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A k-tuple coloring of a graph G assigns a set of k colors to each vertex of G such that if two vertices are adjacent, the corresponding sets of colors are disjoint. The k-tuple chromatic number of G, χ k (G), is the smallest t so that there is a k-tuple coloring of G using t colors. It is well known that χ(G H) = max{χ(G), χ(H)}. In this paper, we show that there exist graphs G and H such that χ k (G H) > max{χ k (G), χ k (H)} for k ≥ 2. Moreover, we also show that there exist graph families such that, for any k ≥ 1, the k-tuple chromatic number of their cartesian product is equal to the maximum k-tuple chromatic number of its factors.

Introduction

A classic coloring of a graph G is an assignment of colors (or natural numbers) to the vertices of G such that any two adjacent vertices are assigned different colors. The smallest number t such that G admits a coloring with t colors (a t-coloring) is called the chromatic number of G and is denoted by χ(G). Several generalizations of the coloring problem have been introduced in the literature, in particular, cases in which each vertex is assigned not only a color but a set of colors, under different restrictions. One of these variations is the k-tuple coloring introduced independently by Stahl [START_REF] Stahl | n-Tuple colorings and associated graphs[END_REF] and Bollobás and Thomason [START_REF] Bollobás | Set colourings of graphs[END_REF]. A k-tuple coloring of a graph G is an assignment of k colors to each vertex in such a way that adjacent vertices are assigned distinct colors. The k-tuple coloring problem consists into finding the minimum number of colors in a k-tuple coloring of a graph G, which we denote by χ k (G). The cartesian product G H of two graphs G and H has vertex set V (G)×V (H), two vertices being joined by an edge whenever they have one coordinate equal and the other adjacent. This product is commutative and associative up to isomorphism. There is a simple formula expressing the chromatic number of a cartesian product in terms of its factors:

χ(G H) = max{χ(G), χ(H)}. (1) 
The identity (1) admits a simple proof first given by Sabidussi [START_REF] Sabidussi | Graphs with given group and given graph-theoretical properties[END_REF]. The Kneser graph K(m, n) has as vertices all n-element subsets of the set [m] = {1, . . . , m} and an edge between two subsets if and only if they are disjoint. We will assume in the rest of this work that m ≥ 2n, otherwise K(m, n) has no edges. The Kneser graph K(5, 2) is the well known Petersen Graph. Lovász [START_REF] Lovász | Kneser's conjecture, chromatic number and homotopy[END_REF] showed that χ(K(m, n)) = m -2n + 2. The value of the k-tuple chromatic number of the Kneser graph is the subject of an almost 40-year-old conjecture of Stahl [START_REF] Stahl | n-Tuple colorings and associated graphs[END_REF] which asserts that: if k = qn -r where q ≥ 0 and 0 ≤ r < n, then χ k (K(m, n)) = qm -2r. Stahl's conjecture has been confirmed for some values of k, n and m [START_REF] Stahl | n-Tuple colorings and associated graphs[END_REF][START_REF] Stahl | The multichromatic numbers of some Kneser graphs[END_REF]. An homomorphism from a graph G into a graph H, denoted by G → H, is an edgepreserving map from V (G) to V (H). It is well known that an ordinary graph coloring of a graph G with m colors is an homomorphism from G into the complete graph K m . Similarly, an n-tuple coloring of a graph G with m colors is an homomorphism from G into the Kneser graph K(m, n).

A graph G is said hom-idempotent if there is a homomorphism from G G → G. We denote by G → H if there exists no homomorphism from G to H.

The clique number of a graph G, denoted by ω(G), is the maximum size of a clique in G (i.e., a complete subgraph of G). Clearly, for any graphs G and H, we have that χ(G) ≥ ω(G) (and so, χ k (G) ≥ χ k (K ω(G) ) = kω(G)) and, if there is an homomorphism from G to H then, χ(G) ≤ χ(H) (and so, χ k (G) ≤ χ k (H)).

A stable set S ⊆ V is a subset of pairwise non adjacent vertices of G. The stability number of G, denoted by α(G), is the largest cardinality of a stable set in G. Let m ≥ 2n.

An element i ∈ [m] is called a centre of a stable set S of the Kneser graph K(m, n) if it lies in each n-set in S. Lemma 1 (Erdős-Ko-Rado [4]). If m > 2n, then α(K(m, n)) = m-1 n-1 . An independent set of K(m, n) with size m-1
n-1 has a centre i, for some i ∈ [m]. Lemma 2 (Hilton-Milner [START_REF] Hilton | Some intersections theorems for systems of finite sets[END_REF]). If m ≥ 2n, then the maximum size of an stable set in K(m, n) with no centre is equal to

1 + m-1 n-1 -m-n-1 n-1
.

A graph G = (V, E) is vertex transitive if its automorphism group acts transitively on V , that is, for any pair of distinct vertices of G there is an automorphism mapping one to the other one. It is well known that Kneser graphs are vertex transitive graphs [START_REF] Godsil | Algebraic graph theory[END_REF].

Lemma 3 (No-Homomorphism Lemma, Albertson-Collins [START_REF] Albertson | Homomorphisms of 3-chromatic graphs[END_REF]). Let G, H be graphs such that

H is vertex transitive and G → H. Then, α(G)/|V (G)| ≥ α(H)/|V (H)|.
In this paper, we show that equality (1) does not hold in general for k-tuple colorings of graphs. In fact, we show that for some values of k ≥ 2, there are Kneser graphs K(m, n)

for which χ k (K(m, n) K(m, n)) > χ k (K(m, n))
. Moreover, we also show that there are families of graphs for which equality (1) holds for k-tuple colorings of graphs for any k ≥ 1. As far as we know, our results are the first ones concerning the k-tuple chromatic number of cartesian product of graphs.

2 Cartesian products of Kneser graphs Lemma 4. Let G be a graph and let k > 0. Then,

χ k (G G) ≤ kχ(G). Proof. Clearly, χ k (G G) ≤ kχ(G G).
However, by equality (1) we know that χ(G G) = χ(G), and thus the lemma holds.

Corollary 1. χ k (K(m, n) K(m, n)) ≤ kχ(K(m, n)) = k(m -2n + 2).
Larose et al. [START_REF] Larose | On normal Cayley graphs and Hom-idempotent graphs[END_REF] showed that no connected Kneser graph

K(m, n) is hom-idempotent, that is, for any m > 2n, there is no homomorphism from K(m, n) K(m, n) to K(m, n). Lemma 5 ([8]). Let m > 2n. Then, K(m, n) K(m, n) → K(m, n).
Concerning the k-tuple chromatic number of some Kneser graphs, Stahl [START_REF] Stahl | n-Tuple colorings and associated graphs[END_REF] showed the following results.

Lemma 6 ([11]). If 1 ≤ k ≤ n, then χ k (K(m, n)) = m -2(n -k). Lemma 7 ([11]). χ k (K(2n + 1, n)) = 2k + 1 + k-1 n , for k > 0. Lemma 8 ([11]). χ rn (K(m, n)) = rm, for r > 0 and m ≥ 2n.
By using Lemma 8 we have the following result.

Lemma 9. Let m > 2n. Then, χ n (K(m, n) K(m, n)) > χ n (K(m, n)).
Proof. By Lemma 8 when r = 1, we have that

χ n (K(m, n)) = m. If χ n (K(m, n) K(m, n)) = m, then there exists an homomorphism from the graph K(m, n) K(m, n) to K(m, n) which contradicts Lemma 5.
By Lemma 6, Lemma 9 and by using Corollary 1, we have that,

Corollary 2. Let n ≥ 2. Then, 2n+2 ≤ χ n (K(2n+1, n) K(2n+1, n)) ≤ 3n.
In particular, when n = 2, we have that χ 2 (K(5, 2) K(5, 2)) = 6.

In the case k = 2 we have by Lemma 9, Lemma 6 and by Corollary 1, the following result.

Corollary 3. Let q > 0. Then, q + 4 ≤ χ 2 (K(2n + q, n) K(2n + q, n)) ≤ 2q + 4.

By Corollary 3, notice that in the case when k = n = 2 and q ≥ 1, we must have that χ 2 (K(q + 4, 2) K(q + 4, 2)) > q + 4, otherwise there is a contradiction with Lemma 5. This provides a gap of one unity between the 2-tuple chromatic number of the graph K(q + 4, 2) K(q + 4, 2) and the graph K(q + 4, 2). In the next Lemma 11, we will show that such a gap can be as large as desired. However, first we need to introduce the following.

It is well known that the chromatic index of a complete graph K 2n (i.e. the minimum number of colors needed to color the edges of K 2n such that any two incident edges be assigned different colors) on 2n vertices is equal to 2n -1 (see [START_REF] Berge | Graphs and Hypergraphs[END_REF]), where each color class i (i.e. the subset of pairwise non incident edges colored with color i) has size n. Therefore, using this fact, we obtain the following result.

Lemma 10. Let q ≥ 1. Then, the set of vertices of the Kneser graph K(2q + 4, 2) can be partitioned into 2q + 3 disjoint cliques, each one with size q + 2.

Proof. Notice that there is a natural bijection between the vertex set of K(2q + 4, 2) and the edge set of the complete graph K 2q+4 with vertex set [2q + 4]: each vertex {i, j} in K(2q + 4, 2) is mapped to the edge {i, j} in K 2q+4 . Now, there is a (2q + 3)-edge coloring of K 2q+4 where each class color is a set of pairwise non incident edges with size q + 2. Notice that two edges e, e ∈ K 2q+4 are non incident edges if and only if e ∩ e = ∅. Therefore, a class color of the edge-coloring of K 2q+4 represents a clique of K(m, n).

Lemma 11. Let q > 0. Then, χ 2 (K(2q + 4, 2) K(2q + 4, 2)) ≥ 2q + 2 3 q + 5. Proof. First, recall that a stable set X in K(2q + 4, 2) has size at most 2q + 3 if X has centre (see Lemma 1) and |X| ≤ 1 + (2q + 4 -1) -(2q + 4 -2 -1) = 3 if X has no centre (see Lemma 2). Besides, by Lemma 10, observe that the vertex set of K(2q + 4, 2) can be partitioned in 2q + 3 sets S 1 , . . . , S 2q+3 such that each S i induces a K q+2 for i = 1, . . . , 2q + 3. Consider the subgraph H i of K(2q + 4, 2) K(2q + 4, 2) induced by S i × V (K(2q + 4, 2)) for i = 1, . . . , 2q + 3. Let I be a stable set in K(2q + 4, 2) and

I i = I ∩ H i for i = 1, . . . , 2q + 3. Then I v i = I i ∩ ({v} × V (K(2q + 4, 2)
)) is a stable set in K(2q + 4, 2) for each v ∈ S i and i = 1, . . . , 2q + 3. Now, assume w.l.o.g that r (r ≤ q +2) stable sets I 1 i , . . . , I r i have distinct centre j 1 , . . . , j r , respectively (the case when two of these stable sets have the same centre can be easily reduced to this case). Let W be the set of subsets with size two of {j 1 , . . . , j r }. Therefore, for all m ∈ {1, . . . , r}, I m i -W has size at most 2q + 3 -(r -1) = 2q + 4 -r since each centre j m belongs to r -1 elements in W . Besides, each element of W belongs to exactly one set I m i for m ∈ {1, . . . , r}, since S i induces a complete subgraph. Then,

|I 1 i ∪ . . . ∪ I r i | ≤ ( r m=1 |I m i -W |) + |W | ≤ r(2q + 4 -r) + r(r-1) 2 . Next, each remaining stable set (if exist) I r+1 i , . . . , I q+2 i has no centre, then |I d i | ≤ 3 for all d ∈ {r+1, . . . , q+2}. Thus, |I i | ≤ r(2q+4-r)+ r(r-1) 2 +3(q+2-r) = -r 2 2 +r(2q+ 1 
2 )+3(q+2). Since the last expression is non decreasing for r ∈ {1, . . . , q + 2}, we have that

|I i | ≤ -(q+2) 2 2 + (q + 2)(2q + 1 2 ) + 3(q + 2) = (q + 2)( 3 2 q + 5 2 ).
Therefore, |I i | ≤ (q + 2)( 3 2 q + 5 2 ) for every i = 1, . . . , 2q + 3. Since |I| = 2q+3 i=1 |I i |, it follows that |I| ≤ (2q + 3)(q + 2)( 3 2 q + 5 2 ) and thus, α(K(2q + 4, 2) K(2q + 4, 2)) ≤ (2q + 3)(q + 2)( 3 2 q + 5 2 ).

Let t < 2q 2 +18q+24 3q+5 .

Assume that exists a 2-tuple coloring of the graph K(2q + 4, 2) K(2q + 4, 2)) with 2q + t colors. Therefore, there exists an homomorphism from K(2q + 4, 2) K(2q + 4, 2) to K(2q + t, 2). Now, from the well known no-homomorphism Lemma 3, we have that,

α(K(2q + 4, 2) K(2q + 4, 2)) ≥ α(K(2q+t,2))|V (K(2q+4,2) K(2q+4,2))| |V (K(2q+t,2))| . Then, α(K(2q + 4, 2) K(2q + 4, 2)) ≥ (2q+t-1).(2q+4) 2 (2q+3) 2 2 4(2q+t)(2q+t-1) = (2q+4) 2 (2q+3) 2 2(2q+t) . Let us see that (2q+4) 2 (2q+3) 2 2(2q+t) is greater than (2q+3)(q+2)( 3 2 q+ 5
2 ), which is a contradiction.

To this end, observe that if t < 2q 2 +18q+24 3q+5 , then

(2q + 3)(q + 2)( 3 2 q + 5 2 )(2q + t) = (2q + 3)(q + 2)((3q 2 + 5q) + ( 3 2 q + 5 2 )t) < (2q + 3)(q + 2)((3q 2 + 5q) + (q 2 + 9q + 12)) = (2q + 3)(q + 2)(4q 2 + 14q + 12)) = (2q+4) 2 (2q+3) 2 2 .
Therefore, χ 2 (K(2q + 4, 2) K(2q + 4, 2)) ≥ 2q + t + 1.

Claim 1. Let q > 0 be an integer. Then, 2q 2 +18q+24 3q+5 is not an integer.

Proof. By polynomial division, we have that 2q 2 + 18q + 24 = (3q + 5)( 23 q + 44 9 ) -4 9 . If (2q 2 + 18q + 24)/(3q + 5) is an integer, then k = ( 23 q + 44 9 ) -4 9(3q+5) is also an integer. Multiplying by 9 both terms in the last equality we have, 6q + 44 = 9k + 4 3q+5 . As q > 0 then, 0 < 4 3q+5 < 1 contradicting the assumption that k is an integer.

Finally, since 2 3 q + 4 < 2q 2 +18q+24 3q+5 and, by previous Claim 1, 2q 2 +18q+24 3q+5 is not an integer,

then 2 3 q + 4 < 2q 2 +18q+24 3q+5
and thus, we have finally that, 2q + 2 3 q + 5 ≤ χ 2 (K(2q + 4, 2)). As a corollary of Lemma 11 and by Corollary 1, we obtain the following result.

Corollary 4. χ 2 (K(6, 2) K(6, 2)) = 8. Theorem 1. Let k > n and let t = χ k (K(m, n) K(m, n)), where m > 2n. Then, either t > m + 2(k -n) or t < m + (k -n).
Proof. Suppose that m+(k-n) ≤ t ≤ m+2(k-n). Therefore, there exists an homomorphism K(m, n) K(m, n) → K(t, k). Now, Stahl [START_REF] Stahl | n-Tuple colorings and associated graphs[END_REF] showed that there is an homomorphism K(m, n) → K(m -2, n -1) whenever n > 1 and m ≥ 2n. Moreover, it's easy to see that there is an homomorphism K(m, n) → K(m -1, n -1). By applying the former homomorphism t -(m + (k -n)) times to the graph K(t, k) we obtain an homomorphism

K(t, k) → K(2(m + k -n) -t, 2k + m -n -t).
Finally, by applying 2k + m -t -2n times the latter homomorphism to the graph K(2(m + k -n) -t, 2k + m -n -t) we obtain an homomorphism K(2(m+k -n)-t, 2k +m-n-t) → K(m, n). Therefore, by homomorphism composition, K(m, n) K(m, n) → K(m, n) which contradicts Lemma 5.

We can also obtain a lower bound for the k-tuple chromatic number of the graph K(m, n) K(m, n) in terms of the clique number of K(m, n). In fact, notice that

ω(K(m, n) K(m, n)) = ω(K(m, n)) = m
n . Thus, we have the following result.

Theorem 2. Let k > n. Then, χ k (K(m, n) K(m, n)) ≥ kω(K(m, n)) = k m n . In particu- lar, if n divides m then, χ k (K(m, n) K(m, n)) ≥ m + (k -n) m n .
3 Cases where

χ k (G H) = max{χ k (G), χ k (H)} Theorem 3. Let G and H be graphs such that χ(G) ≤ χ(H) = ω(H). Then, χ k (G H) = max{χ k (G), χ k (H)}.
Proof. 

(G H) = χ k (G) = χ k (H).
In the case when G is not a bipartite graph, we have the following results.

An automorphism σ of a graph G is called a shift of G if {u, σ(u)} ∈ E(G) for each u ∈ V (G) [START_REF] Larose | On normal Cayley graphs and Hom-idempotent graphs[END_REF]. In other words, a shift of G maps every vertex to one of its neighbors. 

(G H) = max{χ k (G), χ k (H)}. Proof. Let A ∪ B be a bipartition of the vertex set of H. Let f be a k-tuple coloring of G with χ k (G) colors. Clearly, χ k (G) ≥ χ k (H). We define a k-tuple coloring ρ of G H with χ k (G) colors as follows: for any vertex (u, v) of G H with u ∈ G and v ∈ H, define ρ((u, v)) = f (u) if v ∈ A, and ρ((u, v)) = f (σ(u)) if v ∈ B.
We may also deduce the following direct result.

Theorem 5. Let G be an hom-idempotent graph an let H be a subgraph of G. Thus,

χ k (G H) = max{χ k (G), χ k (H)} = χ k (G).
Let A be a group and S a subset of A that is closed under inverses and does not contain the identity. The Cayley graph Cay(A, S) is the graph whose vertex set is A, two vertices u, v being joined by an edge if u -1 v ∈ S. If a -1 Sa = S for all a ∈ A, then Cay(A, S) is called a normal Cayley graph. Lemma 12 ([6]). Any normal Cayley graph is hom-idempotent.

Note that all Cayley graphs on abelian groups are normal, and thus hom-idempotents. In particular, the circulant graphs are Cayley graphs on cyclic groups (i.e., cycles, powers of cycles, complements of powers of cycles, complete graphs, etc). By Theorem 5 and Lemma 12 we have the following result. Theorem 6. Let Cay(A, S) be a normal Cayley graph and let Cay(A , S ) be a subgraph of Cay(A, S), with A ⊆ A and S ⊆ S. Then, χ k (Cay(A, S) Cay(A , S )) = max{χ k (Cay(A, S)), χ k (Cay(A , S ))}.

Definition 1. Let G be a graph with a shift σ. We define the order of σ as the minimum integer i such that σ i is equal to the identity permutation.

Theorem 7. Let G be a graph with a shift σ of minimum odd order 2s + 1 and let C 2t+1 be a cycle graph, where t ≥ s. Then, χ k (G C 2t+1 ) = max{χ k (G), χ k (C 2t+1 )}.

Proof. Let {0, . . . , 2t} be the vertex set of C 2t+1 , where for 0 ≤ i ≤ 2t, {i, i + 1 mod n} ∈ E(C 2t+1 ). Let G i be the i th copy of G in G C 2t+1 , that is, for each 0 ≤ i ≤ 2t, G i = {(g, i) : g ∈ G}. Let f be a k-tuple coloring of G with χ k (G) colors. We define a k-tuple coloring of G C 2t+1 with χ k (G) colors as follows: let σ 0 denotes the identity permutation of the vertices in G. Now, for 0 ≤ i ≤ 2s, assign to each vertex (u, i) ∈ G i the k-tuple f (σ i (u)). For 2s + 1 ≤ j ≤ 2t, assign to each vertex (u, j) ∈ G j the k-tuple f (u) if j is odd, otherwise, assign to (u, j) the k-tuple f (σ 1 (u)). It's not difficult to see that this is in fact a proper k-tuple coloring of G C 2t+1 .

Theorem 4 .

 4 Let G be a non bipartite graph having a shift σ ∈ AU T (G), and let H be a bipartite graph. Then, χ k

  Let t = ω(H) and let {h 1 , . . . , h t } be the vertex set of a maximum clique K t in H with size t. Clearly, χ k (G) ≤ χ k (H) = χ k (K t ). Let ρ be a k-tuple coloring of H with χ k (H) colors. By equality (1), there exists a t-coloring f of G H. Therefore, the assignment of the k-set ρ(h f ((a,b)) ) to each vertex (a, b) in G H defines a k-tuple coloring of G H with χ k (K t ) colors.Notice that if G and H are both bipartite, then χ k
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