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Quantifying uncertainties on excursion sets under
a Gaussian random field prior

Dario Azzimonti * Julien Bect | Clément Chevalier ¥ David Ginsbourger®*

Abstract

We focus on the problem of estimating and quantifying uncertainties
on the excursion set of a function under a limited evaluation budget. We
adopt a Bayesian approach where the objective function is assumed to be
a realization of a Gaussian random field. In this setting, the posterior
distribution on the objective function gives rise to a posterior distribution
on excursion sets. Several approaches exist to summarize the distribution
of such sets based on random closed set theory. While the recently pro-
posed Vorob’ev approach exploits analytical formulae, further notions of
variability require Monte Carlo estimators relying on Gaussian random
field conditional simulations. In the present work we propose a method to
choose Monte Carlo simulation points and obtain quasi-realizations of the
conditional field at fine designs through affine predictors. The points are
chosen optimally in the sense that they minimize the posterior expected
distance in measure between the excursion set and its reconstruction. The
proposed method reduces the computational costs due to Monte Carlo
simulations and enables the computation of quasi-realizations on fine de-
signs in large dimensions. We apply this reconstruction approach to obtain
realizations of an excursion set on a fine grid which allow us to give a new
measure of uncertainty based on the distance transform of the excursion
set. Finally we present a safety engineering test case where the simulation
method is employed to compute a Monte Carlo estimate of a contour line.

Keywords: Set estimation, distance transform, Gaussian processes, con-
ditional simulations

1 Introduction

In a number of application fields where mathematical models are used to predict
the behavior of some parametric system of interest, practitioners not only wish
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to get the response for a given set of inputs (forward problem) but are interested
in recovering the set of inputs values leading to a prescribed value or range of
values for the output (inverse problem). Such problems are especially common
in cases where the response is a scalar quantifying the degree of danger or
abnormality of a system, or equivalently is a score measuring some performance
or pay-off. Examples include applications in reliability engineering, where the
focus is often put on describing the set of parameter configurations leading to
an unsafe design (mechanical engineering [16], [4], nuclear criticality [9], etc.),
but also in natural sciences, where conditions leading to dangerous phenomena
in climatological [18] or geophysical [3] settings are of crucial interest.

In this paper we consider a setup where the forward model is a function
f:D cR?— R and we are interested in the inverse problem of reconstructing
the set T* = f~Y(T) = {x € D : f(x) € T}, where T C R denotes the range
of values of interest for the output. Often the forward model f is costly to
evaluate and a systematic exploration of the input space D, e.g., on a fine
grid, is out of reach, even in small dimensions. Therefore reconstructions of I'*
have to be performed based on a small number of evaluations, thus implying
some uncertainty. Various methods are available to interpolate or approximate
an objective function relying on a sample of pointwise evaluations, including
polynomial approximations, splines, neural networks, and more. Here we focus
on the so-called Gaussian Random Field modeling approach (also known as
Gaussian Process, [31]).

Gaussian Random Field (GRF) models have become very popular in engi-
neering and further application areas to approximate, or predict, expensive-to-
evaluate functions relying on a drastically limited number of observations (see,
e.g., [25], [41], [30], [4], [33], [5]). In this framework we assume that f is a
realization of a random field Z = (Zx)xep, which throughout the paper, unless
otherwise noted, is assumed to be Gaussian with continuous paths almost surely.
A major advantage of GRF models over deterministic approximation models is
that, given a few observations of the function f at the points X,, = {x1,...,X,},
they deliver a posterior probability distribution on functions, not only enabling
predictions of the objective function at any point, but also a quantification of
the associated uncertainties.

The mean of the posterior field Z gives a plug-in estimate of the set I'* (see,
e.g., [30] and references therein), however here we focus on estimates based on
conditional simulations. The idea of appealing to conditional simulation in the
context of set estimation has already been introduced in various contexts (see,
e.g., [26], [13], [6]). Instead of having a single estimate of the excursion set like
in most set estimation approaches (see, e.g., [15], [21], [32]), it is possible to
get a distribution of sets. For example, Figure 1 shows some realizations of an
excursion set obtained by simulating a Gaussian random field Z conditional on
few observations of the function f at locations X,, = {x1,...,X,} (n = 6, black
triangles). A natural question arising in practice is how to summarize this dis-
tribution by appealing to simple concepts, analogous to notions of expectation
and variance (or location and scatter) in the framework of random variables
and vectors. For example the notions of Vorob’ev expectation and Vorob’ev
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(a) True function, posterior GRF mean and
true excursion set I' = {z € [0,1] : f(z) >
t} with ¢ = 0 (horizontal lines at y = —3).

(b) 3 realizations of the conditional GRF
and the associated excursion set (horizontal
lines at y = —3), obtained with simulations
at 1000 points in [0, 1].

o ses s Covariance function Matérn (v =5/2)
Number of observations n==06 (A)
R Simulation points optimized Algorithm B
. Number of simulation points m =30 (#)
N Threshold t=0

(¢) 3 quasi-realizations of the conditional
GRF and the associated random set (hori-
zontal lines at y = —3) generated by simu-
lating at 30 optimally-chosen points (black
diamonds, shown at y = 1.7) and predict-
ing the field at the 1000 points design.

Figure 1: Gaussian random field model based on few evaluations of a determin-
istic function.

deviation have been recently revisited [10] in the context of excursion set esti-
mation and uncertainty quantification with GRF models. In Sections 2 and 5 we
review another random set expectation, the distance average expectation (see,
e.g., [2]). This expectation provides a different uncertainty quantification esti-
mate in the context of GRF modeling, the distance average variability. Since the
distance average variability heavily relies on conditional simulations, to the best
of our knowledge, it has not been used before as an uncertainty quantification
technique.

One of the key contributions of the present paper is a method to approx-
imate conditional realizations of the random excursion set based on simula-
tions of the underlying Gaussian random field at few points. By contrast, in
the literature, Monte Carlo simulations of excursion sets are often obtained
by simulating the underlying field at space filling designs, as shown in Fig-



ure 1b. While this approach is straightforward to implement, it might be too
cumbersome when fine designs are needed, especially in high dimensions. The
proposed approach reduces the simulation costs by choosing few appropriate
points E,, = {e1,...,e,} where the field is simulated. The field’s values are
then approximated on the full design with a suitable affine predictor. We call
a quasi-realization of the excursion set the excursion region of a simulation of
the approximate field. Coming back to the example introduced in Figure 1,
Figure 1c shows quasi-realizations of the excursion set I' based on simulations
of the field at m = 30 points predicted at the fine design with the best linear
unbiased predictor. Simulation points are chosen in an optimal way in the sense
that they minimize a specific distance between the reconstructed random set
and the true random set. With this method it is possible to obtain arbitrarily
fine approximations of the excursion set realizations while retaining control on
how close those approximations are to the true random set distribution.

The paper is divided into six sections. In Section 2 we introduce the frame-
work and the fundamental definitions needed for our method. In Section 3 we
give an explicit formula for the distance between the reconstructed random ex-
cursion set and the true random excursion set. In this section we also present a
result on the consistency of the method when a dense sequence points is consid-
ered as simulation points; the proofs are in Appendix A. Section 4 explains the
computational aspects and introduces two algorithms to calculate the optimized
points. In this section we also discuss the advantages and limitations of these
algorithms. Sections 5 presents the implementation of the distance average
variability as uncertainty quantification measure. We show that this uncer-
tainty measure can be computed accurately with the use of quasi-realizations.
In Section 6 we show how the simulation method allows to compute estimates
of the level sets in a two dimensional test case from nuclear safety engineering.
The proposed method to generate accurate quasi-realizations of the excursion
set from few simulations of the underlying field is pivotal in this test case as it
allows us to operate on high resolution grids thus obtaining good linear approxi-
mations of the level set curve. Another six-dimensional application is presented
in Appendix B, where the distribution of the excursion volume is estimated
with approximate conditional simulations generated using the proposed simula-
tion method.

2 Preliminaries

In this section we recall two concepts coming from the theory of random closed
sets. The first one gives us the distance between the reconstructed set and the
true random set, while the second one leads to the definition of an uncertainty
quantification measure for the excursion set estimate. See, e.g., [28] Chapter 2,
for a detailed overview on the subject.

Throughout the paper f : D C R* — R, d > 1, is considered an unknown
real-valued continuous objective function and D is a compact subset of R?. We
model f with Z = (Zx)xep, & Gaussian random field with continuous paths,



whose mean function and covariance kernel are denoted by m and K. The
range of critical responses and the corresponding excursion set are denoted by
T € B(R), a measurable element of the Borel o-algebra of R, and I'* = f~}(T') =
{x € D: f(x) € T} respectively. In most applications, T is a closed set of the
form [t,00) for some ¢t € R. Here we solely need to assume that T is closed in
R, however we restrict ourselves to T = [t, 00) for simplicity. Generalizations
to unions of intervals are straightforward. The excursion set I'* is closed in D
because it is the pre-image of a closed set by a continuous function. Similarly,
I'={x € D:Z(x) €T} defines a random closed set.

2.1 Vorob’ev approach

A key element for the proposed simulation method is the notion of distance in
measure. Let p be a measure on the Borel o-algebra B(D) and S1,S2 € B(D).
Their distance in measure (with respect to ) is defined as p(S;ASz), where
S1ASy = (S1NS5)U(S2N SY) is the symmetrical difference between S; and Ss.
Similarly, for two random closed sets I'; and I's, one can define a distance as
follows.

Definition 1 (Expected distance in measure). The expected distance in measure
between two random closed sets I'1, 1o with respect to a Borel measure i is the
function d,, : B(D) x B(D) — R, defined as

du(T'1,T2) = E[p(T1AL)]. (1)

Several notions of expectation have been proposed for random closed sets,
in particular, the Vorob’ev expectation is related to the expected distance in
measure. Consider the coverage function of a random closed set I, pr : D —
[0,1] defined as pr(x) := P(x € I'). The Vorob’ev expectation @, of T is
defined as the « level set of its coverage function, i.e. Qo = {x € D : pr(x) >
a} [42], where the level « satisfies u(Qg) < E[p(I)] < pu(Qq) for all 5 >
a. Tt is a well-known fact [28] that, in the particular case E[u(T")] = p(Qa),
the Vorob’ev expectation minimizes the distance in measure to I' among all
measurable (deterministic) sets M such that u(M) = E[u(T)]. Figure 2a shows
the Vorob’ev expectation computed for the excursion set of the GRF in the
example of Figure 1. While the Vorob’ev expectation is used for its conceptual
simplicity and its tractability, there exists other definitions of random closed
set expectation and variability. In the following we review another notion of
expectation for a random closed set: the distance average and its related notion
of variability.

2.2 Distance average approach

The distance function of a point x to a set S is defined as the function d :
D x F' — R that returns the distance between x € D and S € F’, where F' is
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Figure 2: Realizations I' obtained from the GRF presented in Figure 1 and two
random set expectations for this excursion set.

the space of all non-empty closed sets in D (see [28] pp. 179-180 for details).
In general, such distance functions can take any value in R (see [2] and [28]
for examples), however here we restrict ourselves to non-negative distances. In
what follows, we use the distance function d(x,S) = inf{p(x,y) : x € D,y € S}
where p is the Euclidean distance in R?.

Consider S =T and assume that d(x,T") has finite expectation for all x € D,
the mean distance function is d : D — R, defined as d(x) := E[d(x,T)].
Recall that it is possible to embed the space of Euclidean distance functions in
L?(R%). Let us further denote with 6(f,g) the L? metric, defined as 6(f, g) :=

(Jp(f —9)%dp) Y2 The distance average of I' [28] is defined as the set that has
the closest distance function to d, with respect to the metric 9.

Definition 2 (Distance average and distance average variability). Let @ be the
value of u € R that minimizes the §-distance 6(d(-,{d < u}),d) between the
distance function of {d < u} and the mean distance function of I'. If §(d(-,{d <
u}),d) achieves its minimum in several points we assume @ to be their infimum.
The set

Epa(l) ={x € D :d(x) < u} (2)

is called the distance average of I' with respect to 6. In addition, we define the
distance average variability of T with respect to § as DAV(T') = E[§?(d, d(-,T))].

These notions will be at the heart of the application section, where a method
is proposed for estimating discrete counterparts of Epa (I") and DAV(T) relying
on approximate GRF simulations. In general, distance average and distance
average variability can be estimated only with Monte Carlo techniques, therefore
we need to be able to generate realizations of I'. By taking a standard matrix
decomposition approach for GRF simulations, a straightforward way to obtain



realizations of I' is to simulate Z at a fine design, e.g., a grid in moderate
dimensions, G = {uy,...,u,} C D with large » € N, and then to represent I"
with its discrete approximation on the design G, I'¢ = {u e G: Z, € T}. A
drawback of this procedure, however, is that it may become impractical for a
high resolution r, as the covariance matrix involved may rapidly become close
to singular and also cumbersome if not impossible to store. Figure 2b shows the
distance average computed with Monte Carlo simulations for the excursion set of
the example in Figure 1. In the example the distance average expectation has a
slightly bigger Lebesgue measure than the Vorob’ev expectation. In general the
two random set expectations yield different estimates, sometimes even resulting
in a different number of connected components, as in the example introduced
in Section 5.

3 Main results

In this section we assume that Z has been evaluated at locations X,, = {x1,...,x,} C
D, thus we consider the GRF conditional on the values Z(X,,) := (Zx,,- -, Zx, )-
Following the notation for the moments of Z introduced in Section 2, we denote
the mean and covariance kernel of Z conditional on Z(X,) = (Zx,,...,Zx,)
with m,, and R, respectively. The proposed approach consists in replacing con-
ditional GRF simulations at the finer design G with approximate simulations
that rely on a smaller simulation design E,, = {e1,..., e}, with m < r. The
quasi-realizations generated with this method can be used as basis for quantify-
ing uncertainties on I', for example with the distance average variability. Even
though such an approach might seem somehow heuristic at first, it is actually
possible to control the effect of the approximation on the end result, as we show
in this section.

3.1 A Monte-Carlo approach with predicted conditional
simulations

We propose to replace Z by a simpler random field denoted by Z , whose simu-
lations at any design should remain at an affordable cost. In particular, we aim
at constructing Z in such a way that the associated I' is as close as possible to
I" in expected distance in measure.

Consider a set E,,, = {e1,...,e,} of m points in D, 1 < m < r, and denote
by Z(Ey) = (Zeys- - Ze,,)T the random vector of values of Z at E,,. Con-
ditional on Z(X,,), this vector is multivariate Gaussian with mean m,(E,,) =
(my(e1),...,m,(e,))" and covariance matrix &, (Ep, En) = [R,(ei,€5)]ij=1,...m-
The essence of the proposed approach is to appeal to affine predictors of Z, i.e.
to consider Z of the form

Z(x) = a(x) + b (x)Z(E.) (x € D), (3)

where @ : D — R is a trend function and b : D — R™ is a vector-valued
function of deterministic weights. Note that usual kriging predictors are partic-



ular cases of Equation (3) with adequate choices of the functions a and b, see,
for example, [14] for an extensive review. Re-interpolating conditional simula-
tions by kriging is an idea that has been already proposed in different contexts,
notably by [29] in the context of Bayesian uncertainty analysis for complex
computer codes. However, while the problem of selecting the evaluation points
X,, has been addressed in many works (see, e.g., [35, 25, 20, 30, 9] and refer-
ences therein), to the best of our knowledge the derivation of optimal criteria
for choosing the simulation points E,, has not been addressed until now, be it
for excursion set estimation or for further purposes. Computational savings for
simulation procedures are hinted by the computational complexity of simulating
the two fields. Simulating Z at a design with r points with standard matrix
decomposition approaches has a computational complexity O(r®), while simu-
lating Z has a complexity O(rm? 4+ m?). Thus if m < r simulating Z might
bring substantial savings.

In Figure 3 we present an example of work flow that outputs a quantification
of uncertainty over the estimate I" for I'* based on the proposed approach. In the
following sections we provide an equivalent formulation of the expected distance
in measure between I' and I' introduced in Definition 1 and we provide methods
to select optimal simulation points E,,.

3.2 Expected distance in measure between Fand T

In the next proposition we show an alternative formulation of the expected
distance in measure between I' and I" that exploits the assumptions on the field
Z.

Proposition 3 (Distance in measure between I' and f) Under the previously
introduced assumptions Z and Z are Gaussian random fields and T' and T are
random closed sets.

a) Assume that D C R? and p is a finite Borel measure on D, then we have

Bun(C.F) = [ prm () @
with
Prm(x) =Py (x € FAf)
=P, (Z(x) > t, Z(x) < t) + Po(Z(x) < t, Z(x) > t). (5)
where P,, denotes the conditional probability IP’(- ‘ Z(Xn))

b) Moreover, using the notation introduced in Section 3, we get
]P)TI(Z(X) Z ta Z(X) < t) = (1)2 (Cn(X, Em), Zn(xv Em)) ) (6)

where Po(-,X) is the cumulative distribution function of a centered bivariate
Gaussian with covariance %, with

eat ) = (1000 b))



Input:
e Prior Z ~ GRF(m, 8);

e Data X, f(X,) = Z(X,);

e Fine simulation design G.

Posterior GRF Z | Z(X,)
with mean m, and covariance kernel f&,.

Approximation step

Obtain simulation points E,, with
e Algorithm A: see Section 4.1; or

e Algorithm B: see Section 4.2.

Simulation step

Simulate Z | Z(X,,) at G, where
Z(x) = a(x) + bT (x)Z(E.n), x € G (see Section 3)
Obtain quasi-realizations of I' | Z(X,,)
F={xeG:Z(x)eT}

Output:
e Quasi-realizations of I' | Z(X,);
e Uncertainty quantification on I' | Z(Xn)

(e.g. DAV(T), I(dT), p(T"), Sections 5,6,B).

Figure 3: Flow chart of proposed operations to quantify the posterior uncer-
tainty on I'.

and

R (X, X) —b(x)T &, (Epn, x)
En (% Bm) = ( —b(x)" Rn(Em, %) b(x)T Rn(Ep, Enn)b(x) )

¢) Particular case: if b(x) is chosen as the simple kriging weights b(x) =
(B )~ 2y (B, ), then

o Rau(x,x) —Yn (%, Em)
En(x’ Em) N < _'Yn(X,Em) 'yn(X, Em) ) (7)

where Y (%, E.p) = Varn[é(x)] = 8B, X) TR0 (Ep, En) 1R (B, X).

Proof. (of Proposition 3)
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a) Interchanging integral and expectation by Tonelli’s theorem, we get
dun(T,T) = En[u(T\D)] + En [u(T\D)]
=E, {/ 12(x)>t1 ()< H(dx) +/12(x)>tlz(x)<tﬂ(dx)]
= [ [Pu(200 2 £.200) < 1)+ Po(2(0) < £, 2x) 2 )] )

b) Since the random field Z is assumed to be Gaussian, the vector-valued ran-
dom field (Z(x), Z(x)) is also Gaussian conditionally on Z(X,,), and proving
the property boils down to calculating its conditional moments. Now we di-
rectly get E,[Z(x)] = m,(x) and E,[Z(x)] = a(x) + b(x)Tm,(E,,). Simi-

larly, Var, [Z(x)] = f,(x,x) and Var,[Z(x)] = b(x)T &, (E,,, Exn)b(x). Finally,
Cov,[Z (%), Z(x)] = b(x)T &, (Em,x) and Equation 6 follows by Gaussianity.
c¢) Expression in Equation 7 follows immediately by substituting b(x) into

Remark 1. The Gaussian assumption on the random field Z in Proposition 8
can be relazed: in part a) it suffices that the excursion sets of the field Z are
random closed sets and in part b) it suffices that the field Z is Gaussian condi-
tionally on Z(X,,).

3.3 Convergence result

Let ej,es,... be a given sequence of simulation points in D and set E,, =
{e1,...,en} for all m. Assume that Z is, conditionally on Z(X,), a Gaussian
random field with conditional mean m,, and conditional covariance kernel &,.
Let Z(x) = E, (Z(x) | Z(En)) be the best predictor of Z(x) given Z(X,,)
and Z(E,,). In particular, Z is affine in Z(E,,). Denote by s (%) the condi-
tional variance of the prediction error at x:

$2m(%) = Vary (Z(2) = Z(2)) = Var, (2(2) | Z(Ep))
= R0 (%,%) = &0 (B, )" K0 (B Bu) ™' R (B x).

Proposition 4 (Approximation consistency). Let f(Em) ={xeD: Z(x) S

T'} be the random excursion set associated to Z. Then, asm — oo, dpn(T,T(Ey)) —
0 if and only if S%,m — 0 p-almost everywhere.

Corollary 5. Assume that the covariance function of Z is continuous. a) If the
sequence of simulation points is dense in D, then the approzimation scheme is
consistent (in the sense that d;, »(I',I'(Ey,)) — 0 when m — 00). b) Assuming
further that the covariance function of Z has the NEB property [39], the density
condition is also mecessary.

The proof of Proposition 4 is in Appendix A
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4 Practicalities

In this section we use the results established in Section 3 to implement a method
that selects appropriate simulation points E,, = {e1,...,e,,} C D, for a fixed
m > 1. The conditional field is simulated on E,, and approximated at the
required design with ordinary kriging predictors. We present two algorithms to
find a set E,, that approximately minimizes the expected distance in measure
between I and I'(E,;, ). The algorithms were implemented in R with the packages
KrigInv [12] and DiceKriging [33].

4.1 Algorithm A: minimizing d,, (T, T)

The first proposed algorithm (Algorithm A) is a sequential minimization of the
expected distance in measure dﬂﬁn(F,f). We exploit the characterization in
Equation (4) and we assume that the underlying field Z is Gaussian. Under
these assumptions, an optimal set of simulation points is a minimizer of the
problem,

miri:imize du,n(l",f) = /pn,m(x)u(dx)

= / (@2 (Cn (%, Ep), En(x,Ep)) + @2 (—cn(x, En), X0 (%, Epy )] p(dx).
(8)

Several classic optimization techniques have already been employed to solve
similar problems for optimal designs, for example simulated annealing [34], ge-
netic algorithms [22], or treed optimization [20]. In our case such global ap-
proaches lead to a m x d dimensional problem and, since we do not rely on an-
alytical gradients, the full optimization would be very slow. Instead we follow
a greedy heuristic approach as in [35], [9] and optimize the criterion sequen-
tially: given Ef ; = {ef,...,e]_;} points previously optimized, the ith point e;
is chosen as the minimizer of d, ,, (T, f’;) where f;‘ = f(E;L1 U{e;}). The points
optimized in previous iterations are fixed as parameters and are not modified
by the current optimization.

The parameters of the bivariate normal, ¢, (x, F;) and £, (x, E;), depend on
the set F; and therefore need to be updated each time the optimizer requires
an evaluation of the criterion in a new point. Those functions rely on the krig-
ing equations, but recomputing each time the full kriging model is numerically
cumbersome. Instead we exploit the sequential nature of the algorithm and use
kriging update formulas [11] to compute the new value of the criterion each time
a new point is analyzed.

Numerical evaluation of the expected distance in measure poses the issue of
approximating both the integral in R? and the bivariate normal distribution in
Equation (8). The numerical approximation of the bivariate normal distribu-
tion is computed with the pbivnorm package which relies on the fast Fortran
implementation of the standard bivariate normal CDF introduced in [19]. The
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integral is approximated via quasi-Monte Carlo method: the integrand is evalu-
ated in points from a space filling sequence (Sobol’, [7]) and then approximated
with a sample mean of the values.

The criterion is optimized with the function genoud [27], a genetic algorithm
with BFGS descents that finds the optimum by evaluating the criterion over a
population of points spread in the domain of reference and by evolving the pop-
ulation in sequential generations to achieve a better fitness. Here, the gradients
are numerically approximated.

4.2 Algorithm B: maximizing p,, ,,(x)

The evaluation of the criterion in Equation (8) can become computationally
expensive because it requires a high number of evaluation of the bivariate normal
CDF in order to properly estimate the integral. This consideration led us to
develop a second optimization algorithm.

We follow closely the reasoning used in [35] and [4] for the development of
an heuristic method to obtain the minimizer of the integrated mean squared
error by maximizing the mean squared error. The characterization of the ex-
pected distance in measure in Equation (4) is the integral of the sum of two
probabilities. They are non-negative continuous functions of x as the underly-
ing Gaussian field is continuous. The integral, therefore, is large if the integrand
takes large values. Moreover, Z interpolates Z in E hence the integrand is zero
in the chosen simulation points. The two previous considerations lead to a nat-
ural variation of Algorithm A where the simulation points are chosen in order
to maximize the integrand.

Algorithm B is based on a sequential maximization of the integrand. Given
Ef | ={ef,...,e_;} points previously optimized, the ith point e; is the maxi-
mizer of the following problem,

maximize pj, ;1 (%) = g (cn(x, Ef_ 1), Bn(x, i) + P2 (—cn(x, B 1), En(x, B} _))
for fixed, previously optimized E; ; = {e],...,e]_1}.

The evaluation of the objective function in Algorithm B does not require
numerical integration in R?, thus it requires substantially less evaluations of the
bivariate normal CDF.

The maximization of the objective function is performed with the L-BFGS-B
algorithm [8] implemented in R with the function optim. The choice of starting
points for the optimization is crucial for gradient descent algorithms. In our
case the objective function to maximize is strongly related with pr, the coverage
function of T', in fact all points x, where the function w(x) := pr(x)(1 — pr(x))
takes high values are reasonable starting points because they are located in
regions of high uncertainty for the excursion set, thus simulations around their
locations are meaningful. Before starting the maximization, the function w(x)
is evaluated at a fine space filling design and, at each sequential maximization,
the starting point is drawn from a distribution proportional to the computed
values of w.
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Figure 4: Expected distance in measure for different choices of simulation points

4.3 Comparison with non optimized simulation points

In order to quantify the importance of optimizing the simulation points and to
show the differences between the two algorithms we first present a 2-d analytical
example.

Consider the Branin-Hoo function (see [25]) multiplied by a factor -1 and
normalized so that its domain becomes D = [0,1]2. We are interested in esti-
mating the excursion set I'* = {x € D : f(x) > —10} with n = 20 evaluations
of f. We consider a Gaussian random field Z with constant mean function m
and covariance £ chosen as a tensor product Matérn kernel (v = 3/2) [38]. The
covariance kernel parameters are estimated by Maximum Likelihood with the
package DiceKriging [33]. By following the GRF modeling approach we assume
that f is a realization of Z and we condition Z on n = 20 evaluations. The
evaluation points are chosen with a maximin Latin Hypercube Sample (LHS)
design [37] and the conditional mean and covariance are computed with ordinary
kriging equations.

Discrete quasi-realizations of the random set I' on a fine grid can be obtained
by selecting few optimized simulation points and by interpolating the simula-
tions at those locations on the fine grid. The expected distance in measure is a
good indicator of how close the reconstructed set realizations are to the actual
realizations. Here we compare the expected distance in measure obtained with
optimization algorithms A and B and with two space filling designs, namely a
maximin Latin Hypercube Sample [37] and points from the Sobol’ sequence [7].

Figure 4 shows the expected distance in measure as a function of the number
of simulation points. The values were computed only in the dotted points for
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algorithms A and B and in each integer for the space filling designs. The opti-
mized designs always achieve a smaller expected distance in measure, but it is
clear that the advantage of accurately optimizing the choice of points decreases
as the number of points increases, thus showing that the designs tend to be-
come equivalent as the space is filled with points. This effect, linked to the low
dimensionality of our example, reduces the advantage of optimizing the points,
however in higher dimensions a much larger number of points is required to fill
the space hence optimizing the points becomes more advantageous, as shown
in Appendix B. Algorithm A and B show almost identical results for more
than 100 simulation points. Even though this effect might be magnified by the
low dimension of the example, it is clear that in most situations Algorithm B
is preferable to Algorithm A as it achieves similar precision while remaining
significantly less computationally expensive, as shown in Figure 6.

5 Application: a new variability measure using
the distance transform

In this section we deal with the notions of distance average and distance av-
erage variability introduced in Section 2 and more specifically we present an
application where the interpolated simulations are used to efficiently compute
the distance average variability.

Let us recall that, given I'y, ..., 'y realizations of the random closed set T,
we can compute the estimator for Epa (T)

Epa(T) ={xeD:d"(x) <u"}, 9)

where d*(x) = & Zj;l d(x,T;) is the empirical distance function and @* is the
threshold level for d*, chosen in a similar fashion as @ in Definition 2, see [2]
for more detail. The variability of this estimate is measured with the distance
average variability DAV (T"), which, in the empirical case, is defined as

1 1 o 2
DAV(T) = S8 d(. 1) = 5 3 [ (dxT) - &) du). (10)

where §(-,-) is the L?(R9) distance.

The distance average variability is a measure of uncertainty for excursion set
under the postulated GRF model; this value is high when the distance functions
associated with the realizations I'; are highly varying, which implies that the
distance average estimate of the excursion set is uncertain. This uncertainty
quantification method necessitates conditional simulations of the field on a fine
grid to obtain a pointwise estimate. Our simulation method generates quasi-
realizations in a rather inexpensive fashion even on high resolution grids, thus
making the computation of this uncertainty measure possible.

We consider here the two dimensional example presented in Section 4 and
we show that by selecting few well-chosen simulation points E,,, = {e1,...,en},
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with m < r, and interpolating the results on G, it is possible to achieve very
similar estimate to full design simulations. The design considered for both
the full simulations and the interpolated simulations is a grid with r = ¢ X ¢
points, where ¢ = 50. The grid design allows us to compute numerically the
distance transform, the discrete approximation of the distance average, with an
adaptation for R of the fast distance transform algorithm implemented in [17].
The precision of the estimate E%, ,(T") is evaluated with the distance transform
variability, denoted here with DTV(T;7), an approximation on the grid of the
distance average variability, Equation (10).

The value of the distance transform variability is estimated with quasi-
realizations of I' obtained from simulations at few points. The conditional
Gaussian random field is first simulated 10,000 times at a design E,, contain-
ing few optimized points, namely m =10, 20, 50, 75, 100, 120, 150, 175, and
then the results are interpolated on the ¢ x ¢ grid with the affine predictor Z .
Three methods to obtain simulation points are compared: Algorithm A and B
presented in the previous section and a maximin LHS design. The simulations
obtained with points from each of the three methods are interpolated on the
grid with the same technique. In particular, the ordinary kriging weights are
first computed in each point u € G' and then used to obtain the value of the
interpolated field Z(u) from the simulated values Z(E,,). This procedure is
numerically fast as it only requires algebraic operations.

For comparison a benchmark estimate of DTV (T';r) is obtained from real-
izations of I' stemming from 10,000 conditional Gaussian simulations on the
same grid of size r = 50 x 50.

Both experiments are reproduced 100 times, thus obtaining an empirical dis-
tribution of DTV (T; r), with r = 2500, and of DTV(T'; m) for each m. Figure 5
shows a comparison of the distributions of DTV(T';r) obtained with full grid
simulations and the distributions obtained with the interpolation over the grid
of few simulations.

The distributions of DTV (T; r) obtained from quasi-realizations all approx-
imate well the benchmark distribution with as little as 100 simulation points,
independently of the way simulation points are selected. This effect might be en-
hanced by the low dimension of the example, nonetheless it suggests substantial
savings in simulation costs.

The optimized designs (Algorithm A and B) achieve better approximations
with less points than the maximin LHS design. In particular the maximin LHS
design is affected by a high variability, while the optimized points converge
fast to a good approximation of the benchmark distribution. Interpolation of
simulations at m = 50 points optimized with Algorithm A results in a relative
error of the median estimate with respect to the benchmark of around 0.1%.

Algorithm B shows inferior precision than Algorithm A for very small values
of m. This behavior could be influenced by the dependency of the first simula-
tion point on the starting point of the optimization procedure. In general, the
choice between Algorithm A and Algorithm B is a trade-off between computa-
tional speed and precision. For low dimensional problems, or more in general, if
only a small number of simulation points is needed, then Algorithm A could be
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Figure 5: Comparison of the distributions of the simulated DTV (IT;r) for dif-
ferent methods (from left to right Algorithm A, B and Maximin LHS), the
dashed horizontal line marks the median value of the benchmark (m = 2500)
distribution.

employed at acceptable computational costs. However as the dimensionality in-
creases more points are needed to approximate correctly full designs simulations,
then Algorithm B obtains similar results to A at a much lower computational
cost. Both algorithms behave similarly when estimating this variability mea-
sure with m > 75, thus confirming that the reconstructed sets obtained from
simulations at points that optimize either one of the criteria are very similar,
as already hinted by the result on distance in measure shown in the previous
section. In most practical situations Algorithm B yields the better trade off
between computational speed and precision, provided that enough simulation
points are chosen.

Figure 6 shows the total CPU time for all the simulations in the experiment
for Algorithm A, Algorithm B and for the full grid simulations, computed on the
cluster of the University of Bern with Intel Xeon E5649 2.53GHz CPUs with 4GB
RAM. The CPU times for Algorithm A and B also include the time required
to optimize the simulation points. Both interpolation algorithms require less
total CPU time than full grid simulations to obtain good approximations of the
benchmark distribution (m > 100). If parallel computing is available wall clock
time could be significantly reduced by parallelizing operations. In particular
the full grid simulation can be parallelized quite easily while the optimization
of the simulation points could be much harder to parallelize.
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Figure 6: Total CPU time to obtain all realizations of I'. Full grid simulations
only include simulation time (dot-dashed horizontal line), while both algorithms
include simulation point optimization (dashed lines) and simulation and inter-
polation times (solid lines).

6 Test case: Estimating length of critical level
set in nuclear safety application

In this section we focus on a nuclear safety test case and we show that our
method to generate quasi-realizations can be used to obtain estimates level set
on high resolution grids.

The problem at hand is a nuclear criticality safety assessment. In a system
involving nuclear material it is important to control the chain reaction that may
be produced by neutrons, which are both the initiators and the product of the
reaction. An overproduction of neutrons the radioactive material is not safe
for storage or transportation. Thus, the criticality safety of a system is often
evaluated with the neutron multiplication factor (k—effective or k-eff) which
returns the number of neutrons produced by a collision with one neutron. This
number is usually estimated using a costly simulator. If k-eff > 1 the chain
reaction is unstable, otherwise it is safe. In our case we consider a storage facil-
ity of plutonium powder, whose k-eff is modeled by two parameters: the mass
of plutonium (MassPu) and the logarithm of the concentration of plutonium
(logConcPu). The excursion set of interest is the set of safe input parameters
I'™* = {(MassPu, logConcPu) : k-eff(MassPu, logConcPu) < ¢}, where t is safety
threshold, fixed here at t = 0.95. This test case was also presented in [9] to illus-



18

Contour line simulations, full design (6400 points) Contour line simulati m=75 simulation points

LogConcPu
LogConcPu

04 06 0s o
MassPu MassPu

(a) Contour lines realizations obtained (b) Contour lines realizations obtained
with full design simulations. The func- with simulations at m = 75 simulation
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Figure 7: Realizations OI': full design simulations (a) and reinterpolated simu-
lations at 75 locations (b).

trate batch-sequential SUR strategies. The parameter space here is transformed
into the unit square [0, 1] x [0, 1].

The set of interest is OT* = {(MassPu, logConcPu) : k-eff(MassPu, logConcPu) =
t}, with ¢t = 0.95, the level set of k-eff. We are interested in estimating this one
dimensional curve in R2. Since we only have few evaluations of the function at
points Xg = {x1,...,Xg}, shown in Figure 7, a direct estimate of 9" is not
accurate. We rely instead on a random field model Z with prior distribution
Gaussian, constant mean and a tensor product Matérn (v = 3/2) covariance
kernel. The parameters of the covariance kernel are estimated by Maximum
Likelihood with the package DiceKriging, [33]. From the posterior distribu-
tion of Z, conditioned on evaluations of k-eff at Xg, it is possible to estimate
oI, A plug-in estimate of OI'* could be generated with the posterior mean
m,,, however this procedure alone does not provide a quantification of the un-
certainties. Instead from the posterior field we generated several realizations
of o' = {(MassPu, logConcPu) : Z(MassPu, logConcPu) | (Zx, = k-eff(X3g)) =
0.95}. This procedure requires simulations of the posterior field at high qual-
ity grids however, even in a two dimensional parameter space, the procedure is
computationally burdensome. In fact, while a discretization on a grid 50 x 50
delivers a low quality approximation, simulations of the field at such grids are
already expensive to compute. For this reason we choose to simulate the field
at m appropriate simulation points and to predict the full simulations with the
linear interpolator Z introduced in (3).

Figure 7 shows few realizations of OI" discretized on a grid 80 x 80, obtained
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Figure 8: Distributions of K.S statistic computed over 100 experiments for
Kolmogorov-Smirnov test with null hypothesis Hy : Lty = Ly, Simulation
points chosen with Algorithm B or with maximin LHS design.

with simulations of the field at all points of the design (Figure 7a) and with
simulations at 75 simulation points, chosen with Algorithm B (Figure 7b). The
two sets of curves seem to share similar properties. The expected distance in
measure between OI' and 0T, as introduced in Definition 1, could be used here
to quantify this similarity however, here we propose to use the arc length of
each curve, defined as follows, as it is easier to interpret in our application.

Consider a regular grid G = {uy,...,u,.}. For each realization, we select
the points Gor = {u € G : Zy | (Zx, =k-eff(Xg)) € [0.95 — £,0.95 + €]},
where ¢ is small. Gyr contains all the points of the discrete design that have
response £—close to the target. We order the points in Ggr in such a way that
{w;,,...,u;, } are vertices of a piecewise linear curve approximating 0. We
approximate the arc length of the curve with the sum of the segments’ lengths:
1(dr) = >, Wi, — i [|. By computing the length for each realization we
obtain a Monte Carlo estimate of the distribution of the arc length. We can now
compare the distributions of arc length obtained from reconstructed realizations
simulated at few locations with the distribution obtained from simulations at
the full grid in order to select the number of simulation points that leads to
quasi-realizations for 0I' whose length is indistinguishable from the full grid
realizations’ length.

Let us define the random variables Ly = | (OT6400) and Ly, = I (OT'y,), the
arc lengths of the random set generated with full design simulations (80 x 80
grid) and the length of the random set generated with simulations at m points
respectively. We compare the distributions of Lgy and L, with Kolmogorov-
Smirnov tests for several values of m. The null hypothesis is Hqy : Ltul = L.
The distributions are approximated with 10,000 simulations, either at the full
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grid design or at the selected m points. For each m, 100 repetition of the
experiment were computed, thus obtaining a distribution for the Kolmogorov-
Smirnov (KS) statistic. Figure 8 shows the value of the K S statistic for each
m, where the simulation points are obtained either with Algorithm B or with a
maximin LHS design. For m > 50 optimized points, the K .S statistic is below
the critical value for at least 97% of the experiments, thus it is not possible
to distinguish the two length distributions with a significance level of 5%. If
the simulation points are chosen with a maximin LHS design instead, the K.S
statistic is below the critical value for at least 67% of the experiments with m =
100 simulation points, as it is also shown in Figure 8. This result shows again the
importance of choosing optimized simulation points. The approximation of L,
with L,, leads to substantial computational time savings. The computational
time for 10,000 simulations of the field at the full grid design (6,400 points) is
466 seconds, while the total time for finding 75 appropriate simulation points
(with Algorithm B), simulate the field at these locations and reinterpolate the
field at the full design is 48.7 seconds (average over 100 experiments).

The expected distance in measure introduced in Section 2.1 could also be
used here to quantify how far the quasi-realizations are from the full grid real-
izations.

7 Conclusions

In the context of excursion set estimation, simulating a conditional random field
to obtain realizations of a related excursion set can be useful in many practical
situations. Often, however, the random field needs to be simulated at a fine
design to obtain meaningful realizations of the excursion set. Even in moderate
dimensions it is often impractical to simulate at such fine designs, thus rendering
good approximations hard to achieve.

In this paper we introduced a new method to simulate quasi-realizations of
a conditional Gaussian random field that mitigates this problem. While the
approach of predicting realizations of the field from simulations at few locations
has already been introduced in the literature, this is the first attempt to define
optimal simulation points based on a specific distance between random closed
sets: the expected distance in measure. We showed on several examples that
the quasi-realizations method reduces the computational cost due to conditional
simulations of the field, however it does so relying on an approximation. In par-
ticular the random set quasi-realizations optimality with respect to the expected
distance in measure does not necessarily guarantee that other properties of the
set are correctly reproduced.

The quasi-realizations approach allowed us to study an uncertainty measure
that, to the best of our knowledge, was not previously used in practice: the dis-
tance average variability. The estimation of the distance average variability is
appealing when realizations of the excursion set on fine grids are computation-
ally cheap. We showed on a two dimensional test function that it is possible to
reduce computational costs by at least one order of magnitude, thus making this
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technique practical. In general the quasi-realizations approach could improve
the speed of distance average based methods as, for example, [23] and [24].

We presented a test case in safety engineering where we estimated the arc
length’s distribution of a level set in a two dimensional parameter space. The
level set was approximated by piecewise linear curve, the resolution of which de-
pends on the simulation design. A Monte Carlo technique based on realizations
of the excursion set obtained with full design simulations is computationally
too expensive at high resolutions. Reconstructed simulations from simulations
of the field at few well chosen points reinterpolated on a fine design made this
application possible. In particular we showed that the distribution of the arc
length obtained with a full design simulation at a rough design, a grid 80 x 80,
was not significantly different than the distribution obtained from reconstructed
sets with simulations at m = 50 well chosen points, thus opening the way for
estimates on higher resolution grids.

Conditional realizations of the excursion set can also be used to estimate
the volume of excursion, in appendix we show how to handle this problem with
Monte Carlo simulations at fine designs.

We presented two algorithms to compute optimal simulation points. While
the heuristic Algorithm B is appealing for its computational cost and precision,
there are a number of extensions that could lead to even more savings in com-
putational time. For example, the optimization of the points in this work was
carried out with generic black box optimizers but it would be possible to achieve
appreciable reductions in optimization time with methods based on analytical
gradients.

A Proof of Proposition 4
Let us first assume that S?’z,m — 0 p-almost everywhere. The expected dis-
tance in measure can be rewritten, according to Equation (4), as d,, ,(I',T) =
Jp Prm(x) p(dx). Since p is a finite measure on D and py, g, (x) < 1, it is suffi-
cient by the dominated convergence theorem to prove that p, ., — 0 p-almost
everywhere.

Pick any x € D such that s7(x) > 0 and s, (x) = 0. Then, for any w > 0,

Pnm (X) < ]P’n(|Z(x) — t| < w) +Pn(|Z(x) — Z(x)| > w)
2w 5n.m (X)
< : .
T /2ms2(x) * w?

With w = \/$p,m(x), it follows that

24/ 8n,m(X)

Tret () + Spm(x) — 0. (11)

pn,m(x) <

Since s2,, — 0 p-almost everywhere and p, n(x) = 0 wherever s2(x) = 0,

n,m

Equation (11) proves the sufficiency part of Proposition 4.
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Conversely, assume that duyn(F,f) — 0 when m — 400, or equivalently
that (pn,m),,o converges to zero in L' (D, u). Then (pn,m),,>, also converges
to zero in measure: B

Ve >0, u (Afhm) —0, where A7, ={x € D : ppm(x) > e}

m—+o0
For any M > 1, consider the following sets:
Dy = {x ecD:0< ﬁsn(x) < ’t—mn(x)’ < Msn(x)},
A =Dp i NAS
szwwi =Dp i N {Sn,m > €Sn}-

Then we have the following technical result.

Lemma 6. For all M > 1 and e > 0, there exists €’ > 0 (that does not depend
onmn, m ort) such that Vx € B,%’ﬁ, Pn.m(X) > €', and therefore B,%ﬁ C A,]ymi )

Using Lemma 6, for any M > 1 and € > 0, we have

p(Bae) < (A?f;i') <u (Af{,m) ——0.

m——+o0o

In other words, (Sn,m/sn),,~o converges to zero in measure on Dy, pr. As a con-
sequence, since this is a decreasing sequence, (Sn,m/5n),,~q converges to zero ji-
almost everywhere on D,, )/, and therefore p-almost everywhere on Ups~1 Dy v =

{x € D:s,(x) > 0}. Convergence also trivially holds where s, (x) = 0.

A.1 Proof of Lemma 6

Let M > 1, >0, x € B,If["f and set ( = m,(x). Because B,If["f C Dp s
[t — (| > € sp(x) > 0 and in particular ¢ # ¢. Assume, without loss of generality,
that ( < tand e < % Recall that pp m(x) = Py, (En,m(x)) where E, p, (%) is

the event defined by

Bum(x) = {x € TAT} = B, (%) U B, (%),

B (%) {Z(x) <t Z(x) > t},

By (%) = {Z(x) >t, Z(x) < t} .

Recall also that, since Z is a Gaussian process, Z and €nm(X) = Z(x) — Z(x)

are independent Gaussian variables under P,,, with 2, (x) := Var, (€5,m(x))

$7(%X) = 87, n (%)

Let us first assume that s, ,,,(x) > %sn(x) > es,(x). As a consequence,

Fn,m (%) < %sn(x) and therefore

t—¢ 1 sp(x)

= sn(x)
Kn,m (X) 2 M Kpm (%)

Sn,m(x)

< MV2.

>

=%
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For any w > 0, the following inclusions hold:
Epm(%) D By (%) = {Z(x) <t and Z(x) + enm(x) > t}
S{e-w<Zx) <tand - wt eumlx) > t]

S {~w< 200 - C<t-Cand enm(x) 21— ()

With w =t — ¢, using the independence of Z(x) and €, ,(x), we get

pn,m(x) > P, (E’r;m(x))
> P (|Z(x) = | <t =) Pulenm(x) >2(t— Q)
> (1 pT (—\/E/M)) ) (—2M\/§) . (12)

Let us now assume that %sn(x) > $p.m(x) > es,(x). As a consequence,

Kn,m(X) > %sn (x) and therefore

b=C o M
Snm(X) ~ Snom(X) T € T Bnm (%)

1 t—¢
d —< < MvV2.
WM < MV2
For any w > 0, the following inclusions hold:

Epn(x) D B (%) = {Z(x) >t and Z(x) + enm(x) < t}

>\ {t < Z(x) <t 4w and €, (%) < —w} .

Using again w = t — ¢ and the independence of Z(x) and €n,m(X), we get

Pn,m (x) > Py (E;;m (X))
> Pn(t -(¢< Z(X) - <2t — C)) Pn(en,m(x) > —(t— C))

> % 0 (2\/§M) o <¥> : (13)

where ¢ denotes the probability density function of the standard Gaussian dis-
tribution.

Finally, pn m(x) > €', where ¢’ denotes the minimum of the lower bounds
obtained in (12) and (13).

B Application: Estimating the distribution of a
volume of excursion in six dimensions
In this section we show how it is possible to estimate the conditional distribution

of the volume of excursion under a GRF prior by simulating at few well chosen
points and predicting over fine designs.
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In the framework developed in section 2, the random closed set I' naturally
defines a distribution for the excursion set, thus (") can be regarded as a ran-
dom variable. In the specific case of a Gaussian prior, the expected volume of
excursion can be computed analytically by integrating the coverage function,
however here we use Monte Carlo simulations to work out the posterior distri-
bution of this volume (see [40], [1]). In practice, a good estimation of the volume
requires a discretization of the random closed set on a fine design. However, al-
ready in moderate dimensions (2 < d < 10), a discretization of the domain fine
enough to achieve good approximations of the volume might require simulating
at a prohibitive number of points. Here we show how the proposed approach
mitigates this problem on a six-dimensional example.

We consider the following test function h(x) = — log(— Hartmang(x)), where
Hartmang is the six-dimensional Hartman function (see [25]) defined on D =
[0,1]6 and we are interested in estimating the volume distribution of the excur-
sion set I'* = {x € D : h(x) > t}, t = 6. The threshold ¢t = 6 is chosen to obtain
a true volume of excursion of around 3%, thus rendering the excursion region a
moderately small set.

A GRF model is built with a Gaussian prior Z with a tensor product Matérn
covariance kernel (v = 5/2). The parameters of the covariance kernel are es-
timated by Maximum Likelihood from n = 60 observations of h; the same
observations are used to compute the conditional random field. We consider
the discretization G = {uy,...,u,} C D with » = 10,000 and uy, ..., u, Sobol’
points in [0,1]%. The conditional field Z is simulated 10,000 times on G and
consequently N = 10, 000 realizations of the trace of I over G are obtained.

The distribution of the volume of excursion can be estimated by comput-
ing for each realization the proportion of points where the field takes values
above the threshold. While this procedure is acceptable for realizations coming
from full design simulations, it introduces a bias when it is applied to quasi-
realizations of the excursion set. In fact, the paths of the predicted field are
always smoother than the paths of full design simulations due to the linear na-
ture of the predictor [36]. This introduces a systematic bias on the volume of
excursion for each realization because subsets of the excursion sets induced by
small rougher variations of the true Gaussian field may not be intercepted by
Z. The effect changes the mean of the distribution, but it does not seem to in-
fluence the variance of the distribution. In the present setting we observed that
the mean volume of excursion was consistently underestimated. A modifica-
tion of the classic estimate of the distribution of the volume is here considered.
Given a discretization design G, of size r, the distribution of the volume of
excursion is obtained with the following steps: first the mean volume of excur-
sion is estimated by integrating the coverage function of I' over G; second the
distribution is obtained by computing the volume of excursion for each quasi-
realization of the excursion set; finally the distribution is centered in the mean
value obtained with the first step. Figure 9a shows the absolute error on the
mean between the full design simulation and the approximate simulations with
and without bias correction. The optimal simulation points are computed with
Algorithm B because for a large number of points it achieves very similar results
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(b) Kolmogorov-Smirnov statistic for test-
ing the hypothesis Ho Voo = Vi
Simulations at points obtained with Al-
gorithm B (black full line) or with space

without bias correction. filling points (blue dashed line). The dot-

ted horizontal line is the rejection value at
level 0.05.

Figure 9: Analysis of volume distributions.

to Algorithm A but at the same time the optimized points are much cheaper to
compute, as showed in the previous sections.

Denote with Vyuy = p(I'(Ei0,000)) the random variable representing the
volume of the excursion set obtained with full design simulations and V,, =
w(T'(E;,)) the recentered random variable representing the volume of the recon-
structed set obtained from simulations at m points. We compare the distribution
of Viuy and V;, for different values of m with Kolmogorov-Smirnov two sam-
ple tests. Figure 9b shows the values of the Kolmogorov-Smirnov statistic for
testing the null hypothesis Hy : Vi, = Vyuu, for m = 50,75,100,125,150. V,,
is computed both with simulation points optimized with Algorithm B and with
points from a space filling Sobol’ sequence. The horizontal line is the rejection
value at level 0.05. With confidence level 0.05, the distribution of V,,, is not
distinguishable from the distribution of Vy,; if m > 125 with optimized points
and if m > 150 with Sobol’ points.

The estimate of the distribution of the volume of excursion is much faster
with quasi-realizations from simulations at few optimal locations. In fact, the
computational costs are significantly reduced with by interpolating simulations:
the CPU time needed to simulate on the full 10,000 points design is 60293 sec-
onds while the total time for the optimization of m = 150 points, the simulation
on those points and the prediction over the full design is 575 seconds. Both
times were computed on the cluster of the University of Bern with Intel Xeon
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E5649 2.53GHz CPUs with 4GB RAM.
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