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[1] An algorithm has been developed that employs neural network technology to retrieve
soil moisture from multi-wavelength satellite observations (active/passive microwave,
infrared, and visible). This represents the first step in the development of a methodology
aiming to combine beneficial aspects of existing retrieval schemes. Several quality metrics
have been developed to assess the performance of a retrieval product on different spatial
and temporal scales. Additionally, an innovative approach to estimate the retrieval
uncertainty has been proposed. An information content analysis of different satellite
observations showed that active microwave observations are best suited to capture the
soil moisture temporal variability, while the amplitude of the surface temperature
diurnal cycle is best suited to capture the spatial variability. In a synergy analysis, it
has been found that through the combination of all observations the retrieval
uncertainty could be reduced by 13%. Furthermore, it was found that synergy benefits
are significantly larger using a data fusion approach compared to an a posteriori
combination of retrieval products, supporting the combination of different retrieval
methodology aspects in a single algorithm. In a comparison with model data, it was
found that the proposed methodology also shows potential to be used for the
evaluation of modeled soil moisture. A comparison with in situ observations showed
that the algorithm is well able to capture soil moisture spatial variabilities. It was
concluded that the temporal performance can be improved through incorporation of
other existing retrieval approaches.

Citation: Kolassa, J., F. Aires, J. Polcher, C. Prigent, C. Jimenez, and J. M. Pereira (2013), Soil moisture retrieval from
multi-instrument observations: Information content analysis and retrieval methodology, J. Geophys. Res. Atmos., 118,
4847–4859, doi:10.1029/2012JD018150.

1. Introduction
[2] Compared to its other components, surface soil mois-

ture constitutes only a very small part of the global hydro-
logical cycle (about 0.005%) [Wagner, 1998]. Nevertheless,
it is of great importance for the development of land surface
and climatological models and to observe trends in the
surface water budget. This is because the moisture content
of the soil strongly influences the interaction between the
land surface and the atmosphere through its effect on soil
evaporation and transpiration. In addition, soil moisture
determines the distribution of precipitation into infiltration
and surface runoff and controls plant growth. Hence, there
is a strong need for a global and long-term soil moisture

estimate. While in situ measurements of soil moisture
still offer the most important estimates, the network of
measurement stations is sparse, limited to a few regions,
and restricted in temporal resolution and duration. Further-
more, since in situ measurements are only representative of
a single point, the scaling of these measurements to model
or satellite scales introduces a high degree of uncertainty in
the intercomparison. Hence, at this point the only reasonable
option for the development of a global, long-term soil mois-
ture product is through retrieval from satellite observations.
Generally, satellite observations are sensitive to the upper
soil layer and as such are used to retrieve surface soil
moisture. The Soil Moisture and Ocean Salinity (SMOS)
Mission [Kerr et al., 2010] launched in 2009 represents
the first satellite sensor dedicated to the retrieval of soil
moisture. It carries an L band radiometer and employs an
interferometric approach in order to distinguish the soil mois-
ture signal from other parameters affecting the measured
brightness temperature, such as for instance the vegetation
cover or the soil roughness. SMOS is soon to be joined by
the Soil Moisture Active Passive (SMAP)Mission [Entekhabi
et al., 2010], which aims to exploit the synergy of active and
passive microwave observations. Both missions present the
state-of-the-art in soil moisture retrieval, however, only few
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years of SMOS data are available at this point, which limits its
application in climatological studies.
[3] Thus in order to create a long-term, global soil mois-

ture product, one is obliged to perform a retrieval from older
instruments not dedicated to measuring soil moisture. A
large amount of work in this direction has already been
performed resulting in a number of different satellite
retrieval products. Owe et al. [2001] and Njoku et al.
[2003] both perform an inversion of different microwave
emission models to retrieve soil moisture from Advanced
Microwave Scanning Radiometer–EOS brightness tempera-
tures, while Wagner [1998] applied a change detection
algorithm to active microwave observations from ERS and
MetOp-A. Furthermore, Owe et al. [2008] extended their
retrieval to other passive microwave sensors and combined
the resulting estimates in order to create a 30 year soil
moisture database. Additionally, Liu et al. [2011] merged
soil moisture retrievals from active and passive microwave
sensors to exploit their complementarity and generate a
long-term soil moisture database. Prigent et al. [2005]
developed a retrieval scheme based on neural networks and
studied the sensitivity of different satellite observations to
soil moisture. Despite all these efforts, soil moisture retrieval
from non-dedicated sensors still remains a great challenge,
and each of the retrieval schemes presented above is subject
to limitations (often in densely vegetated or arid regions).
[4] The purpose of this paper is to present the first steps

in the development of a methodology that aims to combine
the best aspects of the existing algorithms and thus improve
the quality of soil moisture retrievals from non-dedicated
sensors. The methodology proposed represents a multi-
wavelength retrieval, which combines not only passive and
active microwave observations, but additionally infrared
and visible data. This aims on one hand to account for pos-
sible contaminations of the microwave data, for example,
through the presence of vegetation or surface temperature
effects. More importantly, however, it is presumed that the
addition of these observations will contribute information
on the soil moisture variability, which is not captured
by the microwave observations. The proposed algorithm
utilizes neural network technology, which facilitates data
fusion of different satellite observations [F. Aires et al.,
2012]. As such the proposed methodology represents a sta-
tistical method different from the inversion of microwave
emission models or the regression algorithm other retrievals
are based on. This means that the algorithm will not encoun-
ter the same complications as other techniques and the re-
trieved soil moisture thus represents an alternative product,
which could complement existing retrieval products. While
at this point the neural network is calibrated on a model,
the plan is to eventually use SMOS retrievals for the calibra-
tion to obtain a purely observation-dependent product com-
patible with the SMOS data. Additional steps aiming to
incorporate existing soil moisture retrieval expertise in the
proposed neural network algorithm will also be discussed.
[5] The purpose of this paper is to present the retrieval

methodology that has been developed and several analyses
that were performed as part of the development and a first
evaluation of the preliminary retrieval product against differ-
ent sources of soil moisture data. The data sets used in the
analysis and the processing applied to them is presented in
section 2. Section 3 discusses several aspects of the retrieval

methodology proposed here, including the retrieval algo-
rithm, the quality metrics developed to assess the retrieval
quality, an information content analysis of the different sat-
ellite observations, an analysis of the methods and benefits
of observation synergy as well as a first assessment of the re-
trieval uncertainty. Subsequently, section 4 provides a more
detailed evaluation of the generated soil moisture estimate,
presenting a comparison against modeled soil moisture and
in situ soil moisture observations. Finally, section 5 sum-
marizes the results found and gives an outlook on future
developments regarding the retrieval product as well as po-
tential studies utilizing the calculated soil moisture database.

2. Data Sets

[6] Observations at microwave frequencies have been
found to be most sensitive to soil moisture. This is because
they are essentially sensitive to the soil dielectric properties,
in particular the dielectric constant. Since the dielectric
constant of water and bare soil is profoundly different
(approximately 80 for water and approximately 3 for dry
soil) [Schmugge et al., 1986], the presence of water in the
soil greatly affects the combined wet soil dielectric constant,
which is clearly visible in microwave observations. However,
microwave signals are also influenced by the surface tempera-
ture (passive microwave observations), the vegetation cover
(passive and active observations), the surface roughness,
and other parameters. The purpose of the proposed neural
network retrieval scheme is to combine microwave observa-
tions with observations at other wavelengths in order to
account for the various effects and thus improve the resulting
retrieval product. Another reason for using multi-wavelength
observations is that the data used in addition to the microwave
observations, such as for example the amplitude of the surface
temperature, have also been shown to be highly related to
soil moisture [Schmugge et al., 1980] and could thus serve
as soil moisture proxies as well [Prigent et al., 2005]. This is
not only particularly useful in situations where no microwave
observations are available, but also greatly helps from an
additive synergy point of view. The data sets employed during
the retrieval and the processing applied to each of them are
discussed in the following paragraphs.

2.1. Backscatter From the European Remote Sensing
(ERS) Satellite

[7] The ERS scatterometer is an active microwave instru-
ment measuring the backscatter [dB] at 5.3GHz and was
flown on both ERS satellites. The scatterometer consists of
three different antennas, observing at azimuth angles of
45�, 90�, and 135� with respect to the flight path. Each
antenna performs a scan across the swath of the flight path
[Francis et al., 1991]. Because of this viewing geometry,
the local incidence angle of the measurements varies
between antennas and between subsequent measurements.
In order to obtain a data set in which the individual measure-
ments are comparable to each other, a linear regression has
been performed to express the measured backscatter as a
function of the incidence angle. This regression function
was then used to extrapolate all measurements to a common
incidence angle of 40� in a manner similar to the one
proposed by Wagner [1998], reducing the influence of the
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vegetation cover on the signal. For the remainder, the hence
transformed ERS data will be denoted by s40.
[8] It has been considered to additionally use a soil

moisture proxy index that relates to the temporal evolution
of the soil moisture similar to the one computed with the
change detection algorithm proposed by Wagner [1998]. It
is expected that this might improve the retrieval ability to
capture the soil moisture temporal variability. However, this
algorithm requires a posteriori information on the maximum
and minimum soil moisture at a location, which at this point
could only have come from a model. To keep the inputs
purely model independent, it has thus been decided to use
only the backscatter. However, in the future a change detec-
tion index might be computed using SMOS data to provide
the extreme soil moisture values per location.

2.2. Surface Emissivities From SSM/I

[9] Passive microwave sensors are essentially sensitive to
changes in the soil dielectric properties, such as the dielectric
constant. As explained before, the presence of water in the
soil greatly affects the soil dielectric constant, which leads
to a high sensitivity of passive microwave sensors to soil
moisture. The Special Sensor Microwave/Imager (SSM/I)
is a passive microwave radiometer observing at frequencies
between 19.35 and 89GHz. Since low-frequency radiation
penetrates deeper into the soil, only the 19.35GHz channels
of SSM/I are considered for the soil moisture retrieval.
Theoretically frequencies above 10GHz should show a lim-
ited potential for soil moisture retrieval, however, Vinnikov
et al. [1999] showed that a soil moisture signal can be
retrieved from microwave observations at 18GHz or above.
Observations at the wavelength of 19.35GHz are performed
both at horizontal as well as vertical polarizations, measur-
ing the brightness temperature TB in units of Kelvin [K].
These measurements depend, among other factors, on the
state of the atmosphere and the surface temperature. In
order to obtain a surface-related parameter, the atmospheric
contribution as well as the modulation by the surface
temperature was removed and the brightness temperatures
were converted to surface emissivities as shown by Prigent
et al. [1997]. The two sets of emissivities—at horizontal
and vertical polarizations—will be denoted by eh and ev,
respectively, in this paper.

2.3. Amplitude of Diurnal Cycle of Surface
Temperature

[10] The temperature product used in the retrieval is the
global skin surface temperature data set of the International
Satellite Cloud Climatology Project (ISCCP) corrected for
atmospheric effects and as processed by Rossow and
Schiffer [1999]. The original three-hourly data set was
interpolated to obtain the full diurnal cycle as shown by
Aires et al. [2004], which was then used to compute the
diurnal cycle amplitude. The temperature data have been
included in the retrieval, because it has been found that
an increase in soil moisture leads to an increase of the
thermal inertia of the soil and hence results in a lower diurnal
cycle amplitude [Schmugge et al., 1980]. As such the ampli-
tude of the diurnal temperature cycle can be used as a direct
proxy for the soil moisture. This is especially advantageous

in cases where no microwave data are available. The tempera-
ture amplitude measurements are provided in units of Kelvin
[K] and will be denoted by TS.

2.4. Normalized Difference Vegetation Index (NDVI)

[11] In order to account for the effects of vegetation on
the microwave observations, a set of global Normalized
Difference Vegetation Index (NDVI) data is included in
the analysis. In some regions of the Earth, where a strong
dependence of vegetation on soil moisture exists, such as
savannas, this data set might also serve as a direct proxy
for soil moisture. The data are based on infrared and
visible spectrum observations of the Advanced Very High
Resolution Radiometer (AVHRR) [Gutman, 1999] and will
be indicated by NDVI.

2.5. ORCHIDEE Soil Moisture

[12] The neural network technique employed for this soil
moisture retrieval requires a set of target data in order to
be trained. Here the soil moisture of the land surface model
Organizing Carbon and Hydrology in Dynamic Ecosystems
(ORCHIDEE) developed by the Laboratoire de Météorologie
Dynamique (LMD) in Paris [de Rosnay et al., 2002] will be
used. The soil moisture is specified in [kgm�2] for 11 layers,
the upper four used here representing a total surface depth of
2 cm. This decision has been made since it is assumed that
the satellite observations are not sensitive to layers deeper than
2 cm. For the majority of the analysis presented here, the
ORCHIDEE soil moisture has been obtained from forcing
the model with data from the WATCH project [Weedon
et al., 2011]. As part of the evaluation analyses, an additional
run of ORCHIDEE forced with ERA-interim data [Balsamo
et al., 2010] will be used. The two data sets will be denoted
as ORCHIDEEWATCH and ORCHIDEEERA, respectively.

2.6. HTESSEL Soil Moisture

[13] For evaluation, the results obtained with the ORCHI-
DEE runs are also compared against a third independentmodel
soil moisture coming from the Hydrology-Tiled ECMWF
Scheme for Surface Exchange over Land (H-TESSEL) model
forced with ERA-interim data. It has been decided to use
HTESSEL instead of ERA-interim, because it uses updated
infiltration relationships and accounts for different soil textures
and infiltration capacities [Balsamo et al., 2009]. The volumetric
soil moisture [m3m�3] is specified for four layers, the
uppermost used here representing a soil depth of 7 cm. This
data set will be denoted by HTESSEL.

2.7. Pre-Processing

[14] In order to use the satellite observations as well as the
model soil moisture in the proposed retrieval scheme, all
data sets have been projected to an equal area grid with a cell
center spacing of 0.25� at the equator and were averaged on
a monthly time scale. In addition to that, all pixels covered
by snow or ice have been removed from the analysis
using the data set of Armstrong and Brodzik [2005]. Pixels
containing standing water or closer than 100 km to a coast
were also excluded using the wetland data set of Prigent
et al. [2007]. The lower time limit (1993) of the processed
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data is constrained by the flag data availability and the upper
limit (1999) is set by the model forcing data.

3. Retrieval Methodology Development

[15] The retrieval algorithm is based on Neural Networks
(NN). The NN algorithm represents a nonlinear regression
tool used to determine and exploit the general statistical
relationship between the satellite observations and soil
moisture. The algorithm is used in combination with a set
of multi-wavelength satellite observations, each one carrying
a different information content on soil moisture variability.
It is presumed that the retrieval quality can be greatly
improved through the synergy of these observations; how-
ever, the improvement is likely to depend on the exact
synergy method chosen. The proposed retrieval algorithm
performance will depend on the configuration of satellite
observations, and thus a tool is proposed to quantify the
retrieval uncertainty in different regions of the Earth.

3.1. Neural Network Algorithm

[16] The retrieval methodology is based on a neural
network algorithm, which uses a combination of microwave
(active and passive), infrared, and visible observations as
input and computes a corresponding soil moisture.
[17] In the context of remote sensing retrievals neural

networks are in essence a non-linear regression tool. In this
study, we use the classical feed forward model, as discussed
for example in Bishop [1995], consisting of an input layer,
an output layer, and a variable number of so-called hidden
layers. Each layer contains a number of neurons (or comput-
ing nodes) associated with a certain transfer function. A
hidden-layer neuron receives its input from one or more
neurons of the previous layer, applies the transfer function,
and distributes its output to one or more neurons in the
subsequent layer. The connections between the neurons are
assigned weights, which determine the contribution of one
neuron output to another neuron input. The number of
neurons in the input and output layer is determined by the
number of inputs and outputs, respectively. The number of
neurons in the hidden layer(s) depends on the complexity
of the problem. It has been shown by Cybenko [1989] that
a neural network of sufficient complexity can approximate
any continuous function. Because the neural network is able
to relate a given output value to any number of input values
and because of its ability to learn nonlinear functions, it is
very well suited for the fusion of multi-sensor satellite
observations in this soil moisture retrieval.
[18] In principle, the neural network determines the

global relationship between the inputs and the outputs, i.e.,
it learns to associate a certain combination of inputs with a
certain output. This learning process is known as training
and is accomplished by presenting the network with the
input values as well as the desired target values. Here the
input data are the active and passive microwave observa-
tions, the amplitude of the diurnal cycle of the surface
temperature and observations of the NDVI. The target data
are the modeled soil moisture from ORCHIDEE. It is
planned to eventually use SMOS soil moisture as the target
data to remove any dependence of the retrieval on the model
and to create a product that is consistent with SMOS soil
moisture, but covers earlier years. Given the set of inputs,

the neural network will compute a set of output soil moisture
according to the transfer function and weights specified
for the neurons. In the back propagation training scheme
[Rumelhart and Chauvin, 1995] used here, these outputs
are then compared to the target values, i.e., the ORCHIDEE
soil moisture, and a cost function between the two is
estimated, which in this analysis is the mean squared error.
This mean squared error is a function of the network weights
and the purpose of the training step is to adjust the network
weights until this cost function has been minimized. In
that sense, the node weights can be regarded as nonlinear
regression parameters [Rochester et al., 1956]. Once the
network has been trained, it can be used with a new set of
satellite inputs in order to compute the corresponding soil
moisture. Obviously, the ability of the neural network to
predict scenarios from a set of input data depends on the
versatility of the data set it has been trained with. In other
words, a neural network is not able to predict a scenario that
is very different from the scenarios in the training data set.
For this reason, the training data set should not only be
sufficiently large, but also more importantly representative
of the expected range of scenarios.
[19] There are some important aspects regarding the

operating principle of neural networks. The first one is that
during the training step no information on the location or
the acquisition time of the data points is provided to the
network. As a result, when computing a soil moisture esti-
mate from the trained network, the spatial and temporal
structures of this estimate are mainly driven by the observa-
tions, not by the model.
[20] Second, it should be kept in mind that any variability

present in the input data that cannot be related to variations
in the target data will be discarded. Similarly, any variability
in the target data that cannot be related to the input data will
not be reproduced when using the network to compute
estimates. This means that significant differences can exist
between the estimates computed from a neural network
and the target data that were used to initially train the
network. In essence, these differences can have two causes:
(1) the soil moisture variability in the target data is unrealis-
tic or (2) the input data are lacking information that is neces-
sary to capture the variability of the target data. Having only
the target data and the computed estimates available, it is not
possible to determine which of these two factors causes the
differences, but a comparison with an independent data set
is required.
[21] The range of the retrieved soil moisture will be

reduced compared to the original target soil moisture,
because the input observations do not provide enough infor-
mation to characterize extreme events. In order to alleviate
this effect the cumulative distribution function (CDF) of
the retrieval data has been matched to that of the target data
(CDF-matching) [Horn and Woodham, 1979]. In essence,
the effect of this transformation is that, e.g., the 5% of the
retrieval points with the lowest values fall within the
same soil moisture range as the lowest 5% of the model soil
moisture data. Since the location of the points with the
lowest values is different in both data sets, this transforma-
tion does not affect the spatial and temporal structures of
the retrieved soil moisture, but only the dynamic range of
the data. Hence, the results of the correlation analysis will
not be affected by CDF-matching. However, since it
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represents a modification of the optimal solution found by
the neural network, it will slightly increase the RMS error
with respect to the target data.

3.2. Quality Metrics

[22] For the subsequent analyses, different quality metrics
have been estimated. In the information content and synergy
analyses, the metrics are estimated with respect to the
training model soil moisture and are used as proxies for
the information content carried by the various satellite
observations. In the retrieval evaluation, the quality metrics
are estimated with respect to modeled soil moisture, other
retrieval products, and in situ data, respectively. In these
analyses, the metrics serve to estimate the ability of the
retrieval to capture different spatial and temporal soil moisture
variabilities. In the descriptions below, the data sets with
respect to which the metrics are estimated are often referred
to as “target data.” However, this should not be confused with
the target data from the network training step.
RMS error: The root mean squared (RMS) error gives a

first indication of the quality of the soil moisture estimate.
Since it considers the mean as well as the standard deviation
of the estimate errors, the RMS error indicates whether a
bias exists between the estimates and the targets and how
large the spread of the estimated values around the “true”
target values is.
Uncertainty s: The uncertainty s is defined here as the

standard deviation of the estimate errors. It provides an
indication of the spread of the estimates around the target
values and thus signifies how certain the estimates are. It
does not provide any information about whether or not a bias
exists between the estimates and the targets.
Spatial correlation rspatial: The spatial correlation quanti-

fies the retrieval ability to capture the soil moisture spatial
variability of the target data. It is computed by converting
the soil moisture for all pixels and the complete time series
into a vector and determining the Pearson correlation with
respect to the corresponding model data vector. This yields
one spatial correlation value per retrieval.
Seasonal correlation rseasonal: The seasonal correlation

provides an indication of the retrieval ability to capture the
soil moisture seasonal variability. The seasonality of the soil
moisture is location dependent and has thus been estimated
for each pixel separately. The Pearson correlation between
the complete estimate time series of each pixel and the
respective target time series was determined. This approach
means that the correlation computed is contaminated by
the interannual variability, however, this variability is negli-
gible compared to the seasonal variability. The result is a
map of seasonal correlations for each of the retrieval scenar-
ios. By their nature, these maps give a rather qualitative
measure for the performance of the various retrieval pro-
ducts and it is difficult to compare them directly. In order
to obtain a more quantitative measure, a mean seasonal
correlation was computed based on these maps. It is obvious
that a seasonal correlation only has a physical meaning if
there is in fact a sufficiently strong variability to be captured.
For this reason, it has been decided to only consider pixels,
for which the seasonal cycle amplitude of the soil moisture
is larger than 15% of the maximum amplitude. Additionally,
when computing the seasonal correlation maps, the p-value
of the correlation, specifying the probability that the

correlation value was obtained by chance, was estimated in
each pixel. For plotting the maps as well as when computing
the mean seasonal correlation, pixels with a p-value higher
than 10% were removed from the analysis. After this filter-
ing, approximately 44% of the original data are still included
in the analysis.
Interannual correlation rinterannual: The interannual corre-

lation was determined in order to estimate the ability of the
retrieval to capture interannual variations of soil moisture.
As for the seasonality, the interannual variation is location
dependent and thus the analysis was performed per pixel.
To this end, the absolute soil moisture values were converted
into anomalies from the mean seasonal cycle in each
pixel, and the Pearson correlation with respect to the
corresponding target data vector was computed. The mean
seasonal cycle in each pixel has been computed by averag-
ing all data maps for a certain month and thus computing a
mean map for that month. The result of the correlation
computation is a map of interannual correlations for each
of the retrieval products. As for the seasonal correlations, a
spatial mean correlation value was computed in order to
obtain a more quantitative and directly comparable measure
of the retrieval capability to capture interannual variations.
Again only pixels were considered in which the interannual
variability is larger than 15% of the maximum interannual
variation. As for the seasonal correlation, pixels with a p-value
higher than 10% have been removed from the maps and any
further analysis. After filtering, approximately 49% of the
original points are still considered in the analysis.

3.3. Information Content of Satellite Observations

[23] As part of the retrieval algorithm development, an
information content analysis of the individual satellite
input observations has been performed. To this end, several
retrievals were performed using only one of the satellite
observations at a time. The quality metrics between the
estimates and the ORCHIDEEWATCH soil moisture were
then computed in each case. This served to determine what
type of information on soil moisture variability is carried
by each of the satellite observations.
[24] Table 1 summarizes the quality metrics obtained for

the estimates computed from individual satellite observa-
tions. For all quality metrics, the ERS backscatter measure-
ments and the surface temperature diurnal cycle amplitudes
provide the best results. In particular, the backscatter data
seem to be most suited to capture the seasonal and interan-
nual variability of the soil moisture. These results are not
surprising, since microwave observations are known to be
the most sensitive to soil moisture. Since the soil properties

Table 1. Quality Metrics Between Estimates Computed From
Individual Satellite Observations Using an ORCHIDEEWATCH

Trained NN and ORCHIDEEWATCH Modeled Soil Moisturea

Data Set RMSE [kgm�2] s [kgm�2] rspatial rseasonal rinterannual

s40 0.9507 1.09 0.76 0.65 0.56
TS 0.96 1.06 0.79 0.59 0.47
eh ,ev 1.00 1.14 0.74 0.46 0.39
NDVI 1.05 1.19 0.68 0.49 0.39

aThe best value for each of the quality metrics is shown in bold face.
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can react very rapidly to a change of soil moisture, the
ERS backscatter is best suited to capture the soil moisture
temporal variability. It is expected that if an index based
on change detection as proposed by Wagner [1998] would
be used in addition to the raw backscatter, this ability to cap-
ture temporal soil moisture variability could even be further
improved.
[25] Table 1 also shows a good performance of the

temperature-based retrieval product, especially with regard
to the spatial variability of the soil moisture. This is because
the surface temperature can be very heterogeneous and is
thus well suited to pick up soil moisture spatial variability.
These results underline that the amplitude of the diurnal
temperature cycle serves as a good proxy for the soil moisture
itself. As discussed before, this is due to the influence of
the soil moisture on the soil thermal inertia and evaporation
and hence on the amplitude of the diurnal cycle.
[26] Based on intuition it could be expected that NDVI

would perform best in capturing the soil moisture seasonal
variability due to the obvious relationship between water
availability and plant growth. While the seasonal correlation
obtained from an NDVI-only retrieval is high, the tempera-
ture and active backscatter product perform better. It is
possible that the correlation value obtained with the NDVI
product could be increased if temporal lags were considered
in the analysis, but the lags would most likely differ from
one location to another. Another possibility is that the NDVI
product might be slightly contaminated by clouds in some
regions, leading to a seasonal correlation that is lower than
expected. However, it should also be noted that in the
midlatitudes, the NDVI is more strongly driven by the
temperature and the length of the day and hence no strong
correlation with the soil moisture should be expected in
these regions.

3.4. Synergy Analysis

[27] One objective of this study is to assess to what extent
a retrieval benefits from the use of multiple observations and
which synergy method yields the largest improvement.
3.4.1. Stepwise Observation Combination
[28] The first point has been analyzed by combining

the observations in a stepwise approach. This means that
the individual observation with the best quality metrics
was selected and subsequently combined with each of the
remaining observations, respectively. A new set of soil
moisture estimates has been computed from these combina-
tions of two and the combination with the best quality
metrics was chosen. In this manner, a new observation was
added to the best combination upon each iteration [Efroym-
son, 1960]. This iterative approach is preferred over a simple
combination of the best individual observations in order to
ensure that the most complementary combination is chosen.
[29] Table 2 shows the quality metrics for the best individ-

ual data set and the best combinations. In terms of RMS
error and uncertainty the quality of the retrieval increases
with each data set added and—as expected—the combina-
tion of all data sets yields the optimal result. This means that
for a larger combination of data sets the information content
is higher and hence the retrieval will be of a higher quality.
The results also clearly illustrate the effects of complemen-
tarity discussed before. While the ERS backscatter and

the diurnal temperature cycle amplitudes perform best
individually, their combination does not yield the best
retrieval from a combination of two. Instead, the combina-
tion of ERS backscatter and NDVI data yields the best
result, which indicates that these two data sets complement
each other more.
[30] Regarding the temporal correlations, the retrieval

from active microwave data alone actually performs better
than the retrievals from combinations. This is because
during training the network attempts to minimize the errors
between the estimates and the target data and finds the best
compromise between the information provided by the differ-
ent observations. In the case of the soil moisture retrieval,
this leads to a degradation of the temporal behavior.
[31] While the seasonal correlations for the combination

retrievals are consistently high, adding new observations
only slightly increases the retrieval quality. It was also
observed that when using points in which the seasonal
variability is high, the seasonal correlations increase signifi-
cantly. This demonstrates that the ability of the retrieval to
capture seasonal variability is proportional to the magnitude
of the variation.
[32] Only very small improvements in the interannual

correlation can be achieved through the addition of observa-
tions, which leads to the conclusion that no new information
on the interannual variability is added by the data sets. Upon
comparison of maps of the interannual variability to maps
of the estimate error standard deviation, it was found that
in most regions the error variability was higher. This makes
it impossible for the retrieval to capture the interannual
variability. In regions where the interannual variability was
higher, mean correlations of 0.65 could be obtained.
[33] The spatial correlation values are consistently high and

increase steadily with the addition of observations. The consis-
tent increase of the correlations in Table 2 indicates that each
data set is able to provide some new information about the
spatial behavior and thus contributes to an improvement of
the retrieval.
3.4.2. Synergy Factors
[34] In order to better quantify the retrieval improvement

upon each addition of an observation the so-called synergy
factor was determined for each of the retrieval products. The
synergy factor SF is a measure of the percentage by which a
retrieval product is improved through data synergy compared
to the best single observation retrieval. It is defined as

Table 2. Quality Metrics Between Estimates Computed From
Observation Combinations of Different Sizes Using an ORCHI-
DEEWATCH Trained NN and ORCHIDEEWATCH Modeled Soil
Moisture

Data Sets RMSE [kgm�2] s [kgm�2] rspatial rseasonal rinterannual

s40 0.95 1.09 0.76 0.65 0.56
s40
NDVI

0.89 0.98 0.81 0.61 0.46

s40
NDVI
TS

0.86 0.93 0.83 0.61 0.46

s40
NDVI
TS
eh, ev

0.85 0.92 0.84 0.63 0.48
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SF ¼ 1� scombination

sbest;individual

� �
� 100;

where scombination is the uncertainty of the combination
based retrieval and sbest,individual is the uncertainty of the
best individual retrieval.
[35] In general, there are two options to produce a multi-

observation retrieval product as discussed by Aires et al.
(submitted manuscript, 2011): (1) data fusion, where the
retrieval is performed on the combined set of observations,
as in the methodology proposed here, and (2) a posteriori
combination, which designates a weighted averaging of
retrieval products from individual observations. As part of
the synergy analysis, it has been investigated to what
extent the data fusion approach compares to the a posteriori
combination. To this end the a posteriori combinations have
been computed using

f1:n ¼

Xn

i¼1

Yn

k¼1
s2k

s2i
fi

� �
Xn

i¼1

Yn

k¼1
s2k

s2i

� � ;

where n is the number of retrieval products to be combined,
f denotes the retrieval, and s is the uncertainty associated
with each retrieval product. The theoretical uncertainty of
the resulting estimates is given by

s1:n ¼
Yn

i¼1
siffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

Yn

k¼1
s2k

s2i

� �s :

[36] This theoretical uncertainty as well as the true uncer-
tainty of the a posteriori combinations were determined and
compared to the uncertainty of the data fusion estimates. In
addition, the synergy factor of the a posteriori combinations
with respect to the best individual retrieval was computed
and compared to the synergy factors obtained from the data
fusion estimates.
[37] Table 3 shows the uncertainty of the data fusion based

retrieval sDF, the uncertainty of the best individual retrieval

sbest,individual, the theoretical uncertainty of the a posteriori
combinations sAP,theory, the true uncertainty of the a poster-
iori combinations sAP,true (which is defined as the standard
deviation of the estimate errors), the synergy factor of the
data fusion estimates SFDF, and the synergy factor of the a
posteriori combination estimates SFAP.
[38] When comparing the retrieval based on the ERS

backscatter data with that based on the combination of all
data sets, a decrease in the uncertainty of over 13% can be
observed, which supports the decision to perform multi-
wavelength observation retrieval.
[39] For each combination, the data fusion synergy factors

are higher, indicating that a data fusion approach improves
the retrieval product more significantly than an a posteriori
combination. This result is very important with regard to
the objective of combining the best aspects of different
retrieval methodologies. It indicates that the strategy should
be to merge the data sets within a single algorithm rather
than simply combining the existing retrieval products.
[40] Another important result to be observed is that in

every case the theoretical uncertainty is significantly lower
than the true uncertainty. This is because the theoretical
estimation assumes that the individual uncertainties are
independent and follow a Gaussian distribution, which
might not be the case.

3.5. Retrieval Uncertainties

[41] As a tool to estimate the retrieval uncertainty in
different regions at different times, monthly maps of the
signal-to-noise ratio (SNR) have been computed. These
represent a simple and innovative way to estimate the
retrieval uncertainties. To achieve this, distinct satellite input
configurations were separated into bins. To define the bins,
the space between the minimum and maximum value of
each input variable was divided into 10 intervals. These
were then combined into a five-dimensional array (one
dimension for each input variable) of bins with each bin
corresponding to one combination of input variables. Next,
the correct bin was determined for each data point and the
model soil moisture value corresponding to that data point
was added as an entry to the bin. As a final step, the standard
deviation of the soil moisture values collected in each bin
was determined, yielding one standard deviation value per
bin. This standard deviation represents the variation of
modeled soil moisture for the same combination of satellite
inputs and is thus a measure of the uncertainty of the
retrieval. In the next step, for the satellite observations for
each year, each month, and each pixel, the correct bin was
determined and the corresponding soil moisture standard
deviation was assigned to the pixel, yielding one map of
soil moisture standard deviations per month per year. These
were then converted into maps of signal-to-noise ratio by
dividing the seasonal cycle amplitude of each pixel (the
signal) by the soil moisture variability for the given input
combination (the noise).
[42] Figure 1 shows monthly mean maps of the signal-to-

noise ratio. It can be seen that regions of low SNR are the
arid regions, parts of the Amazon tropical forest as well as
parts of the northern U.S. and some regions in China and
Siberia. In further analyses of the retrieval (presented in
section 4), it was found that in the arid and tropical forest
regions the retrieval is still able to perform well. This is

Table 3. Uncertainties (in kgm�2) and Synergy Factors for Esti-
mates Computed From the Best Combinations of Different Sizea

Data Sets scombination sbest,individual sAP,theory sAP,true SFDF SFAP

s40
NDVI

0.97 1.09 0.80 1.00 10.59 8.50

s40
NDVI
TS

0.93 1.06 0.64 0.98 12.88 8.06

s40
NDVI
TS
eh, ev

0.92 1.06 0.55 1.05 13.41 1.44

aThe estimates are computed using an ORCHIDEEWATCH-trained net-
work and are compared against ORCHIDEEWATCH-modeled soil moisture.
Uncertainty of the combination based retrieval sDF, the uncertainty of the
best individual retrieval sbest,individual, the theoretical uncertainty of the a
posteriori combinations sAP,theory, the true uncertainty of the a posteriori
combinations sAP,true, the synergy factor of the data fusion estimates SFDF,
and the synergy factor of the a posteriori combination estimates SFDF.
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likely due to the fact that the soil moisture signal is more or
less flat in these regions and can thus easily be estimated.
However, in regions with a low SNR and a discernible
seasonal cycle (the northern U.S. and parts of Asia), the
proposed retrieval methodology will not be able to estimate
the correct soil moisture. These results are particularly inter-
esting with regard to other soil moisture retrieval products,
which often show large uncertainties over densely vegetated
or arid regions, while in the US and Asia they tend to perform
better than the retrieval proposed here. This means that the
proposedmethodology has a tendency to complement existing
retrievals.

4. Evaluation

[43] The ability of the estimated soil moisture to capture
different soil moisture variabilities has been evaluated by
comparing it to modeled and in situ soil moisture.

4.1. Modeled Soil Moisture

[44] In the first phase of the retrieval product evaluation, the
estimated soil moisture has been compared against different
modeled soil moisture fields. Those are the HTESSEL soil
moisture as well as two ORCHIDEE runs, ORCHIDEEWATCH

and ORCHIDEEERA. For each model and the correspond-
ing retrieval product, the spatial, seasonal, and interannual

correlations have been estimated and are shown in Table 4.
A large spread of the correlation values for the different
models exists, which indicates a varying level of consistency
between the retrievals and their respective training models.
The spatial and temporal structures of the estimated soil
moisture are driven by the observations, so the level of incon-
sistency of a retrieved soil moisture with its training model can
be translated directly into inconsistencies between the model
and the observations.
[45] In order to verify this assumption, the correlations

between two of the retrieval products as well as between
the two corresponding training models have been estimated.
The results of this analysis are shown in Table 5. Clearly, the

Figure 1. Monthly maps of mean signal-to-noise ratio (SNR). The signal-to-noise ratio is defined as the
soil moisture seasonal cycle amplitude for a certain pixel divided by the soil moisture standard deviation
for the observed satellite data configuration.

Table 4. Spatial, Seasonal, and Interannual Correlations Between
the Retrieval Products and Their Respective Training Modela

Quality Metric ORCHIDEEWATCH HTESSEL ORCHIDEEERA

rspatial 0.84 0.90 0.81
rseasonal 0.63 0.67 0.54
rinterannual 0.48 0.49 0.34

aThe first column shows the correlations between the ORCHIDEEWATCH

trained retrieval and the ORCHIDEEWATCH model soil moisture. The
second column displays the correlations between the HTESSEL trained
retrieval and HTESSEL. The third column displays the quality metrics
between ORCHIDEEERA and the retrieval trained with it.
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two retrieval products are much more similar than the two
models. This supports the assumption that the spatial and
temporal structures of the estimated soil moisture stem from
the observations. Hence, even if dissimilarities between
two training models exist, when using the same satellite
observations, the two estimated soil moisture fields will be
very similar.
[46] From Table 4 it could be seen that large inconsisten-

cies exist between ORCHIDEEERA and the observation
driven soil moisture estimate, whereas HTESSEL was found
to be very close to the estimate and hence the observations.
In a next step of the evaluation process, the estimate from
the ORCHIDEEERA-trained network was compared against
HTESSEL. The results, shown in Table 6, indicate that the
estimated soil moisture is much closer to HTESSEL than
to the actual training model, ORCHIDEEERA. Table 6 also
shows the correlations between the two models, which are

much lower, so the closeness of the retrieved soil moisture
to HTESSEL cannot be attributed to a closeness of the
models. This means that the variability of the retrieval soil
moisture is significantly different from the variability of
the training model. However, the same variability as in the
retrieval product can be observed in the HTESSEL data,
which are known to be consistent with the observations.
Hence, the variability of the retrieval product clearly origi-
nates from the observations. These results are consistent
with the findings of Jimenez et al. [2009], who use a similar
neural network strategy to create an observation driven land
heat flux product.
[47] It should be noted that, generally, discrepancies

observed between the estimated soil moisture and the train-
ing model can be due to either (1) an error of soil moisture
in the model or (2) a lack of information and/or errors in
the satellite observations. If the latter was the case, the
variability in the estimated soil moisture should be random
and not be observed in other soil moisture products.
Thus, the fact that the same variability is observed in
the HTESSEL soil moisture indicates that the differences
observed with respect to ORCHIDEEERA are most likely
due to soil moisture variabilities in the model that have
no equivalent in actual retrieved soil moisture. This shows
that the proposed methodology uses the observations in
order to correct inconsistencies in the model and thus
moves it toward a product that displays higher agreement
with observed soil moisture. Since the analysis showed
that the HTESSEL soil moisture is most consistent with
the observations and since HTESSEL is available for a long
time period, it has been decided to use it as the training model
for the retrieval in the future.
[48] In order to assess the consistency between the

modeled and retrieved soil moisture in different regions of
the Earth, maps of the seasonal and interannual correlations
as well as of the RMS error are shown in Figures 2–4.
[49] Figure 2 shows the interannual correlation between

the retrieved and the ORCHIDEEWATCH soil moisture.
While in some regions very high correlations with values
close to 1 are obtained, other regions show a zero correla-
tion. Upon comparison of the correlation map to a map of
the interannual variability of the ORCHIDEEWATCH soil

Table 5. Spatial, Seasonal, and Interannual Correlationsa

Quality Metric Retrieval Products Model Products

rspatial 0.91 0.80
rseasonal 0.88 0.74
rinterannual 0.76 0.70

aBetween the retrieval products trained with ORCHIDEEWATCH and
HTESSEL (left column) and between the original ORCHIDEEWATCH and
HTESSEL model soil moisture products (right column)

Table 6. Spatial and Temporal Correlationsa

Quality
Metric

ORCHIDEEERA

Model; HTESSEL
Model

ORCHIDEEERA

Retrieval;
ORCHIDEEERA Model

ORCHIDEEERA

Retrieval; HTESSEL
Model

rspatial 0.79 0.81 0.82
rseasonal 0.57 0.53 0.63
rinterannual 0.31 0.34 0.45

aColumn 1: Spatial and temporal correlations between the model
soil moisture of ORCHIDEEERA and HTESSEL; column 2: correlations
between retrieval obtained from ORCHIDEEERA trained network and the
ORCHIDEEERA model soil moisture; column 3: correlations between
retrieval obtained from ORCHIDEEERA trained network and the HTESSEL
model soil moisture.
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Figure 2. Interannual correlations between soil moisture estimates and ORCHIDEEWATCH model soil
moisture. White areas represent locations with a correlation that is statistically not significant (p-value
higher than 0.1) or where the interannual variability is smaller than 15% of the maximum variability.
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moisture (not shown here), it was found that the regions of
high interannual correlation correspond to the regions where
the interannual variability of the modeled soil moisture is
strong. This means that if there is a strong interannual vari-
ability, the satellite observations and the retrieval are able
to capture it well.
[50] Figure 3 shows the seasonal correlations between the

retrieved and modeled soil moisture, which are found to be
highly variable. When comparing Figure 3 to a map of the
seasonal cycle amplitude, it was observed that in regions
where the soil moisture seasonal cycle is strong, a high
seasonal correlation is always obtained. This means that in
regions with a strong seasonal cycle the retrieval algorithm
is able to capture and reproduce it.
[51] For both temporal correlations, it is expected that

adding an index related to the temporal evolution of the
backscatter as input might enhance the retrieval ability to
capture the soil moisture temporal variations and thus improve
its temporal performance.
[52] A map of the RMS errors between the retrieved and

the modeled soil moisture is shown in Figure 4. While for
most of the Earth the RMS error is below 1 kgm�2, regions
close to large rivers or in areas with many lakes (Congo
Basin, Orinoco Delta, Ob River, Canadian lakes, Finnish
lakes) show higher errors. The two possible explanations

for this are (1) a too lenient filtering of standing water bodies
and (2) the fact that pixels, while not inundated might still be
saturated, which would lead to very strong satellite signals
and a high soil moisture retrieved, which might not be
captured in the monthly mean model soil moisture.
[53] It is also evident that the retrieval performs well in arid

and densely vegetated regions, which often pose a challenge
in soil moisture retrievals. This underlines the potential of the
proposed methodology to complement existing retrieval
algorithms and it is thus suggested to aim for the incorpora-
tion of the beneficial aspects in one algorithm.

4.2. In Situ Observations

[54] As a further evaluation step, the estimated soil mois-
ture has been compared to in situ soil moisture observations.
The in situ data were retrieved from the International Soil
Moisture Network [Dorigo et al., 2011] and originate from
different measurement networks, which for the period
1993–1999 cover mainly the U.S., China, and Mongolia.
An overview of the network characteristics is given in
Table 7. To compare the neural network-based retrieval
skills to those of other retrieval products or models, the same
analysis has been performed for the HTESSEL soil moisture
and the Water Cycle Multimission Observation Strategy
(WACMOS) retrieval product [Liu et al., 2011].

−150 −100 −50 0 50 100 150

−80

−60

−40

−20

0

20

40

60

80

Longitude [deg]

La
tit

ud
e 

[d
eg

]

seasonal correlations

 

 

correlation coefficient [−
]

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3. Seasonal correlations between soil moisture estimates and ORCHIDEEWATCH model soil
moisture. White areas represent locations with a correlation that is statistically not significant (p-value
higher than 0.1) or where the seasonal variability is smaller than 15% of the maximum variability.
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Figure 4. The RMS error between best estimate and ORCHIDEEWATCH model soil moisture.
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[55] The comparison of in situ observations with retrieved
or modeled soil moisture is not trivial. This is because the in
situ data represents a point measurement of a highly hetero-
geneous variable, whereas retrieved and modeled soil
moisture correspond to averages over large areas of several
square kilometers. Additionally, the in situ measurements
are often taken at depths different to what model or retrieval
data correspond to and even between the various measure-
ment networks, there can be large discrepancies due to the
diverse measurement techniques used. All these factors
introduce uncertainties in a comparison with in situ data
and this should be kept in mind.
[56] For the evaluation performed here, the spatial and the

temporal correlation between the estimated soil moisture and
the in situ observations have been computed. To this end all
in situ data have been averaged to monthly mean values,
ignoring pixels where only one measurement was available
per month. If more than one in situ station fell into one of
the retrieval grid cells, their contributions were averaged.
Pixels with a signal-to-noise ratio lower than 1 (cf. section
3.5) have been removed from the comparison.
[57] The spatial correlation was computed for each year

and each month in order to remove all temporal variation
of the data. Because the various in situ networks measure
at different depths and with different techniques, a spatial
correlation has been computed for each network separately.
Subsequently, the time series of correlations obtained with
this method have been averaged to yield one spatial correla-
tion value per network. In this averaging step, pixels for
which less than two correlation values were available over
the entire time period have been removed. The mean
spatial correlations for the two retrieved and the modeled
soil moistures are shown in the first three columns of
Table 8.
[58] It can be seen that values are only available for ARM,

MONGOLIA, and SCAN. For the other in situ networks
either the number of data points was too low (in the case
of CHINA and SNOTEL) or they were not considered
because of a too low signal-to-noise ratio (the case for ICN

and IOWA). For the remaining networks, both the retrieved
and modeled soil moisture show a good spatial correlation
with the in situ data. Both retrievals are capable to better
capture the soil moisture spatial variability over the ARM
region and the neural network algorithm also outperforms
the model over Mongolia. This indicates that there is a
potential for the retrieval products to deliver better knowl-
edge on the soil moisture spatial variability.
[59] The temporal correlation has been computed per

pixel using the entire time series available. If less than five
data points were available in the time series of a pixel, no
correlation has been computed for that pixel. The obtained
correlations were then averaged per network to yield one
temporal correlation value for each of the networks. In this
averaging step, correlations with a p-value higher than 0.3
have been removed. The resulting mean correlations are
shown in the last three columns of Table 8. The temporal
correlations of the modeled soil moisture with the in situ
data are always higher than those between the retrievals
and the in situ data. This is likely due to the fact that the
model utilizes precipitation and other atmospheric data,
which greatly help to constrain the temporal behavior. The
retrievals on the other hand are limited to the use of surface
parameters alone. In China and Mongolia, the correlations
for the neural network retrieval are reasonable, albeit lower
than those for the model. However, for the stations in the
U.S., the retrieval is not able to capture the correct temporal
behavior. This agrees with the results from the uncertainty
analysis (cf. section 3.5), in which the U.S. has been identi-
fied as a region in which the retrieval is uncertain. This is
likely the result of a positive correlation between the temper-
ature amplitude and the soil moisture in this region, which
contradicts the general relationship the network determined
between these two variables and thus causes a flawed
estimation. The reason for this positive correlation lies prob-
ably in the increased vegetation cover (mainly agricultural
crops) during the summer when the soil moisture is at its
minimum. Increased vegetation tends to absorb most of
the incoming solar radiation for evapotranspiration and

Table 7. Characteristics of the In Situ Networks Utilized in the Evaluation Analysesa

Network Name Location No of Stations Top Layer Depth [m]

ARM Kansas, Oklahoma, Colorado 25 0.025
CHINA China 40 0.025
ICN Illinois 19 0.05
IOWA Iowa 6 0.035
MONGOLIA Mongolia 44 0.05
SCAN USA 182 0.025
SNOTEL Western USA (including Alaska) 381 0.05

aNetwork name, regions of the Earth covered, number of stations in the network, and average depth of the top layer.

Table 8. Spatial and Temporal Correlations Between In Situ Observations and Estimated and Modeled Soil Moisturea

Network Spatial Temporal

NN Estimate WACMOS HTESSEL NN Estimate WACMOS HTESSEL

ARM 0.65 0.59 0.48 �0.01 0.49 0.71
CHINA - - - 0.34 0.44 0.67
MONGOLIA 0.62 0.14 0.50 0.47 0.55 0.58
SCAN 0.51 0.56 0.67 �0.07 0.64 0.72

aCorrelations are shown for soil moisture product estimated with the neural network algorithm, the WACMOS soil moisture retrieval product, and the
HTESSEL modeled soil moisture.
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it is thus no longer available for surface heating, leading
to reduced temperature cycle amplitude. Generally, the
WACMOS retrieval shows a better ability to capture the soil
moisture temporal variability. This is because it is largely
based on the change detection algorithm proposed by
Wagner [1998], which lays a strong focus on the data tem-
poral evolution and calibrates the algorithm for each pixel
individually.
[60] The above results support the argument that better

retrieved soil moisture could be obtained by combining
different aspects of the existing methodologies. The proposed
strategy is to add an index related to the time evolution of the
backscatter data as input to the neural network. It is expected
that this would improve the retrieval’s temporal performance,
while retaining the good spatial performance shown by the
neural network-based algorithm.

5. Conclusion and Perspectives

[61] In this paper a soil moisture retrieval methodology
has been proposed, which utilizes neural networks in order
to combine a set of multi-wavelength satellite observations
and which is trained on the HTESSEL modeled soil mois-
ture. The methodology has been proposed as a first step to
combine the existing knowledge on soil moisture retrievals
and thus improve the retrieval quality. The algorithm
proposed in this paper focuses on the combination of all
observations with a known sensitivity to soil moisture in
an attempt to capture different soil moisture variabilities. It
has been shown that this methodology works well in
regions, which pose problems for other retrievals and thus
the methodology developed here is complementary to existing
algorithms.
[62] An information content analysis of the different

satellite observations showed that the active microwave data
provides the most information about the soil moisture
temporal variability, whereas the amplitude of the surface
temperature diurnal cycle is best suited to capture the soil
moisture spatial variability.
[63] Next, a synergy analysis has been performed, which

showed that the combination of all available observations
yielded a 13% decrease of retrieval uncertainty with respect
to the best individual retrieval. This underlines that soil
moisture retrieval can greatly benefit from the combination
of multi-wavelength observations. It was also found that
for all combinations, data fusion yielded a much more
significant retrieval improvement than a posteriori combina-
tion of independent retrieval products. This means that with
regard to combining the best aspects of existing retrievals, a
simple combination of the existing products is not consid-
ered the optimal approach. Instead future work should be
directed at developing one single algorithm that combines
aspects of the different retrieval strategies.
[64] Finally, the performance of the proposed methodol-

ogy has been evaluated by comparing the estimated soil
moisture with various modeled soil moisture fields and it
could clearly be shown that the temporal and spatial struc-
tures of the retrieval product are determined by the satellite
observations. Furthermore, it was shown that the proposed
neural network algorithm is able to detect and correct model
soil moisture inconsistencies with the satellite observations.

[65] In the next phase, the estimated soil moisture as well
as the HTESSEL soil moisture and the WACMOS retrieval
product was compared against in situ observations. It was
found that both retrieved soil moisture data sets are well able
to capture the spatial variability observed in the in situ obser-
vations and even showed the potential to be used for model
improvement in most regions. Of the three data sets ana-
lyzed, the neural network-based estimate was found to best
approximate the observed soil moisture spatial variability.
Regarding the temporal variability, the model always
obtained the highest correlations; however, this was partly
attributed to the fact that the model’s temporal behavior is
strongly constrained through the atmospheric forcing data.
It was found that the WACMOS data set better captures
the soil moisture temporal variability. This was attributed
to the use of a change detection method, which focuses on
the temporal evolution of the observations. It has been
concluded that in a new version of the neural network
retrieval, information related to the temporal evolution of
the backscatter data should be added as one of the input data
sets. This would represent the next step in the direction of
creating an algorithm that employs the most beneficial
aspects of the existing retrieval schemes.
[66] Another step toward this objective would be to

calibrate the neural network algorithm on either SMOS or
SMAP retrieval data, as soon as the retrieval products have
been calibrated and the algorithms fully validated. This
would allow the retrieval product to be more independent
from models and thus increase its value as a model evalua-
tion data set. Furthermore, it would create a product that
is compatible with SMOS data, but covers a different and
longer time period.
[67] Up to this point a soil moisture database trained

with HTESSEL has been developed that spans the years
1993–2000. The next phase is to extend this data set to a
longer time period and thus make it more useful for model
evaluation and climatological studies. Based on a survey of
the existing satellite observations, the period 1983–2010 is
deemed feasible. As part of this data set extension, several
analyses will be performed regarding the issues associated
with it. In particular, it will be estimated to what extent a
missing data set impacts the retrieval quality and it will be
investigated whether additional calibration will be necessary
when one of the input data sets changes (e.g., from ERS
to ASCAT).
[68] Furthermore, the results presented here have been

computed from monthly mean soil moistures, which are very
useful for long-term analyses and climate studies. The main
reason to use monthly means up to this point has been a
constraint imposed by the temporal resolution of some of
the input data. However, the methodology presented here
is equally applicable to data at other timescales and could
thus be used to create a soil moisture data set with daily or
10 day resolution. Such a data set would be useful in the
study of short-term features, such as storm or flood event,
assimilation into numerical weather prediction models or
for analysis of short-term drought events.
[69] Finally, the final retrieval product will be used in

several climatological and case studies. Most of these will
focus on assessing the role of soil moisture in climate
processes. This involves for instance an investigation of
the relationship between ENSO extremes and soil moisture
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or the influence of the North Atlantic Oscillation on the
soil moisture on the Iberian Peninsula. Further studies
addressing the influence of soil moisture on convection or
the possibility of using soil moisture data for flood predic-
tion will be performed.
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