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The aim of this paper is to investigate the quality of approximation of almost time and almost band-limited functions by its expansion in three classical orthogonal polynomials bases: the Hermite, Legendre and Chebyshev bases. As a corollary, this allows us to obtain the quality of approximation in the L 2 -Sobolev space by these orthogonal polynomials bases. Also, we obtain the rate of the Legendre series expansion of the prolate spheroidal wave functions. Some numerical examples are given to illustrate the different results of this work.

Introduction

Time-limited functions and band-limited functions play a fundamental role in signal and image processing. The time-limiting assumption is natural as a signal can only be measured over a finite duration. The band-limiting assumption is natural as well due to channel capacity limitations. It is also essential to apply sampling theory. Unfortunately, the simplest form of the uncertainty principle tells us that a signal can not be simultaneously time and band limited. A natural assumption is thus that a signal is almost time-and almost band-limited in the following sense: Definition. Let T, Ω > 0 and ε T , ε Ω > 0. A function f ∈ L 2 (R) is said to be

• ε T -almost time limited to [-T, T ] if |t|>T |f (t)| 2 dt ≤ ε 2 T f 2 L 2 (R) ; • ε Ω -almost band limited to [-Ω, Ω] if |ω|>Ω | f (ω)| 2 dω ≤ ε 2 Ω f 2 L 2 (R) .
Here and throughout this paper the Fourier transform is normalized so that, for f ∈ L 1 (R),

f (ω) := F[f ](ω) := 1 √ 2π R f (t)e -itω dt.
Of course, given f ∈ L 2 (R), for every ε T , ε Ω > 0 there exist T, Ω > 0 such that f is ε T -almost time limited to [-T, T ] and ε Ω -almost time limited to [-Ω, Ω]. The point here is that we consider T, Ω, ε T , ε Ω as fixed parameters. A typical example we have in mind is that f ∈ H s (R) and is time-limited to [-T, T ]. Such an hypothesis is common in tomography, see e.g. [START_REF] Natterer | The mathematics of computerized tomography Classics in Applied Math[END_REF], where it is required in the proof of the convergence of the filtered back-projection algorithm for approximate inversion of the Radon transform. But, if f ∈ H s (R) with s > 0, that is if

f 2 H s (R) := R (1 + |ω|) 2s | f (ω)| 2 dω < +∞, then |ω|>Ω | f (ω)| 2 dω ≤ |ω|>Ω (1 + |ω|) 2s (1 + |Ω|) 2s | f (ω)| 2 dω ≤ f 2 H s (R) (1 + |Ω|) 2s . Thus f is 1 (1 + |Ω|) s f H s f L 2 (R)
-almost band limited to [-Ω, Ω].

An alternative to the back projection algorithms in tomography are the Algebraic Reconstruction Techniques (that is variants of Kaczmarz algorithm, see [START_REF] Natterer | The mathematics of computerized tomography Classics in Applied Math[END_REF]). For those algorithms to work well it is crucial to have a good representing system (basis, frame...) of the functions that one wants to reconstruct.

Thanks to the seminal work of Landau, Pollak and Slepian, the optimal orthogonal system for representing almost time and band limited functions is known. The system in questions consists of the so called prolate spheroidal wave functions, ψ T k , and has many valuable properties (see [START_REF] Slepian | Prolate spheroidal wave functions, Fourier analysis and uncertainty I[END_REF][START_REF] Landau | Prolate spheroidal wave functions, Fourier analysis and uncertainty II[END_REF][START_REF] Landau | Prolate spheroidal wave functions, Fourier analysis and uncertainty III: The dimension of space of essentially time-and band-limited signals[END_REF][START_REF] Slepian | Prolate spheroidal wave functions, Fourier analysis and uncertainty IV: Extensions to many dimensions; Generalized prolate spheroidal wave functions[END_REF][START_REF] Slepian | Some comments on Fourier analysis, uncertainty and modeling[END_REF]). Among the most striking properties they have is that, if a function is almost time limited to [-T, T ] and almost band limited to [-Ω, Ω] then it is well approximated by its projection on the first 4ΩT terms of the basis:

(1.1) f 0≤k<4ΩT f, ψ T k ψ T k .
For more details, see [START_REF] Landau | Prolate spheroidal wave functions, Fourier analysis and uncertainty II[END_REF]. This is a remarkable fact as this is exactly the heuristics given by Shannon's sampling formula (note that to make this heuristics clearer, the functions are usually almost time-limited to [-T /2, T /2] and this result is then known as the 2ΩT -Theorem, see [START_REF] Landau | Prolate spheroidal wave functions, Fourier analysis and uncertainty II[END_REF]). However, there is a major difficulty with prolate spheroidal wave functions that has attracted a lot of interest recently, namely the difficulty to compute them as there is no inductive nor closed form formula (see e.g. [START_REF] Bonami | Uniform bounds of prolate spheroidal wave functions and eigenvalues decay[END_REF][START_REF] Bonami | Spectral Decay of Time and Frequency Limiting Operator[END_REF][START_REF] Boyd | Prolate spheroidal wave functions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudo-spectral algorithms[END_REF][START_REF] Li | Spheroidal wave functions in electromagnetic theory[END_REF][START_REF] Xiao | Yarvin Prolate spheroidal wave functions, quadrature and interpolation[END_REF]). One approach is to explicitly compute the coefficients of the prolate spheroidal wave functions in terms of a basis of orthogonal polynomials like the Legendre polynomials or the Hermite functions basis. The question that then arises is that of directly approximating almost time and band limited functions by the (truncation of) their expansion in the Hermite, Legendre and Chebyshev bases. This is the question we address here.

An other motivation for this work comes from the work of the first author [START_REF] Ph | Uncertainty principles for orthonormal bases[END_REF] on uncertainty principles for orthonormal bases. There, it is shown that an orthonormal basis (e k ) of L 2 (R) can not have uniform time-frequency localization. Several ways of measuring localization were considered, and for most of them, the Hermite functions provided the optimal behavior. However, in one case, the proof relied on (1.1): this shows that the set of functions that are ε T -time limited to [-T, T ] and ε Ω -band limited to [-Ω, Ω] is almost of dimension 4ΩT . In particular, this set can not contain more than a fixed number of elements of an orthonormal sequence. As this proof shows, the optimal basis here consists of prolate spheroidal wave functions. As the Hermite basis is optimal for many uncertainty principles, it is thus natural to ask how far it is from optimal in this case.

Let us now be more precise and describe the main results of the paper. In Section 2, we first give a brief description of the asymptotic approximation of the Hermite functions in terms of the sine and cosine functions. Then, we use the asymptotic behaviour of the Hermite function and give an error analysis of the uniform approximation of the Hermite function projection kernel

k n (x, y) = n k=0 h k (x)h k (y)
by an appropriate Sinc kernel. Here, h k denotes the k-th L 2 -normalized Hermite function. Then, based on the previous asymptotic approximation of the Hermite kernel, we give the quality of almost time-and band-limited functions by Hermite functions. In Section 3, we use the explicit formula for the finite Fourier transform of the Legendre polynomials in terms of the Bessel function and give the convergence rate of the Legendre series expansion of a c-band-limited function. Then, we extend this result to the case of almost time-and band-limited function. In Section 4, we show the results obtained for the Legendre polynomials to the case of Chebyshev polynomials. Section 5 is divided into two parts. In the first part, we first give an application of the results of Section 3 related to the convergence rate of the Legendre series expansion of the prolate spheroidal wave functions (PSWFs). Note that for a given bandwidth c > 0, and an integer n ≥ 0, the n-th PSWF, denoted by ψ n,c is a c-band-limited function, given as the n-th eigenfunction of a compact integral operator Q c , defined on L 2 ([-1, 1]) with the sinc kernel K c (x, y) = sin c(x -y) π(x -y) . In the second part of Section 5, we give various numerical examples that illustrate the different results of this work.

Approximation of almost band limited functions by Hermite functions basis.

In this section, we study the quality of approximation of band limited and almost band limited functions by the Hermite and scaled Hermite functions. For this purpose, we first need to review the asymptotic uniform approximation of the Hermite functions by the sine and cosine functions. This is the subject of the following paragraph.

2.1. Approximating Hermite functions with the WKB method. Let H n be the n-th Hermite polynomial, that is

H n (x) = e x 2 d n dx n e -x 2 .
Define the Hermite functions as

h n (x) = α n H n (x)e -x 2 /2 where α n = 1 π 1/4 √ 2 n n! .
As is well known: (i) (h n ) n≥0 is an orthonormal basis of L 2 (R).

(ii) h n is even if n is even and odd if n is odd, in particular h 2p (0) = 0 and h 2p+1 (0) = 0. Further

h 2p (0) = (-1) p π 1/4 (2p -1)!! (2p)!! and h 2p+1 (0) = (-1) p √ 4p + 2 π 1/4 (2p -1)!! (2p)!! .
(iii) h n satisfies the differential equation h n (x) + (2n + 1 -x 2 )h n (x) = 0. We will now follow the WKB method to obtain an approximation of h n . In order to simplify notation, we will fix n and drop all supscripts during the computation. Let h = h n , λ = √ 2n + 1, and define for |x| < λ

p(x) = λ 2 -x 2 , ϕ(x) = x 0 p(t) dt and ψ ± (x) = 1 p(x) exp ±iϕ(x).
Note that ψ ± have been chosen to have

ψ + (x)ψ -(x) -ψ -(x)ψ + (x) = -2i
and y + (p 2 -q)y = 0 where q = 1 2

p p - 1 4 
p p 2 = - 2λ 2 + 3x 2 4p(x) 4 . Note that h (x) + p(x)h(x) = 0 so that (h ψ ± -ψ ± h) = h ψ ± -ψ ± h = -qhψ ± .
Let us now define

Q ± (x) = x 0 q(t)h(t)ψ ± (t) dt.
Integrating the previous differential equation between 0 and x, we obtain the system

h (x)ψ + (x) -h(x)ψ + (x) = h (0)ψ + (0) -h(0)ψ + (0) -Q + (x) h (x)ψ -(x) -h(x)ψ -(x) = h (0)ψ -(0) -h(0)ψ -(0) -Q -(x)
.

It remains to solve this system for h to obtain the principal term of h:

Theorem 2.1. Let n ≥ 0, λ = √ 2n + 1. Then, for |x| ≤ λ, (2.2) h n (x) = √ λh n (0) cos ϕ n (x) (λ 2 -x 2 ) 1/4 + h n (0) √ λ sin ϕ n (x) (λ 2 -x 2 ) 1/4 + E n (x) where (2.3) ϕ n (x) = x 0 λ 2 -t 2 dt and |E n (x)| ≤ 5 4 λ λ 2 -x 2 5/2 . Further, if |x|, |y| ≤ T ≤ λ 2 , ϕ n (x) = √ 2n + 1x -e n (x)
, where

(2.4) |e n (x)| ≤ T 3 3λ and |e n (x) -e n (y)| ≤ T 2 λ |x -y|, while (2.5) |E n (x)| ≤ 2 λ 3 and |E n (x) -E n (y)| ≤ 7 λ 5/2 |x -y|.
Remark. One may explicitly compute ϕ:

ϕ n (x) = 2n + 1 2 arcsin x √ 2n + 1 + x 2 2n + 1 -x 2 .
Also, ϕ n has a geometric interpretation: it this the area of the intersection of a disc of radius √ 2n + 1 centered at 0 with the strip [0, x] × R + . In particular, when x → √ 2n + 1, ϕ n (x) ∼ π 4 (2n + 1). The result is not entirely new (e.g. [START_REF] Brannan | Error estimates for Dominici's Hermite function asymptotic formula and applications[END_REF][START_REF] Dominici | Asymptotic analysis of the Hermite polynomials from their differential-difference equation[END_REF][START_REF] Koch | L p eigenfunction bounds for the Hermite operator[END_REF][START_REF] Larsson-Cohn | L p -norms of Hermite polynomials and an extremization problem on Wiener chaos[END_REF][START_REF] Sansone | Orthogonal Functions[END_REF]), except for the Lipschitz bounds of E. Therefore we will only sketch the proof of this theorem in Appendix A.

Using standard asymptotic of h 2p (0) and of h 2p+1 (0) and the fact that √ λ 2 -x 2 λ when λ → ∞, one may further simplify this result to the following: Corollary 2.2. Let T ≥ 2 and let n ≥ 2T 2 . Then, for |x| ≤ T , we obtain that -if n is even, n = 2p

(2.6)

h 2p (x) = (-1) p √ πp 1/4 cos ϕ 2p (x) + Ẽ2p (x); -if n is odd, n = 2p + 1 (2.7) h 2p+1 (x) = (-1) p √ πp 1/4 sin ϕ 2p+1 (x) + Ẽ2p+1 (x),
where, for |x|, |y| ≤ T ,

(2.8) | Ẽn (x)| ≤ 3T 2 (2n + 1) 5/4 and | Ẽn (x) -Ẽn (y)| ≤ 8 T 2 (2n + 1) 3/4 |x -y|
To conclude, we will gather some facts about ϕ n that all follow from easy calculus.

Lemma 2.3. If |x|, |y| ≤ T ≤ 1 2 √ 2n + 1, then (2.9) |ϕ n+1 (x) -ϕ n (x)| ≤ 3T √ 2n + 1 , (2.10) |ϕ n+1 (x) -ϕ n+1 (y) -ϕ n (x) + ϕ n (y)| ≤ 3 √ 2n + 1 |x -y|, (2.11) |ϕ n+1 (x) -ϕ n (x) + ϕ n+1 (y) -ϕ n (y)| ≤ 5T √ 2n + 1 , (2.12) ϕ n+1 (x) + ϕ n (x) -ϕ n+1 (y) -ϕ n (y) = ( √ 2n + 1 + √ 2n + 3)(x -y) + ε n (x, y), with |ε n (x, y)| ≤ T 2 √ 2n + 1 |x -y| and (2.13) |ϕ n (x) -ϕ n (y)| ≤ 5 4 √ 2n + 1|x -y|.

2.2.

The kernel of the projection onto the Hermite functions. As (h n ) n≥0 forms an orthonormal basis of L 2 (R), every f ∈ L 2 (R) can be written as

f (x) = lim n→+∞ n k=0 f, h k h k (x),
where the limit is in the L 2 (R) sense. Further, for n an integer, let K n f be the orthogonal projection of f on the span of h 0 , . . . , h n . Then

K n f (x) = n k=0 f, h k h k (x) == R k n (x, y)f (y) dy, with the kernel k n (x, y) = n k=0 h k (x)h k (y). According to the Christoffel-Darboux Formula, k n (x, y) = n + 1 2 h n+1 (x)h n (y) -h n+1 (y)h n (x)
x -y .

We will now use Corollary 2.2 to approximate this kernel:

Theorem 2.4. Let T ≥ 2, n ≥ 2T 2 and N = √ 2n+1+ √ 2n+3 2
. Then, for |x|, |y| ≤ T ,

k n (x, y) = 1 π sin N (x -y) x -y + R n (x, y), with |R n (x, y)| ≤ 17T 2 √ 2n + 1 .
Remark. The same estimate holds for T = 1 provided n ≥ 6. Moreover, we should mention that in practice, the actual approximation error of the kernel is much smaller than the theoretical error R n . See example 1 in the numerical results section that illustrate this fact.

Again, the only improvement over known results [START_REF] Sansone | Orthogonal Functions[END_REF][START_REF] Uspensky | On the Development of Arbitrary Functions in Series of Hermite's and Laguerre's Polynomials[END_REF] is in the estimate of R n . We will therefore only sketch the proof in Appendix B.

Approximating almost time and band limited functions by Hermite functions.

We can now prove the following theorem.

Theorem 2.5. Let Ω 0 , T 0 ≥ 2 and ε T , ε Ω > 0. Assume that |t|>T0 |f (t)| 2 dt ≤ ε 2 T f 2 L 2 (R) and |ω|>Ω0 | f (ω)| 2 dω ≤ ε 2 Ω f 2 L 2 (R) . Assume that n ≥ max(2T 2 , 2Ω 2 ). Then, for T ≥ T 0 , (2.14) f -K n f L 2 ([-T,T ]) ≤ 2ε T + ε Ω + 34T 3 √ 2n + 1 f L 2 (R)
Proof. We will introduce several projections. For T, Ω > 0, let

P T f = 1 [-T,T ] f and Q Ω f (x) = F -1 1 [-Ω,Ω] f ](x) = 1 π R sin Ω(x -y) x -y f (y) dy.
The hypothesis on f is that f -

P T f L 2 (R) ≤ ε T f L 2 (R) for T ≥ T 0 and f -Q Ω f L 2 (R) ≤ ε Ω f L 2 (R)
for Ω ≥ Ω 0 . Let us also define the integral operator

R T n f (x) = [-T,T ] R n (x, y)f (y) dy, where R n (x, y) are defined in Theorem 2.4. Notice that k n (x, y) = k n (y, x) so that R n (x, y) = R n (y, x).
It is enough to prove (2.14) for T = T 0 . We may then reformulate Theorem 2.4 as following:

P T K n P T f = P T Q N P T f + P T R T n P T f, where N = √ 2n+1+ √ 2n+3 2
. Note that N ≥ Ω 0 . By using (2.4), it is easy to see that

P T R T n P T f L 2 (R) ≤ P T R T n P T L 2 (R)→L 2 (R) f L 2 (R) ≤ P T R T n P T HS f L 2 (R) ≤ 34T 3 √ 2n + 1 f L 2 (R) . (2.15)
Here we use the well known fact that the Hilbert-Schmidt norm of an integral operator is the L 2 norm of its kernel. Now, using the fact that projections are contractive and N ≥ Ω 0 , we have

f -K n f L 2 ([-T,T ]) = P T f -P T K n f L 2 (R) ≤ P T f -P T K n P T f L 2 (R) + P T K n (f -P T f ) L 2 (R) ≤ P T f -P T Q N P T f + P T R T n P T f L 2 (R) + f -P T f L 2 (R) ≤ P T f -P T Q N P T f L 2 (R) + P T R T n P T f L 2 (R) + f -P T f L 2 (R) . Now, write P T Q N P T f = P T Q N f + P T Q N (f -P T f ), then P T f -P T Q N P T f L 2 (R) ≤ P T f -P T Q N f L 2 (R) + P T Q N (f -P T f ) L 2 (R) ≤ f -Q N f L 2 (R) + f -P T f L 2 (R) .
Therefore,

f -K n f L 2 ([-T,T ]) ≤ f -Q N f L 2 (R) + 34T 3 √ 2n + 1 f L 2 (R) + 2 f -P T f L 2 (R) ≤ ε Ω + 34T 3 √ 2n + 1 + 2ε T f L 2 (R) , since N ≥ Ω 0 .
Remark. The error estimate given by (2.14) is not practical due to the low decay rate of the bound of R T n given by

34T 3 √ 2n + 1
. By replacing this with a non explicit but a more realistic error estimate R T n HS , one gets the following error estimate which is more practical for numerical purposes, (2.16)

f -K n f L 2 ([-T,T ]) ≤ ε Ω + R T n HS + 2ε T f L 2 (R) .

2.4.

Approximating almost time and band limited functions by scaled Hermite functions. For α > 0 and f ∈ L 2 (R) we define the scaling operator

δ α f (x) = α -1/2 f (x/α). Recall that δ α f L 2 (R) = f L 2 (R) while δ α f L 2 ([-A,A]) = f L 2 ([-A/α,A/αA]) , δ α f L 2 (R\[-A,A]) = f L 2 (R\[-A/α,A/α])
and

F[δ α f ] = δ 1/α F[f ]. In particular, if f is ε T -almost time limited to [-T, T ] (resp. ε Ω -almost band limited to [-Ω, Ω]) then δ α f is ε T -almost time limited to [-T /α, T /α] (resp. ε Ω -almost band limited to [-αΩ, αΩ]).
Next, define the scaled Hermite basis h α k = δ α h k which is also an orthonormal basis of L 2 (R) and define the corresponding orthogonal projections: for f ∈ L 2 (R), (2.17)

K α n f = n k=0 f, h α k h α k .
Proposition 2.6. Let α > 0, T ≥ 2 and c ≥ 2/α. Assume that and

|t|>T |f (t)| 2 dt ≤ ε 2 T f 2 L 2 (R)
and

|ω|>c/α | f (ω)| 2 dω ≤ ε 2 c/α f 2 L 2 (R) .
Then, for n ≥ max(2(T /α) 2 , 2c 2 ), we have

(2.18) f -K α n f L 2 ([-T,T ]) ≤ ε T + ε c/α + 34(T /α) 3 √ 2n + 1 f L 2 (R) .
Remark. The scaling with α > 1 has as effect to decrease the dependence on T at the price of increasing the dependence on good frequency concentration, while taking α < 1 the gain and loss are reversed. In practice, the above dependence on T is very pessimistic and α > 1 is a better choice.

The most natural choice is α = T and c = T Ω where Ω is such that

f is ε Ω -almost band limited to [-Ω, Ω]. Proof. For f ∈ L 2 (R), since K α n is contractive, we have f -K α n f L 2 ([-T,T ]) ≤ f -K α n P T f L 2 ([-T,T ]) + K α n (f -P T f ) L 2 ([-T,T ]) ≤ f -K α n P T f L 2 ([-T,T ]) + f -P T f L 2 ([-T,T ]) ≤ f -K α n P T f L 2 ([-T,T ]) + ε T f L 2 (R) . Moreover, K α n P T f (x) = n k=0 P T f, h α k h α k (x) = T -T f (y) 1 α n k=0 h k (x/α)h k (y/α) dy = T /α -T /α f (αt) n k=0 h k (x/α)h k (t) dt.
From this, one easily deduces that f -

K α n P T f L 2 ([-T,T ]) = f α -K n f α L 2 ([-αT,αT ]) where f α = δ 1/α 1 [-T,T ] f . Note that f α is 0-almost time limited to [-T /α, T /α]. Next, writing f α = δ α F[1 [-T,T ] f ] = δ α F[f ] -δ α F[1 R\[-T,T ] f ]
and, noting that

δ α F[f ] L 2 (R\[-c,c]) = F[f ] L 2 (R\[-c/α,c/α]) ≤ ε c/α f L 2 (R) while δ α F[1 R\[-T,T ] f ] L 2 (R\[-Ω,Ω]) ≤ δ α F[1 R\[-T,T ] f ] L 2 (R) = 1 R\[-T,T ] f L 2 (R) ≤ ε T f L 2 (R) ,
we get

f α L 2 (R\[-c,c]) ≤ ε c/α f L 2 (R) + ε T f L 2 (R) .
It remains to apply Theorem 2.5 to complete the proof.

Approximation of almost band limited functions in the basis of Legendre polynomials

In agreement with standard practice, we will denote by P k the classical Legendre polynomials, defined by the three-term recursion

P k+1 (x) = 2k + 1 k + 1 xP k (x) - k k + 1 P k-1 (x),
with the initial conditions

P 0 (x) = 1, P 1 (x) = x.
These polynomials are orthogonal in L 2 ([-1, 1]) and are normalized so that P k (1) = 1 and

1 -1 P k (x) 2 dx = 1 k + 1/2 .
We will denote by Pk the normalized Legendre polynomial Pk = k + 1/2P k and the Pk 's then form an orthonormal basis of L 2 ([-1, 1]).

In the sequel, for c > 0, let B c denote the Paley-Wiener space of c-bandlimited functions, given by

B c = {f ∈ L 2 (R); Supp f ⊆ [-c, c]}.
Lemma 3.1. Let c > 0, then for any f ∈ B c , and any k ≥ 0

(3.19) | f, P k L 2 (-1,1) | ≤ 2 √ 2k + 1 e πc ec 2k + 3 k+1 f L 2 (R) .
Proof. We start from the following identity relating Bessel functions of the first type to the finite Fourier transform of the Legendre polynomials, see [START_REF] Andrews | Roy Special Functions[END_REF]: for every x ∈ R (3.20)

1 -1 e ixy P k (y) dy = 2i k j k (x)
where j k is the spherical Bessel function defined by

j k (x) = (-x) k 1 x d dx k sin x x
. Note that j k has same parity as n and recall that, for x ≥ 0, j k (x) = π 2x J k+1/2 (x) where J α is the Bessel function of the first kind. In particular, we have the well known bound for x ∈ R

(3.21) |J α (x)| ≤ |x| α 2 α Γ(α + 1) ≤ e α+1 √ 2π2 α (α + 1) α+1/2 |x| α since Γ(x) ≥ √ 2πx x-1/2 e -x .
From this we deduce that

(3.22) |j k (x)| ≤ e k+3/2 √ 2(2k + 3) k+1 |x| k .
Now, since f ∈ B c , the Fourier inversion theorem implies that, for x ∈ R, we have

(3.23) f (x) = 1 √ 2π c -c f (ξ)e i x ξ dξ = c √ 2π 1 -1 f (cη)e i c x η dη.
Combining (3.20) and (3.23), one gets

f, P k L 2 ([-1,1]) = 1 -1 f (x)P k (x) dx = c √ 2π 1 -1 f (cη) 1 -1 e -icxη P k (x) dx dη = i k c 2 π 1 -1 j k (cη) f (cη) dη.
Using (3.22) together with Cauchy-Schwarz and a change of variable, one gets

| f, P k L 2 ([-1,1]) | ≤ c k+1 e k+3/2 √ π(2k + 3) k+1 1 -1 |η| k | f (cη)| dη ≤ c k+1 e k+3/2 (2k + 3) k+1 2 2k + 1 2 π 1 c c -c | f (η)| 2 dη 1/2 .
Finally, Parseval's identity implies (3.19).

Let us now introduce the following orthogonal projections on L 2 (R):

P f = 1 (-1,1) f, Q c f = F -1 [1 (-c,c) Ff ] and L N f = N k=0 P f, Pk Pk 1 (-1,1) .
Note that L N is the orthogonal projection onto the subspace of L 2 (R) consisting of functions of the P (x)1 (-1,1) with P a polynomial of degree ≤ N . Theorem 3.2. Let c > 0, then for any f ∈ B c , and any N ≥ ec 2 , we have

(3.24) f -L N f L ∞ (-1,1) ≤ c 2N + 5 ec 2N + 5 N f L 2 (R) . and (3.25) f -L N f L 2 (-1,1) ≤ √ c ec 2N + 5 N +1 f L 2 (R) .
Proof. Note that, for x ∈ (-1, 1),

f (x) -L N f (x) = +∞ k=N +1 f, Pk Pk (x). But max x∈(-1,1) | Pk (x)| = | Pk (1)| = k + 1/2, so that Lemma 3.1 implies f -L N f L ∞ (-1,1) ≤ +∞ k=N +1 (k + 1/2)| f, P k | ≤ e πc +∞ k=N +1 √ 2k + 1 ec 2k + 3 k+1 f L 2 (R) ≤ e √ 2N + 5 ec 2π +∞ k=N +1 ec 2N + 5 k f L 2 (R) ≤ c 2N + 5 ec 2N + 5 N f L 2 (R) .
If N ≥ ec/2, we then deduce (3.24).

The proof of the L 2 -bound is essentially the same:

f -L N f 2 L 2 (-1,1) ≤ +∞ k=N +1 (k + 1/2)| f, P k | 2 ≤ e 2πc +∞ k=N +1 ec 2k + 3 2k+2 f 2 L 2 (R) ≤ e 2 2π +∞ k=N +1 ec 2N + 5 2k+2 f 2 L 2 (R) .
From this (3.25) easily follows when N ≥ ec/2.

From this theorem, we simply get the following corollary:

Theorem 3.3. Let c > 0 and assume that f is ε T -concentrated to (-1, 1) and ε Ω -concentrated to (-c, c). Then, if N ≥ ec/2, (3.26) f -L N f L 2 (-1,1) ≤ 2ε Ω + √ c ec 2N + 5 N +1 f L 2 (R) and (3.27) f -L N f L 2 (R) ≤ ε T + 2ε Ω + √ c ec 2N + 5 N +1 f L 2 (R) Proof. First f -L N f L 2 (-1,1) ≤ f -Q c f L 2 (-1,1) + Q c f -L N Q c f L 2 (-1,1) + L N (Q c f -f ) L 2 (-1,1) ≤ 2 f -Q c f L 2 (R) + Q c f -L N Q c f L 2 (-1,1) . But f -Q c f L 2 (R) ≤ ε Ω f L 2 (R) and Q c f ∈ B c with Q c f L 2 (R) ≤ f L 2 (R) . It remains to notice that f -L N f L 2 (R) ≤ f -P T f L 2 (R) + f -L N f L 2 (-1,1)
so that (3.27) follows.

Approximation of almost band limited functions in the basis of Chebyshev polynomials

In this paragraph, we show that the basis of the Chebyshev polynomials is also well adapted for the approximation of almost band limited functions. This is essentially done by showing that the weighted finite Fourier transform of the Chebyshev polynomial is given by a formula similar to (3.20). We first recall that the classical Chebyshev polynomials T k are defined by the three-term recursion T k+1 (x) = 2xT k (x) -T k-1 (x), with the initial conditions T 0 (x) = 1, T 1 (x) = x. These polynomials are orthogonal in L 2 ([-1, 1], dµ) where dµ(x) = 1 √ 1-x 2 dx and are normalized so that (4.28)

T k (1) = 1 and

1 -1 T n (x) 2 dµ(x) = c k π 2 with c k = 2 if k = 0 1 if k ≥ 1 .
It is interesting to also note that T k (x) are simply given by the formula

T k (cos θ) = cos(kθ), k ∈ N, θ ∈ [0, π].
We will denote by Tk the normalized Chebyshev polynomial Tk = 2 c k π T k and the Tk 's then form an orthonormal basis of L 2 ([-1, 1], dµ).

The following lemma gives us an explicit formula for the weighted Finite Fourier transform of T k , that we failed to find in the literature. Lemma 4.1. For any k ∈ N, T k , the weighted finite Fourier transform of T k is given by

(4.29) T k (x) = 1 -1 e ixy T k (y) 1 1 -y 2 dy = i k π 2 J k (x).
Proof. This results follows directly from the formula For f ∈ L 2 ([-1, 1], dµ) we now define

T n f = n k=0 f, Tk Tk the projection of f on C n [X] the subspace of L 2 ([-1, 1], dµ) consisting of polynomials of degree ≤ n.
We can now prove the Chebyshev version of Lemma 3.1 and the approximation rate of band-limited functions by their projection on the Chebyshev orthonomal basis in L 2 ([-1, 1] dµ). However, note that an L 2 (R) function restricted to [-1, 1] need not be in L 2 ([-1, 1] dµ). Therefore, its expansion in the Chebyshev system need not converge (and not even be defined). Thus, we cannot extend Theorem 3.3 to the Chebyshev setting.

Proposition 4.2. Let c > 0, then for any f ∈ B c , and any k ≥ 0

(4.30) | f, T k L 2 ([-1,1],dµ) | ≤ 1 (2k + 1)c ec 2(k + 1) k+1 f L 2 (R) , and, if N ≥ ec/2, f -T N f L 2 ([-1,1],dµ) ≤ e √ c 2(2N + 3) ce 2N + 4 N +1 f 2 L 2 (R) .
Proof. Since f ∈ B c , then the Fourier inversion theorem implies that, for x ∈ R, we have

f (x) = 1 √ 2π c -c f (ξ)e i x ξ dξ = c √ 2π 1 -1 f (cη)e i c x η dη.
Combining this with (3.20), one gets

f, T k L 2 ([-1,1],dµ) = 1 -1 f (x)T k (x) dx √ 1 -x 2 = c √ 2π 1 -1 f (cη) 1 -1 e -icxη T k (x) dx √ 1 -x 2 dη = i k c √ 2π 4 1 -1 π 2 J k (x)(cη) f (cη) dη.
Using (3.21) together with Cauchy-Schwarz inequality and a change of variable, one gets

| f, T k L 2 ([-1,1]) | ≤ c k+1 e k+1 2 k+2 (k + 1) k+1/2 1 -1 |η| k | f (cη)| dη ≤ c k+1/2 e k+1 2 k+3/2 (k + 1) k+1 2 2k + 1 c -c | f (η)| 2 dη 1/2
To conclude, it suffices to use Parseval's identity.

From the orthonormality of the Tk 's and this bound, we deduce that

f -T N f 2 L 2 ([-1,1],dµ) ≤ +∞ k=N +1 | f, Tk L 2 ([-1,1],dµ) | 2 ≤ +∞ k=N +1 1 2k + 1 c 2k+1 e 2k+2 2 2k+3 (k + 1) 2k+2 f 2 L 2 (R) ≤ 1 2N + 3 e 2N + 4 +∞ k=N +1 ce 2(k + 1) 2k+1 f 2 L 2 (R) ≤ e 2 c 4 1 (2N + 3) 2 ec 2N + 4 2N +4 f 2 L 2 (R) provided N ≥ ec/2.

Applications and numerical results

In the first part of this last section, we apply the quality of approximation of c-bandlimited functions by Legendre polynomials in the framework of prolate spheroidal wave functions (PSWFs). As a consequence, we give the convergence rate of the Flammer's scheme, see [START_REF] Flammer | Spheroidal Wave Functions[END_REF] for the computation of the PSWFs. 5.1. Approximation of prolate spheroidal wave functions. For a given real number c > 0, called bandwidth, the Prolate spheroidal wave functions (PSWFs) denoted by (ψ n,c (•)) n≥0 , are defined as the bounded eigenfunctions of the Sturm-Liouville differential operator L c , defined on

C 2 ([-1, 1]), by (5.31) L c (ψ) = -(1 -x 2 ) d 2 ψ d x 2 + 2x dψ d x + c 2 x 2 ψ.
They are also the eigenfunctions of the finite Fourier transform F c , as well as the ones of the operator

Q c = c 2π F * c F c , which are defined on L 2 ([-1, 1]) by (5.32) F c (f )(x) = 1 -1
e i c x y f (y) dy, and

Q c (f )(x) = 1 -1 sin(c(x -y)) π(x -y) f (y) dy.
They are normalized so that their L 2 ([-1, 1]) norm is equal to 1 and ψ n,c (1) > 0. We call (χ n (c)) n≥0 the corresponding eigenvalues of L c , µ n (c) the eigenvalues of F c and λ n (c) the ones of Q c . A well known property is then that

ψ n,c L 2 (R) = 1 √ λn(c)
.

The crucial commuting property of L c and Q c has been first observed by Slepian and co-authors [START_REF] Slepian | Prolate spheroidal wave functions, Fourier analysis and uncertainty I[END_REF], whose name is closely associated to all properties of PSWFs and their associated spectrum. Among their basic properties we cite their analytic extension to the whole real line and their unique properties to form an orthonormal basis of L 2 ([-1, 1]) and an orthonormal basis of B c . A well known estimate for χ n (c) is (5.33)

n(n + 1) ≤ χ n (c) ≤ n(n + 1) + c 2 .
Recall that λ n (c) and µ n (c) are related by

λ n (c) = c 2π |µ n (c)| 2 .
A precise asymptotic of λ n (c) has been established by Widom [START_REF] Widom | Asymptotic behavior of the eigenvalues of certain integral equations[END_REF]. Recently in [START_REF] Bonami | Spectral Decay of Time and Frequency Limiting Operator[END_REF], the authors have given an explicit approximation of the λ n (c), valid for n > 2c/π that gives rise to the exact super-exponential decay rate of the sequence of these eigenvalues. But, here we want a lower bound that is valid for all n. According to [START_REF] Landau | Prolate spheroidal wave functions, Fourier analysis and uncertainty III: The dimension of space of essentially time-and band-limited signals[END_REF],

(5.34)

0 < λ n (c) < 1 and λ [ 2 π c]+1 < 1 2 < λ [ 2 π c]-1
while Bonami-Karoui established the following bound, see [START_REF] Bonami | Uniform bounds of prolate spheroidal wave functions and eigenvalues decay[END_REF] (5.35)

λ n (c) ≥ 2 5 2c π(n + 1) 5(n+1) for n ≥ max 3, 2 π c .
In Appendix C we will prove the following slight improvement of this bound:

Proposition 5.1. Let c be a real number. Then, if n > 2 π c, λ n (c) ≥ 7 1 - 2c nπ 2 c 7πn 2n-1 . If n = 2 π c , λ n (c) ≥ 4 π + 2c . Since ψ n,c ∈ L 2 ([-1, 1]
), we may expand it in the Legendre basis

ψ n,c = +∞ k=0 ψ n,c , Pk Pk = +∞ k=0 k + 1 2 ψ n,c , P k P k . Notation : Let us write β n k (c) = k + 1 2
ψ n,c , P k so that, on [-1, 1],

(5.36)

ψ n,c = +∞ k=0 β n k (c)P k .
Rokhlin, Xiao and Yarvin [START_REF] Xiao | Yarvin Prolate spheroidal wave functions, quadrature and interpolation[END_REF] have obtained induction formulas for the β n k (c)'s in order to compute the ψ n,c 's. Let us now obtain an estimate for them: Corollary 5.2. With the above notation, we have

|β n k (c)| ≤            2 e πc √ 2k + 1 ec 2k+3 k+1 if n ≤ 2 π c -1 e(π+2c) 2πc k + 1/2 ec 2k+3 k+1 if n = 2 π c 2e 7π 1 √ c 1 -2c nπ -1 7πn c n-1/2 k + 1/2 ec 2k+3 k+1 if n ≥ 2 π c + 1 . Proof. Since ψ n,c ∈ B c (R), from Lemma 3.1 we deduce that | ψ n,c , P k | ≤ 2 e πc 1 √ 2k + 1 ec 2k + 3 k+1 ψ n,c L 2 (R) = 2 e πc 1 √ 2k + 1 ec 2k + 3 k+1 1 λ n (c)
To conclude, it suffices to use the lower bounds of λ n (c) given by (5.34) and the previous proposition.

From this, one can then easily obtain error estimates for the approximation of prolate spheroidal wave functions by the truncation of their expansion in the Legendre basis in the spirit of Theorem 3.3.

Numerical results. In this paragraph, we give several examples that illustrate the different results of this work.

Example 1. In this example, we check numerically that the actual error of the uniform approximation of the kernel k n (x, y) = n k=0 h k (x)h k (y) may be much smaller than the theoretical error given by Theorem 2.4. For this purpose, we have considered the value T = 1 and various values of the integer 10 ≤ n ≤ 100. For each value of n, we have used a uniform discretization Λ of the square [-1, 1] 2 with equidistant 6400 nodes. Then, we have computed over these grid points, a highly accurate approximation

E n = sup x,y∈Λ k n (x, y) - sin N (x -y) π(x -y)
of the exact uniform error

E n = sup x,y∈[-1,1] k n (x, y) - sin N (x -y) π(x -y)
. The obtained results are given by Table 1. Example 2. In this example, we illustrate the quality of approximation by scaled Hermite functions of a time-limited and an almost band-limited function. For this purpose, we consider the function

n
f (x) = 1 [-1/2,1/2] (x). From the Fourier transform of f , one can easily check that f ∈ H s (R) for any s < 1/2. Note that f is 0-concentrated in [-1/2, 1/2] and since f ∈ H s (R), f is Ω -band concentrated in [-Ω, +Ω],
with Ω < M s Ω -s with M s a positive constant. We have considered the value of c = 100 and we have used (2.17) to compute the scaled Hermite approximations K c n (f ) of f with n = 40 and n = 80. The graphs of f and its scaled Hermite approximation are given by Figure 1. In Figure 2, we have given the approximation errors f (x) -K c n f (x). Also, to illustrate the fact that the scaled Hermite approximation outperforms the usual Hermite approximation, we have repeated the previous numerical tests without the scaling factor (this corresponds to the special case of c = 1). Figure 3 shows the graphs of f and K n f . This clearly illustrates the out-performance of the scaled Hermite approximation, compared to the usual Hermite approximation. Example 4. In this last example, we illustrate the quality of approximation by Legendre and Chebyshev polynomials in the Sobolev spaces H s (I). We have considered the two functions f, g given by f

(x) = 1 [-1/2,1/2] (x) and g(x) = (1 -|x|)1 [-1,1] (x). It is clear that g ∈ H s (I), ∀s < 3/2.
In Figure 5, we plot the graphs of the approximation error of f by its corresponding projections L N f and T N f over the subspaces spanned by the first N + 1 Legendre and Chebyshev polynomials, respectively, with N = 50. In Figure 6, we plot the graphs of g -L N g and g -T N g with N = 50. The bounds for e(x) are obtained by standard calculus, we will thus omit the proof. As for E(x), the computation shows

E(x) = 1 p(x) x 0 q(t) p(t) h(t) sin ϕ(x) -ϕ(t) dt.
Using Cauchy-Schwarz, we obtain

|E(x)| ≤ 1 p(x) x 0 q(t) 2 p(t) dt 1/2 x 0 h(t) 2 dt 1/2 ≤ 1 p(x) x 0 25λ 4 16p(t) 9 dt 1/2
since h n 2 = 1. As |x| < λ, and p decreases, the estime |E(x)| ≤ 5λ 5/2 4p(x) 5 follows. When |x| ≤ λ/2, the change of variable y = λs and a numerical computation shows that |E(x)| ≤ 2 λ 3 . Note that this bound on E directly leads to a bound on h. For instance, if n ≥ 2 is even, then

|h 2n (x)| ≤ 1 p(x) for |x| ≤ λ/2.
The Lipschitz bound on E is a bit more subtle so let us give more details. First, we introduce some further notation:

χ(x, t) = q(t) p(t) h(t) sin ϕ(x) -ϕ(t) and Φ(x, y) = x 0 χ(y, t) dt. Now, write E(y) -E(x) = 1 p(y) - 1 p(x) Φ(y, y) + 1 p(x) Φ(y, y) -Φ(x, y) 1 p(x) Φ(x, y) -Φ(x, x) = E 1 + E 2 + E 3 .
We have proved that for |y| < λ/2, Φ(y, y) ≤ 2λ 

|Φ(y, y) -Φ(x, y)| ≤ y x |χ(y, t)| dt ≤ |x -y| sup |t|≤λ/2 q(t) p(t) sup |t|≤λ/2 |h(t)| ≤ 5λ 2 4p(y) 5 |x -y|. Therefore, |E 2 | ≤ 3 λ 7/2 |x -y|. Finally, Φ(x, y) -Φ(x, x) = x 0 q(t) p(t) h(t) sin ϕ(y) -ϕ(t) -sin ϕ(x) -ϕ(t) dt = 2 x 0 q(t) p(t) h(t) cos ϕ(x) + ϕ(y) -2ϕ(t) 2 dt sin ϕ(y) -ϕ(x) 2 .
The integral is estimated in the same way as we estimated Φ(x, x), while for ϕ we use the mean value theorem and the fact that ϕ = p. We, thus, get |E 3 | ≤ 2 λ 5/2 |x -y|. The estimate for E follows.

Appendix B. Proof of Theorem 2.4 . For sake of simplicity, we will only prove the theorem in the case when n is even and write

n = 2p. Let λ = √ 2n + 1, µ = √ 2n + 3, α = 1 √ πp 1/4 , β = 1 √ πp 1/4 , E = (-1) p
Ẽ2p and F = (-1) p Ẽ2p+1 .

Then, according to Corollary 2.2 The first term is the principal one. Let us start by computing

h 2p (x) = (-1) p 1 √ πp 1/4 cos ϕ 2p (x) + E(x) h 2p+1 (x) = (-1) p 1 √ πp 1/4 sin ϕ 2p+1 (x) + F (x) . Therefore, h 2p+1 (x)h 2p (y) -h 2p+1 (y)h 2p (x) is = 1 πp 1/2 sin ϕ 2p+1 (x) cos ϕ 2p (y) -sin ϕ 2p+1 (y) cos ϕ 2p (x) + 1 √ πp 1/4 F (x) cos ϕ 2p (y) -F (y) cos ϕ 2p (x) + 1 √ πp 1/4 sin ϕ 2p+1 (x)E(y) -sin ϕ 2p+1 (y)E(x) +F (x)E(y) -F (y)E(x).
C := sin ϕ 2p+1 (x) cos ϕ 2p (y) -sin ϕ 2p+1 (y) cos ϕ 2p (x) = 1 2 sin ϕ 2p+1 (x) + ϕ 2p (y) -sin ϕ 2p+1 (x) -ϕ 2p (y) -sin ϕ 2p+1 (y) + ϕ 2p (x) + sin ϕ 2p+1 (y) -ϕ 2p (x) = sin ϕ 2p+1 (x) -ϕ 2p+1 (y) -ϕ 2p (x) + ϕ 2p (y) 2 × cos ϕ 2p+1 (x) + ϕ 2p+1 (y) + ϕ 2p (x) + ϕ 2p (y) 2 + sin ϕ 2p+1 (y) + ϕ 2p (y) -ϕ 2p (x) -ϕ 2p+1 (x) 2 × cos ϕ 2p+1 (x) -ϕ 2p (x) -ϕ 2p (y) + ϕ 2p+1 (y) 2 = S 1 C 1 + S 2 (C 2 -1) + S 2 .
Now, according to (2.10),

|S 1 C 1 | ≤ |S 1 | ≤ |ϕ 2p+1 (x) -ϕ 2p+1 (y) -ϕ 2p (x) + ϕ 2p (y)| 2 ≤ 3 2 √ 2n + 1 |x -y|. With (2.11), |C 2 -1| ≤ |ϕ 2p+1 (x) -ϕ 2p (x) -ϕ 2p (y) + ϕ 2p+1 (y)| 2 2 ≤ 25T 2 2(2n + 1)
.

Thus, with (2.12), According to the min-max Theorem, for any n-dimensional subspace V of L 2 (R)

λ n (c) ≥ min f ∈V \{0} Q c f, f L 2 (R) f 2 L 2 (R)
.

To show the theorem, we consider V to be the space of functions that is constant on each interval of the form 

f

  (cos θ) cos kθ dθ applied to f (y) = e ixy and the Poisson integral representation formula of the Bessel function.

Figure 1 .

 1 Figure 1. Graph of the approximation of f (x) (red) by K c n f (x), c = 100 (blue) with (a) n = 40 (b) n = 80.

Figure 2 .

 2 Figure 2. Graph of the approximation error f (x) -K c n f (x), c = 100 with (a) n = 40 (b) n = 80.

Figure 3 .

 3 Figure 3. Graph of the approximation of f (x) (red) by K c n f (x), c = 1 (blue) with (a) n = 40 (b) n = 80.

Figure 4 .

 4 Figure 4. (a) graph of log(|l n (f c )|), c = 10 (in red) versus the logarithm of its bound (3.19) (in blue), (b) graph of log(|c n (f c )|), c = 10 (in black) versus the logarithm of its bound (4.30) (in blue); (c) and (d) same as in (a) and (b) with c = 50.

Figure 5 .

 5 Figure 5. (a) Graphs of the errors f (x) -L N f (x), with N = 50 (b) same as (a) with f (x) -T N f (x),.

Figure 6 . 1 .

 61 Figure 6. (a) Graphs of the errors g(x) -L N g(x), with N = 50 (b) same as (a) with g(x) -T N g(x),.

  The last three terms are all of the formA(x)B(y) -B(x)A(y) = A(x) -A(y) B(y) + B(y) -B(x) A(y)and are thus bounded with the help of the uniform and Lipschitz bounds of A and B by a factor of |x -y|.

|S 2 (C 2 - 1 ) 1 .

 2211 again Lemma 2.3, sin N (y -x)+ ε n (y, x) is = sin N (y -x) + sin N (y -x) cos ε n (y, x) -1 + cos N (y -x) sin ε n (x, y) = sin N (y -x) + E 2 (x, y),where|E 2 (x, y)| ≤ |ε n (x, y)| + |ε n (x, y)| 2 2 ≤ 2T 2 √ 2n + 1 |x -y|.It remains to group all estimates to get the result.Appendix C. Proof of Proposition 5.Recall that we want to prove that, if n >

|f j | 2 . 2 |f j | 2 = 2 .

 2222 0, . . . , n -1.Take f ∈ V and write f = On the other hand, writef (ω) := F[f ](ω) := 1 √ 2π R f (t)e -itω dtfor the Fourier transform and note thatQ c (f ) = F -1 1 [-c,c] F . Parseval's Identity shows that Q c f, f L 2 (R) = |η| < 2c/n then |η/2| < π/2. Now, on [-π/2, π/2],The estimate of λ n (c) follows. If n ≤ 2c π we may now modify the argument starting from (C.37): π/2, π/2]. But, for ∈ Z,

Table 1 .

 1 Approximate errors E n for various values of n.

	10	25	50	75	100
	E n 0.067 0.039 0.025 0.023 0.022

  Next, if |x|, |y| ≤ (1 -η)λ one can estimate E 2 as follows:

-3 

. Simple calculus then implies that |E 1 | ≤ |x -y| λ 9/2 when |x|, |y| < λ/2.
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