining control
on how close those approximations are to the true random set distribution.

The paper is divided into 6 Sections. In Section 2 we introduce the frame-
work and the fundamental definitions needed for our method. In Section 3 we
give an explicit formula to compute the distance between the reconstructed ran-
dom excursion set and the true random excursion set. In this section we also
present a result on the consistency of the method when a dense sequence points
is considered as simulation points, the proof are in appendix. Section 4 explains
the computational aspects and introduces two algorithms to calculate the opti-
mized points. In this section we also discuss the limits and the advantages of
two algorithms.

Sections 5 and 6 present two applications that benefit from the optimized
selection of simulation points. In the first application we show that the distance
average of a set (see, e.g., [2]) over a two-dimensional grid can be computed accu-
rately by simulating the field at few simulation points and by predicting the field
over an arbitrary design. This approach allows us to compute the distance trans-
form variability, an uncertainty quantification estimate based on the distance
average. Since the distance transform variability heavily relies on conditional
simulations, it has not been used before as uncertainty quantification technique.
In the second application we apply the proposed method to the problem of es-
timating the distribution of the excursion volume in a six-dimensional example.
The excursion volumes are generally estimated with Monte Carlo methods be-
cause the analytical distribution is unknown (see, e.g., [37], [1]). We empirically
show that our method reduces the computational times for generating Monte
Carlo estimates while preserving the accuracy.

2 Preliminaries

In this section we recall two definitions coming from the theory of random closed
sets that help us to define an expected excursion set. The main focus here is on
a real-valued continuous objective function f : D ⊂ R

d −→ R where d ≥ 1 and
D is a compact of Rd. f is modeled by a Gaussian random field with continuous
paths, Z = (Zx)x∈D, whose mean function and covariance kernel are denoted by
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m and k. The range of critical response values of interest and the corresponding
excursion set are denoted by T ∈ B(R), a measurable element of the Borel σ-
algebra of R, and Γ⋆ = f−1(T ) = {x ∈ D : f(x) ∈ T }. In most applications, T
is a closed set in R of the form [t,∞) for some t ∈ R. Here we solely need to
assume that T is closed in R, but we will stick to the settings where T = [t,∞),
for simplicity. Generalizations to unions of intervals are straightforward. Under
such assumptions, the excursion set Γ⋆ is closed in D as pre-image of a closed
set by a continuous function. Similarly, Γ = {x ∈ D : Z(x) ∈ T } defines a
random closed set. In the following, we will appeal to a number of concepts
from the theory of random closed sets [27].

2.1 Vorob’ev approach

The notion of distance in measure plays a key role in the proposed approach.
Let µ be a Borel measure on the Borel σ-algebra B(D) and S1, S2 ∈ B(D).
Their distance in measure (with respect to µ) is defined as µ(S1∆S2), where
S1∆S2 = (S1 ∩ Sc

2) ∪ (S2 ∩ Sc
1) is the symmetrical difference between S1 and

S2. Similarly, for two random sets Γ1 and Γ2 and µ as before, one can define a
distance as follows.

Definition 1 (Expected distance in measure). The expected distance in measure
between two random sets Γ1,Γ2 with respect to a Borel measure µ is defined as

dµ(Γ1,Γ2) = E[µ(Γ1∆Γ2)] (1)

Several notions of expectation have been proposed for random closed sets.
In particular, the Vorob’ev expectation is related to the notion of expected
distance in measure. Consider the coverage function of a random closed set Γ,
pΓ : x ∈ D −→ [0, 1] defined as pΓ(x) = P (x ∈ Γ). The Vorob’ev expectation
Qα of a random set Γ is defined as the α level set of its coverage function, i.e.
Qα = {x ∈ D : pΓ(x) ≥ α}, where the level α is determined so as to satisfy
µ(Qβ) ≤ E[µ(Γ)] ≤ µ(Qα) for all β > α. It is a well-known fact [27] that, in
the particular case E[µ(Γ)] = µ(Qα), the Vorob’ev expectation minimizes the
distance in measure to Γ among all measurable (deterministic) sets M such that
µ(M) = E[µ(Γ)]. In the following we review another notion of expectation for
a random closed set: the distance average and its related notion of variability.

2.2 Distance average approach

Given a distance function d : (x, S) ∈ D × F ′ −→ R where F ′ is the space
of all non-empty closed sets (see [27] pp. 179–180 for details) and assuming
that d(x,Γ) has finite expectation for all x ∈ D, one defines the mean distance
function as d̄ : x ∈ D −→ E[d(x,Γ)]. Assuming further that some metric δ (e.g.,
the L2 distance) is available over an appropriate functional space, the distance
average of Γ [27] is defined as the set that has the closest (with respect to the
metric δ) distance function to d̄.

5



Definition 2 (Distance average and distance function variability). Let ū be the
value of u ∈ R that minimizes the δ-distance δ(d(·, {d̄ ≤ u}), d̄) between the
distance function of {d̄ ≤ u} and the mean distance function of Γ. If δ(d(·, {d̄ ≤
u}), d̄) achieves its minimum in several points we assume ū to be their infimum.
The set

EDA(Γ) = {x ∈ D : d̄(x) ≤ ū} (2)

is said to be the distance average of Γ with respect to δ. In addition, we define the
distance function variability of Γ with respect to δ as DTV(Γ) = E[δ(d̄, d(·,Γ))].

These notions will be at the heart of the application section, where a method
is proposed for estimating discrete counterparts of EDA(Γ) and DTV(Γ) rely-
ing on approximate GRF simulations. Taking a standard matrix decomposition
approach for GRF simulations, a straightforward way for simulating Γ is to sim-
ulate Z at a fine design, e.g. a grid in moderate dimensions, G = {u1, . . . ,ur} ⊂
D with large r ∈ N, and then to represent Γ as {u ∈ G : Zu ∈ T }. A drawback
of this procedure, however, is that it may become impractical for a high resolu-
tion r, as the covariance matrix involved may rapidly become close to singular
and also cumbersome if not impossible to store.

3 Main results

The proposed approach consists in replacing conditional GRF simulations at
the finer design G by approximate simulations that rely on a smaller simulation
design Em = {e1, . . . , em}, with m ≪ r, and to use these approximate simula-
tions as basis for quantifying uncertainties on Γ. Even though such approach
might seem somehow heuristic at first, it is actually possible to control the effect
of the approximation on the end result, as we show in this section. Let us first
expose the proposed workflow.

3.1 A Monte-Carlo approach with predicted conditional

simulations

Performing Monte Carlo simulations of Γ (or of its trace on a fine design G)
necessitates to simulate Z. Here we propose to replace Z by a simpler ran-
dom field denoted by Z̃, which simulations at any design should remain at an
affordable cost. In particular, we aim at constructing Z̃ in such a way that
the associated Γ̃ is as close as possible to Γ in expected distance in measure.
Let us assume that the random field Z has been evaluated at n ≥ 0 locations
Xn = {x1, . . . ,xn} ⊂ D. Consider 1 ≤ m ≤ r points Em = {e1, . . . , em} ⊂ D
and denote by Z(Em) = (Ze1

, . . . , Zem
)T the random vector of values of Z at

Em. The essence of the proposed approach is to appeal to affine predictors of
Z, i.e. to consider Z̃ of the form

Z̃(x) = a(x) + bT (x)Z(Em) (x ∈ D), (3)
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where a : D −→ R is a trend function and b : D −→ R
m is a vector-valued

function of deterministic weights. Note that usual kriging predictors are partic-
ular cases of Equation (3) with adequate choices of the functions a and b, see
for example [13] for an extensive review. Re-interpolating conditional simula-
tions by kriging is an idea that has been already proposed in different contexts,
notably by [28] in the context of Bayesian uncertainty analysis for complex com-
puter codes. However, to the best of our knowledge, the derivation of optimal
criteria for choosing simulation points has not been addressed until now, be it
for excursion set estimation or for further purposes. Here we focus exclusively
on excursion set estimation and we take as criterion the expected distance in
measure between Γ and Γ̃.

3.2 Distance in measure of the approximated random set

to the original one

In the next proposition we show how it is possible to express the expected dis-
tance in measure as a function of the probability distribution of the underlying
field only.

Proposition 3 (Distance in measure between Γ and Γ̃). a) Assuming Z and

Z̃ are random fields such that Γ and Γ̃ are random closed sets, D ⊂ R
d and µ

is a finite Borel measure on D, we have

dµ,n(Γ, Γ̃) =

∫
ρn,m(x)µ(dx) (4)

with

ρn,m(x) = Pn

(
x ∈ Γ∆Γ̃

)

= Pn(Z(x) ≥ t, Z̃(x) < t) + Pn(Z(x) < t, Z̃(x) ≥ t). (5)

where Pn(x ∈ Γ∆Γ̃) denotes the conditional probability P
(
x ∈ Γ∆Γ̃

∣∣ Z(Xn)
)
.

b) Moreover if we denote the mean of Z conditional on Z(Xn) with mn and the
conditional covariance kernel with kn, we get

Pn(Z(x) ≥ t, Z̃(x) < t) = Φ2 (cn(x, Em),Σn(x, Em)) , (6)

where Φ2( · ,Σ) is the cumulative distribution function of a centered bivariate
Gaussian with covariance Σ, with

cn(x, Em) =

(
mn(x) − t
t− a(x) − b(x)Tmn(Em)

)

and

Σn(x, Em) =

(
kn(x,x) −b(x)T kn(Em,x)
−b(x)T kn(Em,x) b(x)T kn(Em, Em)b(x)

)
.
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c) Particular case: If b(x) is chosen as the kriging predictor b(x) = kn(Em, Em)−1kn(Em,x),
then

Σn(x, Em) =

(
kn(x,x) −γn(x, Em)
−γn(x, Em) γn(x, Em)

)

where γn(x, Em) = Varn[Z̃(x)] = kn(Em,x)T kn(Em, Em)−1kn(Em,x).

Proof. a) Interchanging integral and expectation by Tonelli, we get

dµ,n(Γ, Γ̃) = En[µ(Γ\Γ̃)] + En[µ(Γ̃\Γ)]

= En

[∫
1Z(x)≥t1Z̃(x)<t

µ(dx) +

∫
1
Z̃(x)≥t

1Z(x)<tµ(dx)

]

=

∫ [
Pn(Z(x) ≥ t, Z̃(x) < t) + Pn(Z(x) < t, Z̃(x) ≥ t)

]
µ(dx)

b) Since the random field Z is assumed to be Gaussian, the vector (Z(x), Z̃(x))
is also Gaussian conditionally on Z(Xn), and proving the property boils down
to calculating its conditional moments.

Now we directly get En[Z(x)] = mn(x) and En[Z̃(x)] = a(x)+b(x)Tmn(Em).

Similarly, Varn[Z(x)] = kn(x,x) and Varn[Z̃(x)] = b(x)T kn(Em, Em)b(x). Fi-

nally, Covn[Z(x), Z̃(x)] = b(x)T kn(Em,x) and the conclusion follows from the
Gaussianity of the field.

Remark 1. The Gaussian assumption on the random field Z in Proposition 3
can be relaxed: in part a) it suffices that the excursion sets of the field Z are
random closed sets and in part b) it suffices that the field Z is Gaussian condi-
tionally on Z(Xn).

3.3 Convergence result

Let e1, e2, . . . be a given sequence of simulation points in D and set Em =
{e1, . . . , em} for all m. Assume that Z is, conditionally on Z(Xn), a Gaussian
random field with conditional mean mn and conditional covariance function kn.
Let Z̃(x) = En

(
Z(x)

∣∣ Z(Em)
)

be the best predictor of Z(x) given Z(Xn)
and Z(Em), which is affine in Z(Em), and denote by s2n,m(x) the conditional
variance of the prediction error at x:

s2n,m(x) = Varn

(
Z(x) − Z̃(x)

)
= Varn

(
Z(x)

∣∣ Z(Em)
)

= kn (x,x) − kn (Em,x)
T
kn (Em, Em)

−1
kn (Em,x) .
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Proposition 4 (Approximation consistency). Let Γ̃(Em) =
{
x ∈ D : Z̃(x) ∈

T
}
be the random excursion set associated to Z̃. Then, as m → ∞, dµ,n(Γ, Γ̃(Em)) →

0 if and only if s2n,m → 0 µ-almost everywhere.

Corollary 5. Assume that the covariance function of Z is continuous. a) If the
sequence of simulation points is dense in D, then the approximation scheme is
consistent (in the sense that dµ,n(Γ, Γ̃(Em)) → 0 when m → ∞). b) Assuming
further that the covariance function of Z has the NEB property [36], the density
condition is also necessary.

The proof of Proposition 4 is in Appendix A

4 Practicalities

In this section we use the previously established results to implement a method
that selects appropriate simulation points Em = {e1, . . . , em} ⊂ D. The con-
ditional field is simulated on Em and approximated at the design points with
ordinary kriging predictors. We present two algorithms to find the set Em that
minimizes the expected distance in measure between Γ and Γ̃(Em). We assume
that the number of simulation points is fixed in advance and is equal to m.
The algorithms were implemented in R with the packages KrigInv [11] and
DiceKriging [30].

4.1 Algorithm A: minimizing dµ,n
(Γ, Γ̃)

The first proposed algorithm (Algorithm A) is a sequential minimization of the

expected distance in measure dµ,n(Γ, Γ̃). We exploit the characterization in
Equation (4) and we assume that the underlying field Z is Gaussian. Under
these assumptions, the problem becomes

minimize dµ,n(Γ, Γ̃) =

∫
[Φ2 (cn(x, Em),Σn(x, Em)) + Φ2 (−cn(x, Em),Σn(x, Em))]µ(dx)

(7)

with respect to Em = {e1, ..., em}.

Several classic optimization techniques have already been employed to solve sim-
ilar problems for optimal designs, for example simulated annealing, [31], genetic
algorithms [21] or treed optimization [19]. In our case such global approaches
would lead to a m × d dimensional problem and, since we do not rely on an-
alytical gradients, the full optimization would be very slow. Instead we follow
a greedy heuristic approach as in [32], [8] and optimize the criterion sequen-
tially: given E∗

i−1 = {e∗1, ..., e∗i−1} points previously optimized, the ith point

ei is chosen as the minimizer of dµ,n(Γ, Γ̃∗
i ) where Γ̃∗

i = Γ̃(E∗
i−1 ∪ {ei}). The

points optimized in previous iterations are considered as fixed parameters and
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therefore not modified by the current optimization. The algorithm adds new
points until the required number of points is reached.

The parameters of the bivariate normal, cn(x, Ei) and Σn(x, Ei), depend on
the set Ei and therefore need to be updated each time the optimizer requires an
evaluation of the criterion in a new point. Those functions rely on the kriging
equations, but recomputing each time the full kriging model is cumbersome
numerically. Instead we exploit the sequential nature of the algorithm and use
kriging update formulas [10] to compute the new value of the criterion each time
a new point is analyzed.

Numerical evaluation of the expected distance in measure poses the issue of
approximating both the integral in R

d and the bivariate normal distribution in
Equation (7). The numerical approximation of the bivariate normal distribu-
tion is computed with the pbivnorm package which relies on the fast Fortran
implementation of the standard bivariate normal CDF introduced in [18]. The
integral is approximated via quasi-Monte Carlo method: the integrand is evalu-
ated in points from a space filling sequence (Sobol, [6]) and then approximated
with a weighted sample mean of the values.

The criterion is optimized with the function genoud [26], a genetic algorithm
with BFGS descents that finds the optimum by evaluating the criterion over a
population of points spread in the domain of reference and by evolving the
population in sequential generations to achieve a better fitness.

The evaluation of the criterion in Equation (7) can become computationally
expensive because it requires a high number of evaluation of the bivariate normal
CDF in order to properly estimate the integral. This consideration led us to
develop a second optimization algorithm.

4.2 Algorithm B: maximizing ρ
n,m

(x)

We follow closely the reasoning used in [32] and [4] for the development of a
heuristic method to minimize the integrated squared error by maximizing the
mean squared error. The characterization of the expected distance in measure
in Equation (4) is the integral of the sum of two probabilities. They are non-
negative continuous functions of x as the underlying Gaussian field is continuous.
The integral, therefore, is large if the integrand takes large values. Moreover, Z̃
interpolates Z in E hence the integrand is zero in the chosen simulation points.
The two previous considerations lead to a natural variation of Algorithm A
where the simulation points are chosen in order to maximize the integrand.

Algorithm B is based on a sequential maximization of the integrand. Given
E∗

i−1 = {e∗1, ..., e∗i−1} points previously optimized, the ith point ei is chosen as
the maximizer of ρ∗n,i−1(x), where

ρ∗n,i−1(x) = Φ2

(
cn(x, E∗

i−1),Σn(x, E∗
i−1)

)
+ Φ2

(
−cn(x, E∗

i−1),Σn(x, E∗
i−1)

)
.

The evaluation of the objective function in algorithm B does not require the
approximation of an integral in R

d, thus it requires substantially less approxi-
mations of the bivariate normal CDF.
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The maximization of the objective function is performed with the L-BFGS-B
algorithm [7] implemented in R with the function optim. The choice of start-
ing points for the optimization is crucial for gradient descent algorithms; in
our case we decided to exploit the analytic formula introduced in [4] for the
coverage function of Γ, pΓ(x) to obtain a reasonable starting point for each se-
quential maximization. All points xs with high values of pΓ(xs)(1 − pΓ(xs))
are reasonable starting points because they are located in regions of high un-
certainty for the excursion set, thus simulations around their locations are more
meaningful than in other locations. Before starting the maximization, the func-
tion w(x) = pΓ(x)(1 − pΓ(x)) is evaluated at a fine space filling design and, at
each sequential maximization, the starting point is drawn from a distribution
proportional to the computed values of w.

4.3 Comparison with non optimized simulation points

In order to quantify the importance of optimizing the simulation points and to
show the differences between the two algorithms we first present a 2-d analytical
example.

Consider the Branin-Hoo function (see [24]) multiplied by a factor -1 and
normalized so that the domain becomes D = [0, 1]2. We are interested in esti-
mating the excursion set Γ⋆ = {x ∈ D : f(x) ≥ −10} with n = 20 evaluations of
f . We consider a Gaussian random field Z with mean and covariance function
m and k respectively. The covariance function is chosen as a tensor product
Matérn kernel (ν = 3/2), [34], and its parameters are estimated by Maximum
Likelihood with the package DiceKriging [30]. By following the GRF modeling
approach we assume that f is a realization of Z and we condition Z on n = 20
evaluations. The evaluation points are chosen with a maximin Latin Hypercube
Sample (LHS) design [35] and the conditional field is computed with ordinary
kriging equations.

Discrete realization of the random set Γ on a fine grid can be obtained by
selecting few optimized simulation points and by interpolating the simulations
at those locations on the fine grid. The expected distance in measure is a
good indicator of how close the reconstructed set realizations are to the actual
realizations. Here we compare the expected distance in measure obtained with
optimization algorithms A and B and with two space filling designs, namely a
maximin Latin Hypercube Sample [35] and points from the Sobol sequence [6].

Figure 2 shows the expected distance in measure as a function of the number
of simulation points. The values were computed only in the dotted points for
Algorithms A and B and in each integer for the space filling designs. The
optimized designs always achieve a smaller expected distance in measure, but it
is clear that the advantage of accurately optimizing the choice of points decreases
as the number of points increases, thus showing that the designs tend to become
equivalent as the space is filled with points. This effect, linked to the low
dimensionality of our example, reduces the advantage of optimizing the points,
however in higher dimensions optimizing the points becomes more advantageous
because a much larger number of points is required to fill the space. Algorithm
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Figure 2: Expected distance in measure for different choices of simulation points

A and B show similar results for low numbers of points and almost identical
results for more than 100 simulation points. Even though this effect might be
magnified by the low dimension of the example, it is clear that in most situations
Algorithm B is preferable to Algorithm A as it achieves similar precision while
remaining significantly less computationally expensive, as shown in Figure 4.

5 Application: A new variability measure using

the Distance Transform

In this section we deal with the notions of distance average and distance function
variability introduced in Section 2 and more specifically we present an appli-
cation where the interpolated simulations are used to efficiently compute the
distance function variability. Let us recall that, given Γ1, ...,ΓN realizations of
the random closed set Γ, we can compute an estimator for EDA(Γ) as

E
∗
DA(Γ) = {x ∈ D : d̄∗(x) ≤ ū∗}, (8)

where d̄∗(x) = 1
N

∑N
i=1 d(x,Γi) is the empirical distance function and ū∗ is

the threshold level for d̄∗, chosen in a similar fashion as ū in Definition 2,
see [2] for more detail. The variability of this estimate is measured with the
distance average variability DTV(Γ), which, in the empirical case, is defined as
1
N

∑N
i=1 δ(d̄

∗, d(·,Γi)). In the following we will take the usual Lebesgue L2(Rd)

12



distance as functional distance δ, thus the distance average variability becomes

DTV(Γ) =
1

N

N∑

i=1

∫

Rd

(
d(x,Γi) − d̄∗(x)

)2
dµ(x). (9)

The distance average variability is a measure of uncertainty for excursion set
under the postulated GRF model; if the distance average variability is high it
means that the excursion set estimated with the distance average has a ”high
variance” caused by very different realizations of the excursion set, thus the
estimate is uncertain. This uncertainty quantification method necessitates con-
ditional simulations of the field on a fine grid to obtain a pointwise estimate.
Our simulation method generates approximations of the simulations in a rather
inexpensive fashion even on high quality grids, thus it is possible to compute
this uncertainty measure.

We consider here a two dimensional example in the same setup as in Sec-
tion 4 and we show that by selecting few well-chosen simulation points Em =
{e1, . . . , em}, with m ≪ r, and interpolating the results on G, it is possible to
achieve very similar precision to full design simulations. The design considered
for both the full simulations and the interpolated simulations is a grid with
r = q × q points, where q = 50. The grid design allows us to compute nu-
merically the distance transform with an adaptation for R of the fast distance
transform algorithm implemented in [16]. The precision of the estimate E

∗
DA(Γ)

is evaluated with the distance transform variability DTV(Γ), Equation (9), ap-
proximated numerically on the grid.

A benchmark estimate of DTV(Γ; r) is first obtained from realizations of
Γ stemming from 10.000 conditional Gaussian simulations on the grid of size
r = 50 × 50. The distance transform variability is then computed for real-
izations of Γ obtained via reconstruction from simulations at few points. The
conditional Gaussian field is first simulated 10.000 times at a design Em con-
taining few optimized points, namely m = 10, 20, 50, 75, 100, 120, 150, 175, and
then the results are interpolated on the q× q grid used for the benchmark. The
experiments are reproduced 100 times, thus obtaining an empirical distribution
of DTV(Γ; r), with r = 2500, and of DTV(Γ;m) for each m. Three methods
are compared to obtain simulation points: Algorithm A and B presented in the
previous section and a maximin LHS design. The simulation points obtained
with the three methods are interpolated on the grid with the same technique. In
particular, the ordinary kriging weights are first computed in each point u ∈ G
and the value of the interpolated field Z̃(u) is obtained as a linear combination
of the simulated values Z(Em) weighted by the kriging weights for each u ∈ G.
This procedure is numerically very fast as it only requires algebraic operations.

Figure 3 shows a comparison of the distributions of DTV obtained with full
grid simulations and the distributions obtained with the interpolation over the
grid of few simulations.

The distributions of DTV obtained with interpolations of simulations at
few locations all approximate very well the benchmark distribution with as
little as 100 simulation points, independently of the way simulation points are
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Figure 3: Comparison of the distributions of the simulated DTV(Γ) for different
methods, the dashed horizontal line marks the median value of the benchmark
distribution.

selected. This effect might be enhanced by the low dimension of the example,
but nonetheless it shows substantial savings in simulation costs.

The optimized designs (Algorithm A and B) achieve better approximations
with less points than the maximin LHS design. In particular the maximin LHS
design is affected by a high variability, while the optimized points converge
fast to a good approximation of the benchmark distribution. Interpolation of
simulations at m = 50 points optimized with Algorithm A results in a relative
error of the median estimate with respect to the benchmark of around 0.1%.

Algorithm A and B behave similarly when estimating this variability mea-
sure with m ≥ 75, thus confirming that the reconstructed sets obtained from
simulations at points that optimize either one of the criteria are very similar,
as already hinted by the result on distance in measure shown in the previous
section.

Figure 4 shows the total CPU time for all the simulations in the experiment
for Algorithm A, Algorithm B and for the full grid simulations. The CPU times
for Algorithm A and B also include the time required to optimize the simulation
points. Both interpolation algorithms require less total CPU time than full grid
simulations to obtain good approximations of the benchmark distribution (m >
100). If parallel computing is available wall clock time could be significantly
reduced by parallelizing operations. In particular the full grid simulation can
be parallelized quite easily while the optimization of the simulation points could
be much harder to parallelize. The times were computed on the cluster of the
University of Bern with an Intel Xeon E5649 2.53GHz CPU with 4GB RAM.
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6 Application: Estimating the distribution of a

volume of excursion in six dimensions

In this section we show how it is possible to approach the conditional distribution
of a volume of excursion under a GRF prior by simulating at few well chosen
points and predicting over fine designs.

In the framework developed in section 2, the random closed set Γ naturally
defines a distribution for the excursion set, thus µ(Γ) can be regarded as a
random variable. In the specific case of a Gaussian prior, the expected volume
of excursion can be computed analytically by integrating the coverage function,
however working out the posterior distribution of this volume requires Monte
Carlo simulations (see [37], [1]). In practice, a good estimation of the volume
requires a discretization of the random closed set on a fine design. However,
already in moderate dimensions (2 ≤ d ≤ 10), a discretization of the domain fine
enough to achieve good approximations of the volume might require simulating
at a prohibitive number of points. Here we show how the proposed approach
can help solving this problem on a six-dimensional analytical example.

We consider the following test function h(x) = − log(Hartman6(x)), where
Hartman6 is the six-dimensional Hartman function (see [24]) defined on D =
[0, 1]6 and we are interested in estimating the volume distribution of the excur-
sion set Γ⋆ = {x ∈ D : h(x) ≥ t}, t = 6. The threshold t = 6 is chosen to
obtain a true volume of excursion of around 3%, thus rendering the excursion
set a moderately small set.

A GRF model is built with a Gaussian prior Z with a tensor product Matérn
covariance kernel (ν = 5/2). The parameters of the covariance kernel are es-
timated by Maximum Likelihood from n = 60 observations of h; the same
observations are used to compute the conditional random field. We consider
the discretization G = {u1, . . . ,ur} ⊂ D with r = 10.000 and u1, . . . ,ur Sobol
points in [0, 1]6. The conditional field Z is simulated 10.000 times on G and
consequently N = 10.000 realizations of the trace of Γ over G are obtained.

The distribution of the volume of excursion can be estimated by computing
for each realization the proportion of points where the field takes values above
the threshold. While this procedure is acceptable for realizations coming from
full design simulations, it introduces a bias when it is applied to reconstructed
realizations of excursion sets. In fact, the paths of the predicted field are always
smoother than the paths of full design simulations due to the linear nature of the
predictor ([33]). This introduces a systematic bias on the volume of excursion
for each realization because the sets of excursion induced by small rougher vari-
ations of the true Gaussian field are not intercepted by the predicted field. The
effect changes the mean of the distribution, but it does not influence the variance
of the distribution. In the present setting, for example, we observed that the
mean volume of excursion was consistently underestimated. A modification of
the classic estimate of the distribution of the volume is here considered. Given
a full simulation design of size r, the distribution of the volume of excursion is
obtained with the following steps: firstly the mean volume of excursion is esti-
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Figure 5: Kolmogorov-Smirnov statistics for testing if the distribution of Vm

is equal to the distribution of Vfull. The values for distributions of volume of
reconstructed sets with simulations at points obtained with algorithm B (black
full line) are compared with values obtained from simulations at space filling
points (blue dashed line). The dotted horizontal line is the rejection value at
level 0.05.

mated by integrating the coverage function of Γ over the full design; secondly
the distribution is obtained by computing the volume of excursion for each re-
alization of the reconstructed excursion set; finally the distribution is centered
in the mean value obtained with the first step. The optimal simulation points
are computed with Algorithm B because for a large number of points it achieves
very similar results to Algorithm A but at the same time the optimized points
are much cheaper to compute, as showed in the previous sections.

Denote with Vfull = µ(Γ(E10.000)) the random variable representing the
volume of the excursion set obtained with full design simulations and Vm =
µ(Γ(Em)) the recentered random variable representing the volume of the recon-
structed set obtained from simulations at m points. We compare the distribu-
tion of Vfull and Vm for different values of m with Kolmogorov-Smirnov two
sample tests. Figure 5 shows the values of the Kolmogorov-Smirnov statistics
obtained for testing whether the distribution of Vm is equal to the distribution
of Vfull, for m = 50, 75, 100, 125, 150. Vm is computed both with simulation
points optimized with Algorithm B and with points from a space filling Sobol
sequence. In the Figure the horizontal line is the rejection value at level 0.05.
With confidence level 0.05, the distribution of Vm is not distinguishable from
the distribution of Vfull if m ≥ 125 with optimized points and if m > 150 with
Sobol points.

The estimate of the distribution of the volume of excursion is much faster
with reconstructed sets from simulations at few optimal locations. In fact, the
computational costs are significantly reduced with by interpolating simulations:

17



the CPU time needed to simulate on the full 10.000 points design is 60293 sec-
onds while the total time for the optimization of m = 150 points, the simulation
on those points and the prediction over the full design is 575 seconds. Both
times were computed on the cluster of the University of Bern with an Intel
Xeon E5649 2.53GHz CPU with 4GB RAM.

7 Conclusions

In the context of excursion set estimation, simulating a conditional random field
to obtain realizations of a related excursion set can be useful in many practical
situations. However often the random field needs to be simulated at a fine
design to obtain meaningful realization of the excursion set. Even in moderate
dimensions it is often impractical to simulate at such fine designs, thus rendering
good approximations hard to achieve.

In this paper we introduced a new method to simulate realizations from
a conditional Gaussian random field that mitigates this problem. While the
approach of predicting simulations from few simulation points has already been
introduced in the literature, this is the first attempt to define optimal points
where to simulate based on a specific distance between random closed sets: the
expected distance in measure.

This approach allowed us to study an uncertainty measure that, to the best
of our knowledge, has not been proposed before: the distance transform vari-
ability. The estimation of the distance transform variability is appealing if it is
possible to obtain realizations of the excursion set on fine grids at low computa-
tional costs. We showed on a two-dimensional test function that it is possible to
reduce the computational costs by at least one order of magnitude, thus mak-
ing this uncertainty quantification technique appealing. In general the optimal
simulation points approach could improve the speed of distance average based
methods as for example [22] and [23].

Conditional realizations of the excursion set can also be used to estimate the
volumes of excursion. This problem requires Monte Carlo simulations at fine
designs in order to attain good approximations of the excursion volumes. We
showed on a test case in six dimensions that it is possible to obtain estimates of
the distribution with simulations at few optimal points that are indistinguishable
from the estimates of the distribution obtained with full design simulations.
This study drew our attention to the regularity of the predicted paths because
we observed a bias in the estimate of the volume due to different smoothness
properties of full design simulation and predicted realizations. In this case the
bias was corrected by estimating the mean of the distribution via some fast
centering step, however this issue highlights the need for further studies on the
biases introduced by our random field reconstruction approach.

We presented two algorithms to compute optimal simulation points. While
the heuristic algorithm B is appealing for its computational cost and precision,
there are a number of extensions that could lead to even more savings in com-
putational time, for example, the optimization of the points in this work was
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carried out with generic black box optimizers but it would be possible to achieve
appreciable reductions in optimization time with methods based on analytical
gradients.

A Proof of Proposition 4

Let us first assume that s2n,m → 0 µ-almost everywhere. The expected dis-

tance in measure can be rewritten, according to Equation (4), as dµ,n(Γ, Γ̃) =∫
D
ρn,m(x)µ(dx). Since µ is a finite measure on D and ρn,m(x) ≤ 1, it is suffi-

cient by the dominated convergence theorem to prove that ρn,m → 0 µ-almost
everywhere.

Pick any x ∈ D such that s2n(x) > 0 and s2n,m(x) → 0. Then, for any w > 0,

ρn,m(x) ≤ Pn

(∣∣Z(x) − t
∣∣ ≤ w

)
+ Pn

(∣∣Z̃(x) − Z(x)
∣∣ ≥ w

)

≤ 2w√
2πs2n(x)

+
s2n,m(x)

w2
.

With w =
√
sn,m(x), it follows that

ρn,m(x) ≤ 2
√
sn,m(x)√
2πs2n(x)

+ sn,m(x) → 0. (10)

Since s2n,m → 0 µ-almost everywhere and ρn,m(x) = 0 wherever s2n(x) = 0,
Equation (10) proves the sufficiency part of Proposition 4.

Conversely, assume that dµ,n(Γ, Γ̃) → 0 when m → +∞, or equivalently
that (ρn,m)

m≥0 converges to zero in L1 (D,µ). Then (ρn,m)
m≥0 also converges

to zero in measure:

∀ε > 0, µ
(
Aε

n,m

)
−−−−−→
m→+∞

0, where Aε
n,m = {x ∈ D : ρn,m(x) ≥ ε}.

For any M > 1, consider the following sets:

Dn,M =
{
x ∈ D : 0 < 1

M
sn(x) ≤

∣∣t−mn(x)
∣∣ ≤ Msn(x)

}
,

AM,ε
n,m = Dn,M ∩ Aε

n,m,

BM,ε
n,m = Dn,M ∩ {sn,m ≥ εsn} .

Then we have the following technical result.

Lemma 6. For all M > 1 and ε > 0, there exists ε′ > 0 (that does not depend
on n, m or t) such that ∀x ∈ BM,ε

n,m, ρn,m(x) ≥ ε′, and therefore BM,ε
n,m ⊂ AM,ε′

n,m .

Using Lemma 6, for any M > 1 and ε > 0, we have

µ
(
BM,ε

n,m

)
≤ µ

(
AM,ε′

n,m

)
≤ µ

(
Aε′

n,m

)
−−−−−→
m→+∞

0.
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In other words, (sn,m/sn)
m≥0 converges to zero in measure on Dn,M . As a con-

sequence, since this is a decreasing sequence, (sn,m/sn)
m≥0 converges to zero µ-

almost everywhere on Dn,M , and therefore µ-almost everywhere on ∪M>1Dn,M ={
x ∈ D : sn(x) > 0

}
. Convergence also trivially holds where sn(x) = 0.

A.1 Proof of Lemma 6

Let M > 1, ε > 0, x ∈ BM,ε
n,m and set ζ = mn(x). Because BM,ε

n,m ⊂ Dn,M ,
|t− ζ| ≥ εsn(x) > 0 and in particular t 6= ζ. Assume, without loss of generality,
that ζ < t and ε ≤ 1√

2
. Recall that ρn,m(x) = Pn (En,m(x)) where En,m(x) is

the event defined by

En,m(x) =
{
x ∈ Γ∆Γ̃

}
= E+

n,m(x) ∪ E−
n,m(x),

E+
n,m(x) =

{
Z(x) < t, Z̃ ≥ t

}
,

E−
n,m(x) =

{
Z(x) ≥ t, Z̃ < t

}
.

Recall also that, since Z is a Gaussian process, Z̃ and ǫn,m(x) = Z(x) − Z̃ are
independent Gaussian variables under Pn, with κ2

n,m(x) := Varn (ǫn,m(x)) =
s2n(x) − s2n,m(x).

Let us first assume that sn,m(x) ≥ 1√
2
sn(x) ≥ εsn(x). As a consequence,

κn,m(x) ≤ 1√
2
sn(x) and therefore

t− ζ

κn,m(x)
≥ 1

M

sn(x)

κn,m(x)
≥

√
2

M
and

t− ζ

sn,m(x)
≤ M

sn(x)

sn,m(x)
≤ M

√
2.

For any w > 0, the following inclusions hold:

En,m(x) ⊃ E−
n,m(x) =

{
Z̃ < t and Z̃ + ǫn,m(x) ≥ t

}

⊃
{
ζ − w ≤ Z̃ ≤ t and ζ − w + ǫn,m(x) ≥ t

}

⊃
{
−w ≤ Z̃ − ζ ≤ t− ζ and ǫn,m(x) ≥ t− ζ + w

}
.

With w = t− ζ, using the independence of Z̃ and ǫn,m(x), we get

ρn,m(x) ≥ Pn

(
E−

n,m(x)
)

≥ Pn

(∣∣Z̃ − ζ
∣∣ ≤ t− ζ

)
Pn

(
ǫn,m(x) ≥ 2(t− ζ)

)

≥
(
1 − 2Φ

(
−
√

2/M
))

Φ
(
−2M

√
2
)
. (11)

Let us now assume that 1√
2
sn(x) ≥ sn,m(x) ≥ εsn(x). As a consequence,

κn,m(x) ≥ 1√
2
sn(x) and therefore

t− ζ

sn,m(x)
≤ M

sn(x)

sn,m(x)
≤ M

ε
and

1

M
≤ t− ζ

κn,m(x)
≤ M

√
2.
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For any w > 0, the following inclusions hold:

En,m(x) ⊃ E+
n,m(x) =

{
Z̃ ≥ t and Z̃ + ǫn,m(x) < t

}

⊃
{
t ≤ Z̃ ≤ t + w and ǫn,m(x) < −w

}
.

Using again w = t− ζ and the independence of Z̃ and ǫn,m(x), we get

ρn,m(x) ≥ Pn

(
E+

n,m(x)
)

≥ Pn

(
t− ζ ≤ Z̃ − ζ ≤ 2(t− ζ)

)
Pn

(
ǫn,m(x) ≥ −(t− ζ)

)

≥ 1

M
ϕ
(
2
√

2M
)

Φ

(
−M

ε

)
, (12)

where ϕ denotes the probability density function of the standard Gaussian dis-
tribution.

Finally, ρn,m(x) ≥ ε′, where ε′ denotes the minimum of the lower bounds
obtained in (11) and (12).
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