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Abstract

Many single-channel signal decomposition techniques rely on a low-rank factor-
ization of a time-frequency transform. In particular, nonnegative matrix factoriza-
tion (NMF) of the spectrogram – the (power) magnitude of the short-time Fourier
transform (STFT) – has been considered in many audio applications. In this set-
ting, NMF with the Itakura-Saito divergence was shown to underly a generative
Gaussian composite model (GCM) of the STFT, a step forward from more empiri-
cal approaches based on ad-hoc transform and divergence specifications. Still, the
GCM is not yet a generative model of the raw signal itself, but only of its STFT.
The work presented in this paper fills in this ultimate gap by proposing a novel
signal synthesis model with low-rank time-frequency structure. In particular, our
new approach opens doors to multi-resolution representations, that were not pos-
sible in the traditional NMF setting. We describe two expectation-maximization
algorithms for estimation in the new model and report audio signal processing
results with music decomposition and speech enhancement.

1 Introduction

Matrix factorization methods currently enjoy a large popularity in machine learning and signal pro-
cessing. In the latter field, the input data is usually a time-frequency transform of some original time
series x(t). For example, in the audio setting, nonnegative matrix factorization (NMF) is commonly
used to decompose magnitude or power spectrograms into elementary components [1]; the spectro-
gram, say S, is approximately factorized into WH, where W is the dictionary matrix collecting
spectral patterns in its columns and H is the activation matrix. The approximate WH is generally
of lower rank than S, unless additional constraints are imposed on the factors.

NMF was originally designed in a deterministic setting [2]: a measure of fit between S and WH is
minimized with respect to (w.r.t) W and H. Choosing the “right” measure for a specific type of data
and task is not straightforward. Furthermore, NMF-based spectral decompositions often arbitrarily
discard phase information: only the magnitude of the complex-valued short-time Fourier transform
(STFT) is considered. To remedy these limitations, a generative probabilistic latent factor model
of the STFT was proposed in [3]. Denoting by {yfn} the complex-valued coefficients of the STFT
of x(t), where f and n index frequencies and time frames, respectively, the so-called Gaussian
Composite Model (GCM) introduced in [3] writes simply

yfn ∼ Nc(0, [WH]fn), (1)

where Nc refers to the circular complex-valued normal distribution.1 As shown by Eq. (1), in the
GCM the STFT is assumed centered (reflecting an equivalent assumption in the time domain which

∗Authorship based on alphabetical order to reflect an equal contribution.
1A random variable x has distribution Nc(x|µ, λ) = (πλ)−1 exp−(|x− µ|2/λ) if and only if its real and

imaginary parts are independent and with distribution N(Re(µ), λ/2) and N(Im(µ), λ/2), respectively.

1



is valid for many signals such as audio signals) and its variance has a low-rank structure. Under these
assumptions, the negative log-likelihood − log p(Y|W,H) of the STFT matrix Y and parameters
W and H is equal, up to a constant, to the Itakura-Saito (IS) divergence DIS(S|WH) between the
power spectrogram S = |Y|2 and WH [3].

The GCM is a step forward from traditional NMF approaches that fail to provide a valid genera-
tive model of the STFT itself – other approaches have only considered probabilistic models of the
magnitude spectrogram under Poisson or multinomial assumptions, see [1] for a review. Still, the
GCM is not yet a generative model of the raw signal x(t) itself, but of its STFT. The work reported
in this paper fills in this ultimate gap. It describes a novel signal synthesis model with low-rank
time-frequency structure. Besides improved accuracy of representation thanks to modeling at low-
est level, our new approach opens doors to multi-resolution representations, that were not possible
in the traditional NMF setting. Because of the synthesis approach, we may represent the signal as a
sum of layers with their own time resolution, and their own latent low-rank structure.

The paper is organized as follows. Section 2 introduces the new low-rank time-frequency synthesis
(LRTFS) model. Section 3 addresses estimation in LRTFS. We present two maximum likelihood
estimation approaches with companion EM algorithms. Section 4 describes how LRTFS can be
adapted to multiple-resolution representations. Section 5 reports experiments with audio applica-
tions, namely music decomposition and speech enhancement. Section 6 concludes.

2 The LRTFS model

2.1 Generative model

The LRTFS model is defined by the following set of equations. For t = 1, . . . , T , f = 1, . . . , F ,
n = 1, . . . , N :

x(t) =
∑

fn
αfnφfn(t) + e(t) (2)

αfn ∼ Nc(0, [WH]fn) (3)
e(t) ∼ Nc(0, λ) (4)

For generality and simplicity of presentation, all the variables in Eq. (2) are assumed complex-
valued. In the real case, the hermitian symmetry of the time-frequency (t-f) frame can be exploited:
one only needs to consider the atoms relative to positive frequencies, generate the corresponding
complex signal and then generate the real signal satisfying the hermitian symmetry on the coeffi-
cients. W and H are nonnegative matrices of dimensions F ×K and K ×N , respectively.2 For a
fixed t-f point (f, n), the signal φfn = {φfn(t)}t, referred to as atom, is the element of an arbitrary
t-f basis, for example a Gabor frame (a collection of tapered oscillating functions with short tempo-
ral support). e(t) is an identically and independently distributed (i.i.d) Gaussian residual term. The
variables {αfn} are synthesis coefficients, assumed conditionally independent. Loosely speaking,
they are dual of the analysis coefficients, defined by yfn =

∑
t x(t)φ

∗
fn(t). The coefficients of

the STFT can be interpreted as analysis coefficients obtained with a Gabor frame. The synthesis
coefficients are assumed centered, ensuring that x(t) has zero expectation as well. A low-rank latent
structure is imposed on their variance. This is in contrast with the GCM introduced at Eq. (1), that
instead imposes a low-rank structure on the variance of the analysis coefficients.

2.2 Relation to sparse Bayesian learning

Eq. (2) may be written in matrix form as

x = Φα+ e , (5)

where x and e are column vectors of dimension T with coefficients x(t) and e(t), respectively.
Given an arbitrary mapping from (f, n) ∈ {1, . . . , F} × {1, . . . , N} to m ∈ {1, . . . ,M}, where
M = FN , α is a column vector of dimension M with coefficients {αfn}fn and Φ is a matrix of
size T ×M with columns {φfn}fn. In the following we will sometimes slightly abuse notations by

2In the general unsupervised setting where both W and H are estimated, WH must be low-rank such that
K < F and K < N . However, in supervised settings where W is known, we may have K > F .
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indexing the coefficients ofα (and other variables) by eitherm or (f, n). It should be understood that
m and (f, n) are in one-to-one correspondence and the notation should be clear from the context.
Let us denote by v the column vector of dimension M with coefficients vfn = [WH]fn. Then,
from Eq. (3), we may write that the prior distribution for α is

p(α|v) = Nc(α|0, diag(v)) . (6)

Ignoring the low-rank constraint, Eqs. (5)-(6) resemble sparse Bayesian learning (SBL), as intro-
duced in [4, 5], where it is shown that marginal likelihood estimation of the variance induces sparse
solutions of v and thus α. The essential difference between our model and SBL is that the coeffi-
cients are no longer unstructured in LRTFS. Indeed, in SBL, each coefficient αm has a free variance
parameter vm. This property is fundamental to the sparsity-inducing effect of SBL [4]. In contrast,
in LRTFS, the variances are now tied together and such that vm = vfn = [WH]fn .

2.3 Latent components reconstruction

As its name suggests, the GCM described by Eq. (1) is a composite model, in the following sense.
We may introduce independent complex-valued latent components ykfn ∼ Nc(0, wfkhkn) and
write yfn =

∑K
k=1 ykfn. Marginalizing the components from this simple Gaussian additive model

leads to Eq. (1). In this perspective, the GCM implicitly assumes the data STFT Y to be a sum of
elementary STFT components Yk = {ykfn}fn . In the GCM, the components can be reconstructed
after estimation of W and H , using any statistical estimator. In particular, the minimum mean
square estimator (MMSE), given by the posterior mean, reduces to so-called Wiener filtering:

ŷkfn =
wfkhkn
[WH]fn

yfn. (7)

The components may then be STFT-inversed to obtain temporal reconstructions that form the output
of the overall signal decomposition approach.

Of course, the same principle applies to LRTFS. The synthesis coefficients αfn may equally be
written as a sum of latent components, such that αfn =

∑
k αkfn, with αkfn ∼ Nc(0, wfkhkn).

Denoting by αk the column vector of dimension M with coefficients {αkfn}fn, Eq. (5) may be
written as

x =
∑
k

Φαk + e =
∑
k

ck + e , (8)

where ck = Φαk. The component ck is the “temporal expression” of spectral pattern wk, the kth
column of W. Given estimates of W and H, the components may be reconstructed in various way.
The equivalent of the Wiener filtering approach used traditionally with the GCM would consist in
computing ĉMMSE

k = Φα̂MMSE
k , with α̂MMSE

k = E{αk|x,W,H}. Though the expression of α̂MMSE
k

is available in closed form it requires the inversion of a too large matrix, of dimensions T × T (see
also Section 3.2). We will instead use ĉk = Φα̂k with α̂k = E{αk|α̂,W,H}, where α̂ is the
available estimate of α. In this case, the coefficients of α̂k are given by

α̂kfn =
wfkhkn
[WH]fn

α̂fn. (9)

3 Estimation in LRTFS

We now consider two approaches to estimation of W, H and α in the LRTFS model defined by
Eqs. (2)-(4). The first approach, described in the next section is maximum joint likelihood esti-
mation (MJLE). It relies on the minimization of − log p(x,α|W,H, λ). The second approach is
maximum marginal likelihood estimation (MMLE), described in Section 3.2. It relies on the min-
imization of − log p(x|W,H, λ), i.e., involves the marginalization of α from the joint likelihood,
following the principle of SBL. Though we present MMLE for the sake of completeness, our cur-
rent implementation does not scale with the dimensions involved in the audio signal processing
applications presented in Section 5, and large-scale algorithms for MMLE are left as future work.
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3.1 Maximum joint likelihood estimation (MJLE)

Objective. MJLE relies on the optimization of

CJL(α,W,H, λ)
def
= − log p(x,α|W,H, λ) (10)

=
1

λ
‖x−Φα‖22 +DIS(|α|2|v) + log(|α|2) +M log π , (11)

where we recall that v is the vectorized version of WH and where DIS(A|B) =
∑

ij dIS(aij |bij)
is the IS divergence between nonnegative matrices (or vectors, as a special case), with dIS(x|y) =
(x/y) − log(x/y) − 1. The first term in Eq. (11) measures the discrepancy between the raw signal
and its approximation. The second term ensures that the synthesis coefficients are approximately
low-rank. Unexpectedly, a third term that favors sparse solutions of α, thanks to the log function,
naturally appears from the derivation of the joint likelihood. The objective function (11) is not
convex and the EM algorithm described next may only ensure convergence to a local solution.

EM algorithm. In order to minimize CJL, we employ an EM algorithm based on the architecture
proposed by Figueiredo & Nowak [6]. It consists of rewriting Eq. (5) as

z = α+
√
β e1 , (12)

x = Φz + e2 , (13)

where z acts as a hidden variable, e1 ∼ Nc(0, I), e2 ∼ Nc(0, λI − βΦΦ∗), with the operator ·∗
denoting Hermitian transpose. Provided that β ≤ λ/δΦ, where δΦ is the largest eigenvalue of ΦΦ∗,
the likelihood function p(x|α, λ) under Eqs. (12)-(13) is the same as under Eq. (5). Denoting the
set of parameters by θJL = {α,W,H, λ}, the EM algorithm relies on the iterative minimization of

Q(θJL|θ̃JL) = −
∫

z

log p(x,α, z|W,H, λ)p(z|x, θ̃JL)dz , (14)

where θ̃JL acts as the current parameter value. Loosely speaking, the EM algorithm relies on the
idea that if z was known, then the estimation of α and of the other parameters would boil down to
the mere white noise denoising problem described by Eq. (12). As z is not known, the posterior
mean value w.r.t z of the joint likelihood is considered instead.

The complete likelihood in Eq. (14) may be decomposed as

log p(x,α, z|W,H, λ) = log p(x|z, λ) + log p(z|α) + log p(α|WH). (15)

The hidden variable posterior simplifies to p(z|x,θJL) = p(z|x, λ). From there, using standard
manipulations with Gaussian distributions, the (i + 1)th iteration of the resulting algorithm writes
as follows.

E-step: z(i) = E{z|x, λ(i)} = α(i) +
β

λ(i)
Φ∗(x−Φα(i)) (16)

M-step: ∀(f, n), α(i+1)
fn =

v
(i)
fn

v
(i)
fn + β

z
(i)
fn (17)

(W(i+1),H(i+1)) = argmin
W,H≥0

∑
fn
DIS

(
|α(i+1)

fn |2|[WH]fn

)
(18)

λ(i+1) =
1

T
‖x−Φα(i+1)‖2F (19)

In Eq. (17), v(i)fn is a shorthand for [W(i)H(i)]fn . Eq. (17) is simply the application of Wiener
filtering to Eq. (12) with z = z(i). Eq. (18) amounts to solving a NMF with the IS divergence; it
may be solved using majorization-minimization, resulting in the standard multiplicative update rules
given in [3]. A local solution might only be obtained with this approach, but this is still decreasing
the negative log-likelihood at every iteration. The update rule for λ is not the one that exactly
derives from the EM procedure (this one has a more complicated expression), but it still decreases
the negative log-likelihood at every iteration as explained in [6].
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Note that the overall algorithm is rather computationally friendly as no matrix inversion is required.
The Φα and Φ∗x operations in Eq. (16) correspond to analysis and synthesis operations that can be
realized efficiently using optimized packages, such as the Large Time-Frequency Analysis Toolbox
(LTFAT) [7].

3.2 Maximum marginal likelihood estimation (MMLE)

Objective. The second estimation method relies on the optimization of

CML(W,H, λ)
def
= − log p(x|W,H, λ) (20)

= − log

∫
α

p(x|α, λ)p(α|WH)dα (21)

It corresponds to the “type-II” maximum likelihood procedure employed in [4, 5]. By treating α
as a nuisance parameter, the number of parameters involved in the data likelihood is significantly
reduced, yielding more robust estimation with fewer local minima in the objective function [5].

EM algorithm. In order to minimizeCML, we may use the EM architecture described in [4, 5] that
quite naturally uses α has the hidden data. Denoting the set of parameters by θML = {W,H, λ},
the EM algorithm relies on the iterative minimization of

Q(θML|θ̃ML) = −
∫
α

log p(x,α|W,H, λ)p(α|x, θ̃ML)dα, (22)

where θ̃ML acts as the current parameter value. As the derivations closely follow [4, 5], we skip
details for brevity. Using rather standard results about Gaussian distributions the (i+ 1)th iteration
of the algorithm writes as follows.

E-step : Σ(i) = (Φ∗Φ/λ(i) + diag(v(i−1))−1)−1 (23)

α(i) = Σ(i)Φ∗x/λ(i) (24)

v(i) = E{|α|2|x,v(i), λ(i)} = diag(Σ(i)) + |α(i)|2 (25)

M-step : (W(i+1),H(i+1)) = argmin
W,H≥0

∑
fn
DIS

(
v
(i)
fn|[WH]fn

)
(26)

λ(i+1) =
1

T

[
‖x−Φα(i)‖22 + λ(i)

∑M

m=1
(1−Σ(i)

mm/v
(i)
m )

]
(27)

The complexity of this algorithm can be problematic as it involves the computation of the inverse of
a matrix of size M in the expression of Σ(i). M is typically at least twice larger than T , the signal
length. Using the Woodbury matrix identity, the expression of Σ(i) can be reduced to the inversion
of a matrix of size T , but this is still too large for most signal processing applications (e.g., 3 min
of music sampled at CD quality makes T in the order of 106). As such, we will discard MMLE in
the experiments of Section 5 but the methodology presented in this section can be relevant to other
problems with smaller dimensions.

4 Multi-resolution LRTFS

Besides the advantage of modeling the raw signal itself, and not its STFT, another major strength of
LRTFS is that it offers the possibility of multi-resolution modeling. The latter consists of represent-
ing a signal as a sum of t-f atoms with different temporal (and thus frequency) resolutions. This is
for example relevant in audio where transients, such as the attacks of musical notes, are much shorter
than sustained parts such as the tonal components (the steady, harmonic part of musical notes). An-
other example is speech where different classes of phonemes can have different resolutions. At even
higher level, stationarity of female speech holds at shorter resolution than male speech. Because
traditional spectral factorizations approaches work on the transformed data, the time resolution is
set once for all at feature computation and cannot be adapted during decomposition.

In contrast, LRTFS can accommodate multiple t-f bases in the following way. Assume for simplicity
that x is to be expanded on the union of two frames Φa and Φb, with common column size T
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and with t-f grids of sizes Fa × Na and Fb × Nb, respectively. Φa may be for example a Gabor
frame with short time resolution and Φb a Gabor frame with larger resolution – such a setting has
been considered in many audio applications, e.g., [8, 9], together with sparse synthesis coefficients
models. The multi-resolution LRTFS model becomes

x = Φaαa + Φbαb + e (28)

with

∀(f, n) ∈ {1, . . . , Fa} × {1, . . . , Na}, αa,fn ∼ Nc([WaHa]fn) , (29)
∀(f, n) ∈ {1, . . . , Fb} × {1, . . . , Nb}, αb,fn ∼ Nc([WbHb]fn) , (30)

and where {αa,fn}fn and {αb,fn}fn are the coefficients of αa and αb, respectively.

By stacking the bases and synthesis coefficients into Φ = [Φa Φb] and α = [αT
a α

T
b ]

T

and introducing a latent variable z = [zTa zTb ]
T , the negative joint log-likelihood

− log p(x,α|Wa,Ha,Wb,Hb, λ) in the multi-resolution LRTFS model can be optimized using
the EM algorithm described in Section 3.1. The resulting algorithm at iteration (i + 1) writes as
follows.

E-step: for ` = {a, b}, z
(i)
` = α

(i)
` +

β

λ
Φ∗

` (x−Φaα
(i)
a −Φbα

(i)
b ) (31)

M-step: for ` = {a, b}, ∀(f, n) ∈ {1, . . . , F`} × {1, . . . , N`}, α(i+1)
`,fn =

v
(i)
`,fn

v
(i)
`,fn + β

z
(i)
fn (32)

for ` = {a, b}, (W(i+1)
` ,H

(i+1)
` ) = argmin

W`,H`≥0

∑
fn

DIS

(
|α(i+1)

`,fn |
2|[W`H`]fn

)
(33)

λ(i+1) = ‖x−Φaα
(i+1)
a −Φbα

(i+1)
b ‖22/T (34)

The complexity of the algorithm remains fully compatible with signal processing applications. Of
course, the proposed setting can be extended to more than two bases.

5 Experiments

We illustrate the effectiveness of our approach on two experiments. The first one, purely illustrative,
decomposes a jazz excerpt into two layers (tonal and transient), plus a residual layer, according
to the hybrid/morphological model presented in [8, 10]. The second one is a speech enhancement
problem, based on a semi-supervised source separation approach in the spirit of [11]. Even though
we provided update rules for λ for the sake of completeness, this parameter was not estimated in
our experiments, but instead treated as an hyperparameter, like in [5, 6]. Indeed, the estimation of λ
with all the other parameters free was found to perform poorly in practice, a phenomenon observed
with SBL as well.

5.1 Hybrid decomposition of music

We consider a 6 s jazz excerpt sampled at 44.1 kHz corrupted with additive white Gaussian noise
with 20 dB input Signal to Noise Ratio (SNR). The hybrid model aims to decompose the signal as

x = xtonal + xtransient + e = Φtonalαtonal + Φtransientαtransient + e , (35)

using the multi-resolution LRTFS method described in Section 4. As already mentionned, a classical
design consists of working with Gabor frames. We use a 2048 samples-long (∼ 46 ms) Hann
window for the tonal layer, and a 128 samples-long (∼ 3 ms) Hann window for the transient layer,
both with a 50% time overlap. The number of latent components in the two layers is set to K = 3.

We experimented several values for the hyperparameter λ and selected the results leading to best
output SNR (about 26 dB). The estimated components are shown at Fig. 1. When listening to the
signals components (available in the supplementary material), one can clearly identify the hit-hat in
the first and second components of the transient layer, and the bass and piano attacks in the third
component. In the tonal layer, one can identify the bass and some piano in the first component, some
piano in the second component, and some hit-hat “ring” in the third component.
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Figure 1: Top: spectrogram of the original signal (left), estimated transient coefficients log |αtransient|
(center), estimated tonal coefficients log |αtonal| (right). Middle: the 3 latent components (of rank 1)
from the transient layer. Bottom: the 3 latent components (of rank 1) from the tonal layer.

5.2 Speech enhancement

The second experiment considers a semi-supervised speech enhancement example (treated as a
single-channel source separation problem). The goal is to recover a speech signal corrupted by
a texture sound, namely applauses. The synthesis model considered is given by

x = Φtonal

(
αspeech

tonal +αnoise
tonal

)
+ Φtransient

(
αspeech

transient +α
noise
transient

)
+ e, (36)

with
αspeech

tonal ∼ Nc

(
0,Wtrain

tonalH
speech
tonal

)
, αnoise

tonal ∼ Nc

(
0,Wnoise

tonal H
noise
tonal

)
, (37)

and
αspeech

transient ∼ Nc

(
0,Wtrain

transientH
speech
transient

)
, αnoise

transient ∼ Nc

(
0,Wnoise

transientH
noise
transient

)
. (38)

Wtrain
tonal and Wtrain

transient are fixed pre-trained dictionaries of dimensionK = 500, obtained from 30 min
of training speech containing male and female speakers. The training data, with sampling rate
16kHz, is extracted from the TIMIT database [12]. The noise dictionaries Wnoise

tonal and Wnoise
transient are

learnt from the noisy data, using K = 2. The two t-f bases are Gabor frames with Hann window
of length 512 samples (∼ 32ms) for the tonal layer and 32 samples (∼ 2ms) for the transient layer,
both with 50% overlap. The hyperparameter λ is gradually decreased to a negligible value during
iterations (resulting in a negligible residual e), a form of warm-restart strategy [13].

We considered 10 test signals composed of 10 different speech excerpts (from the TIMIT dataset as
well, among excerpts not used for training) mixed in the middle of a 7 s-long applause sample. For
every test signal, the estimated speech signal is computed as

x̂ = Φtonalα̂
speech
tonal + Φtransientα̂

speech
transient (39)
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Figure 2: Time-frequency representations of the noisy data (top) and of the estimated tonal and
transient layers from the speech (bottom).

and a SNR improvement is computed as the difference between the output and input SNRs. With
our approach, the average SNR improvement other the 10 test signals was 6.6 dB. Fig. 2 displays the
spectrograms of one noisy test signal with short and long windows, and the clean speech synthesis
coefficients estimated in the two layers. As a baseline, we applied IS-NMF in a similar setting using
one Gabor transform with a window of intermediate length (256 samples, ∼ 16 ms). The average
SNR improvement was 6 dB in that case. We also applied the standard OMLSA speech enhancement
method [14] (using the implementation available from the author with default parameters) and the
average SNR improvement was 4.6 dB with this approach. Other experiments with other noise types
(such as helicopter and train sounds) gave similar trends of results. Sound examples are provided in
the companion supplementary material.

6 Conclusion

We have presented a new model that bridges the gap between t-f synthesis and traditional NMF
approaches. The proposed algorithm for maximum joint likelihood estimation of the synthesis co-
efficients and their low-rank variance can be viewed as an iterative shrinkage algorithm with an
additional Itakura-Saito NMF penalty term. In [15], Elad explains in the context of sparse represen-
tations that soft thresholding of analysis coefficients corresponds to the first iteration of the forward-
backward algorithm for LASSO/basis pursuit denoising. Similarly, Itakura-Saito NMF followed by
Wiener filtering correspond to the first iteration of the proposed EM algorithm for MJLE.

As opposed to traditional NMF, LRTFS accommodates multi-resolution representations very natu-
rally, with no extra difficulty at the estimation level. The model can be extended in a straightforward
manner to various additional penalties on the matrices W or H (such as smoothness or sparsity).
Future work will include the design of a scalable algorithm for MMLE, using for example message
passing [16], and a comparison of MJLE and MMLE for LRTFS. Moreover, our generative model
can be considered for more general inverse problems such as multichannel audio source separa-
tion [17]. More extensive experimental studies are planned in this direction.
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