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Abstract. Radiative emission during cold collisions between trapped laser-cooled Rb

atoms and alkaline-earth ions (Ca+, Sr+, Ba+) and Yb+, and between Li and Yb+, are

studied theoretically, using accurate effective-core-potential based quantum chemistry

calculations of potential energy curves and transition dipole moments of the related

molecular ions. Radiative association of molecular ions is predicted to occur for all

systems with a cross section two to ten times larger than the radiative charge transfer

one. Partial and total rate constants are also calculated and compared to available

experiments. Narrow shape resonances are expected, which could be detectable at low

temperature with an experimental resolution at the limit of the present standards.

Vibrational distributions are also calculated, showing that the final molecular ions are

not created in their ground state level.

1. Introduction

One of the novel developments of ultracold matter research is exemplified by the

experiments aiming at merging a cold atom trap and a trap of laser-cooled ions. Such

hybrid setups could offer the opportunity to study collisional dynamics in the quantum

s-wave scattering regime associated to the long-range interaction between the ion and the
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atom varying as R−4 (where R is the ion-atom distance) [1, 2, 3, 4], just like it has been

extensively studied for ultracold neutral atom-atom collisions (see for instance Ref. [5]).

These hybrid devices have also been proposed to emulate solid-state physics where a

band structure in the fermionic atoms -thus simulating electrons- could be induced by

periodic structure generated by the laser-cooled ions [6]. Other prospects concern the

implementation of a Josephson junction through a pair of cold atoms controlled by a

single ion [7, 8], the immersion of a single ion into a Tonk-Girardeau gas to generate

an ionic density ”‘bubble”’ [9], or the elaboration of an atom-ion quantum gate [10].

The variety of combinations of laser-cooled alkali-metal atoms and alkaline-earth (or

rare earth) atomic ions allows to explore the limit of sympathetic cooling between them

depending on their mass ratio [4, 11, 12, 13].

Also, a wealth of cold molecular ions species could be created, opening the way to a

rich chemistry at temperatures of a few millikelvin, or less [14]. Following the theoretical

prospect of Ref. [15] with cold Na trapped in a magnetooptical trap (MOT) and laser-

cooled Ca+ ions in a Paul trap (then followed by further developments [16]), other groups

have carried out pioneering experiments with various combinations of atoms and atomic

ions: Yb atoms with Yb+ ions [17], Rb atoms with Ca+ [18, 19] and Ba+ [20] ions, and

Ca atoms with Yb+ ions [21] or Ba+ ions [22]. Rubidium atoms can also be confined

in a magnetic trap in (or close to) the Bose-Einstein condensation (BEC) regime thus

ensuring with a density larger than in a MOT, and then interacting with a few Yb+ ions

[23, 24, 25, 26]. Similarly, an optical dipole trap of Rb atoms has been merged in a Paul

trap containing a few Ba+ atoms [27, 28] (or with the combination Li/Ca+ [29]). When

atomic ions like Rb+ or Na+ cannot be laser-cooled, they can be sympathetically cooled

by another species in the Paul trap in the presence of trapped Rb atoms [30, 28] or Na

atoms [31], or they can be created in situ inside the Paul trap by photoionization of

trapped Rb atoms [32, 33, 34]. To be complete, sympathetically-cooled molecular ions

created from an external source have been utilized in two remarkable experiments: one

has demonstrated the vibrational quenching of BaCl+ ions by laser-cooled Ca atoms [35],

and another one has recorded a particularly large charge-exchange rate between N+
2 ions

and laser-cooled Rb atoms [36]. A comprehensive review of most of these experiments

can be found in Ref. [37].

Elastic and inelastic collisions as well as elementary reactions like charge transfer

between the trapped ions and the trapped atoms have been studied in these experiments.

Due to the residual micromotion of the trapped ions, these studies have been limited

to energies larger than a few millikelvin, well beyond the s-wave quantum regime. It

has been recognized in several of these experiments (see for instance Ref. [18]) that the

cooling and/or trapping light most often assist the reaction through the excitation of

one of the colliding partners, inducing large rates described by the Langevin regime

close to the unitarity limit.

Among all these experiments, it is striking that so far, the direct observation of

molecular ions resulting from the association of a cold atom and a cold ion has been

reported only in two cases, namely RbCa+ [18, 19] and RbBa+ [20]. These observations
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have been assigned to the formation of ions by radiative association (RA), i.e. Rb +

(Alke)+ → Rb(Alke)++hν (where (Alke) = Ca, Ba), and hν is the energy of the photon

emitted during the collision in order to stabilize the molecular ion [18, 19, 20]. The RA

process competes with radiative charge transfer (RCT) Rb + (Alke)+ → Rb+ + (Alke)

+hν when (Alke) = Ba, and is dominated by non-radiative charge transfer (NRCT) in

the Rb/Ca+ case [38]. The RA of CaYb+ has been invoked – but molecular ions have

not been directly detected – in Ref. [21] to explain the measured fast reaction rate, but

not confirmed by a subsequent theoretical investigation [39].

In order to clarify the possible molecular ion formation processes and their efficiency

in such merged ion and atom traps, we achieved in this paper a systematic and

consistent analysis of the inelastic collisions of cold Rb/(Alke)+ pairs in their ground

state considering the two competitive channels of RA and RCT. Here the notation

(Alke) refers to the alkaline-earth atoms Ca, Sr, Ba. For convenience the lanthanide

atom Yb, with its closed 4f shell and its external 6s2 shell, will be included in this

(Alke) notation. The Li-Yb+ complex is also studied as its significantly different mass

ratio motivated the analogy for using this combination to emulate solid-state physics

[6]. Occasionnally, the Rb and Li alkali-metal atoms will be referred to as the (Alk)

species. After recalling the basics of the derivation of expressions for the cross section

and the rates (Section 2), we describe the electronic structure (potential energy curves,

transition and permanent electric dipole moments) of the relevant molecular ions (Alk-

Alke)+ using accurate quantum chemistry calculations based on the representation of

the colliding partners with effective core potentials (ECP) including core polarization

potentials (Section 3) which are compared to other determinations when available. We

present our results for both RA and RCT cross sections and rates, emphasizing then

on the presence of narrow shape resonances induced by the centrifugal barrier in the

entrance channel, and on the vibrational distribution of the molecular ions, which are

not expected to be created in their ground level (Section 4). We finally discuss some

prospects about possible explanation for the absence of molecular ions in several of the

experiments quoted above (Section 5).

In the rest of the paper atomic units of energy (1 a.u. = 2 × R∞ where R∞ is

the Rydberg constant), distance (1 a.u. = a0 where a0 is the Bohr radii), and dipole

moment (1 a.u. = 2.541 580 59 D) will be used, except otherwise stated. The collision

energies will usually be expressed in units of (milli-)Kelvin, Ecoll ≡ Ecoll/kb, where kb is

the Boltzmann constant.

2. Theoretical approach for RA and RCT

The spontaneous emission of a photon during a collisional process is modeled by a well-

established formalism. It is a special case of a well-known semiclassical matter-radiation

interaction scheme of absorption and emission. A 1st-order time-dependent perturbation

approach expresses the atomic or molecular transition between an initial state |i〉, with

energy Ei in the instant ti and a final state |f〉, with energy Ef at t > ti, induced by the
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perturbation of the electromagnetic field H ′ = H ′(t > ti). Such a methodology has been

successfully applied to the description of the radiative association [40, 41, 42, 43, 39]

and of the radiative charge transfer in atom-ion collisions, for elementary systems such

as Li(2s) + H+ [44]. In the following we only recall the main steps, and a full description

can be found in the given references and the references therein.

In the collisions between ground-state (Alke)+(ns) ions (n = 4, 5, 6, 6 for Ca, Sr,

Ba, Yb, respectively) and Rb(5s), or between Yb+(6s) and Li(2s) atoms, the entrance

channel is associated with a single adiabatic Born-Oppenheimer (ABO) potential energy

curve (PEC) Vi(R) of 1Σ+ symmetry which actually corresponds to the first excited

electronic state A1Σ+ of the (Alk-Alke)+ molecular ion (Fig. 1a). Note that this may

not be the case for this class of mixed species, as for instance in LiCa+ and LiBa+ where

the (Alke)+(ns)+Li(2s) dissociation limit is the lowest one. The spontaneous emission

during the collision thus leads either to the dissociation continuum (for RCT) or to the

bound rovibrational level manifold (for RA) of the PEC Vf (R) of the (Alk-Alke)+ ground

electronic state X1Σ+ correlated to the lowest (Alke)(ns2 1S) + (Alk)+ asymptote. Note

that below the entrance channel there is an additional asymptotic limit only in RbCa+,

namely Rb+ + Ca(4s4p 3P ), to which the PEC lowest 3Π state is correlated and which is

coupled to the A state by spin-orbit interaction, thus inducing non-adiabatic transition,

i.e. NRCT [38]. This feature is not treated in the present paper. Also, as illustrated for

instance in our previous work on alkali-metal atom and Sr+ compounds [45], the lowest
3Σ+ PEC is correlated to the entrance channel (Alke)+(ns) + (Alk)(n′s), but cannot

give rise to spontaneous emission to the X state, as long as no second-order spin-orbit

coupling is introduced. The hyperfine structure of the colliding partners – which has

been found to be an important feature in Ref. [23] – is neglected, so that the entrance

channel A1Σ+ is assumed to be populated with a statistical weight of p = 1/4.

Following our previous investigation [46] and similar ones (see for instance Refs.

[47, 42], the total spontaneous emission cross section during the collision at energy Ecoll
is formulated as the sum of two contributions from the RCT and RA processes

σRCT (εi) = p
8π2

3c3
1

k2i

∞∑
J=0

∫ εmax
f

0

[
(
ω3
i,fJ |〈J − 1, εf |D(R)|εi, J〉|2

)
+
(
ω3
i,f (J + 1)|〈J + 1, εf |D(R)|εi, J〉|2

)
]dεf (1)

σRA(εi) = p
8π2

3c3
1

k2i

∞∑
J=0

vmax∑
v=0

[
(
ω3
iJ,v(J−1)J |〈J − 1, v|D(R)|εi, J〉|2

)
+
(
ω3
iJ,v(J+1)(J + 1)|〈J + 1, v|D(R)|εi, J〉|2

)
] (2)

All the quantities in these equations are expressed in atomic units. In Eq. (1) the integral

is limited to the largest possible energy εmaxf in the exit channel, while in Eq. (2) the

summation is limited to the uppermost vibrational level vmax of the X state. The initial

ket |εi, J〉 with energy εi = E − Vi(R =∞) and associated wavenumber ki =
√

2µεi (µ

is the reduced mass of the (Alk-Alke)+ system) represents a partial-wave component J

of an energy-normalized continuum wavefunction of the two nuclei. As only 1Σ+ states
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are involved, J is the total angular momentum in the entrance channel, and J ′ = J ± 1

are the two possible allowed total angular momentum quantum numbers in the exit

channel. In both equations above, the summation on J is actually limited for each

collisional energy to the maximal value for which the induced rotational barrier in the

entrance channel prevents the collision to occur. The transition electric dipole moment

(TEDM) function D(R) is represented in Fig. 1c for each system.

For RCT the final state is represented by |εf , J ± 1〉 with energy εf = E − Vf (R =

∞) − ~ωif , where ωif is the energy of the emitted photon. Equation (1) contains the

transition dipole moment between |εi, J〉 and |εf , J ′〉

〈J ′, εf |D(R)|εi, J〉 =

∫ ∞
0

F f
J ′(εf , R)D(R)F i

J(εi, R) dR (3)

involving two energy-normalized continuum wave functions F i
J(εi, R) and F f

J ′(εf , R). At

large distances they behave like

F`(ε, R) ∼
√

2µ

πk
sin(kR− `π

2
+ δ`) (4)

For RA the final state |v, J〉 is a bound rovibrational level of the X1Σ+ ground electronic

state of the (Alk-Alke)+ molecular ion. The corresponding transition dipole moment is

〈J ′, v|D(R)|εi, J〉 =

∫ ∞
0

χfvJ ′(R)D(R)F i
J(εi, R) dR (5)

where χv is a radial rovibrational wave function of the molecule normalized to unity.

Our calculations cover an energy range in the entrance channel from 1 mK up to

80 mK, currently accessible in most experiments. This requires to consider J values

in the range [15;40], [20;50], [20;50], [20;55], [5;15] for RbCa+, RbSr+, RbCa+, RbYb+,

and LiYb+ respectively, in order to obtain converged cross sections. The integrations

over the internuclear distance R are performed with the Milne phase-amplitude method

[48, 49]. Such high J values and low initial temperature impose to propagate out the

continuum wave function in the entrance channel up to large R values, namely 20000 a.u.

This ensures that the outward propagation is stopped well within the classically allowed

region situated at long range beyond the centrifugal barrier. The upper limit εmaxf =

1000 cm−1 of the relative energy in the integral of Eq. (1) and the integration step dεf
= 1cm−1 are taken to ensure the integral convergence.

Anticipating on the results of Section 4, Fig. 2a illustrates this well-known feature in

the case of RbSr+, where examples of radial wave functions are drawn for three collision

energies: (i) at 0.08 cm−1, above the centrifugal barrier; (ii) at 0.015 cm−1, showing a

major tunneling through the barrier, (iii) at 0.01 cm−1, with no more tunneling. The last

two cases correspond to the Wigner threshold law energy range, and the related partial

cross sections reported in Fig. 2b present an energy dependence proportional to k2 as

expected for high partial wave value associated with a R−4 long-range interaction. The

wave function of type (ii) above gives rise to sharp shape resonances with widths from

a fraction of µK up to about 4 mK, requiring a very small energy step (2µK) to locate

them. The first case depicts a regime similar to the Langevin one, with the same k−1
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energy dependence of the cross-section at high energy in every partial wave, but with a

magnitude smaller than the one predicted by the Langevin model (see Section 4). Note

also the alternation of the occurrence of the shape resonances: if a shape resonance shows

up for the partial wave `, another also occurs for the `+ 2 partial wave as demonstrated

by B. Gao in the case of a R−4 long range interaction [50].

3. Electronic structure calculations for (Alk-Alke)+ molecular ions

The potential energy curves, permanent electric dipole moments (PEDMs) and

transition electric dipole moments are computed following the same method described

in details in Ref. [51, 52, 45]. We briefly recall here the main steps of the calculations,

carried out using the Configuration Interaction by Perturbation of a Multiconfiguration

Wave Function Selected Iteratively (CIPSI) [53] package developed at ”Laboratoire de

Chimie et Physique Quantiques, Université Toulouse III - Paul Sabatier” (France).

The (Alk) + (Alke)+ systems are modeled as molecules with two valence electrons

moving in the field of the (Alk)+ and (Alke)2+ ions represented with ECPs including

relativistic scalar effects. These ECPs are taken from Refs. [54, 55] for all species

but Sr2+ and Ba2+ [56, 57] and Yb2+ [58]. The ECPs are complemented with core

polarization potentials (CPPs) depending on the orbital angular momentum ` of the

valence electron of Rb (or Li) and (Alke)+ [59, 60], and parametrized with the Rb+

(or Li+) and (Alke)2+ static polarizabilities α and two sets of three cut-off radii ρs,

ρp, and ρd. All these parameters (except for Yb+) were determined in our previous

works on alkali-atom-strontium neutral molecules [61] and on alkaline-earth hydride

ions [62]. The value for the Yb2+ polarizability is α = 6.388 a.u. [63], and the cut-off

radii ρs = 1.8869 a.u., ρp = 0.89235 a.u., and ρd = 2.051150 a.u. have been adjusted to

reproduce the experimental energies of the f 146s, 4f 146p and 4f 145d states of the Yb+

ion [64]. Only the remaining two valence electrons are used to calculate the Hartree-

Fock and the excitation determinants, in an atom-centered Gaussian basis set, through

the usual self-consistent field methodology. The basis set used for the Rb and Li atoms

are from Refs. [51, 52] and from Ref. [62, 65] for the (Alke)+ ions (except for Yb+).

We used for Yb+ a large uncontracted (5s5p6d) Gaussian basis set with the series

of exponents (0.785942, 0.370489, 0.068843, 0.031984, 0.015622), (0.685598, 0.338376,

0.073598, 0.034232, 0.015836) and (1.377363, 0.785942, 0.492827, 0.1680780, 0.058334,

0.02) for s, p, and d orbitals, respectively. It is worthwhile to note that to our knowledge

this is the first time that the Yb+ ion is represented in a so-called “‘large core”’ model,

apart from Ref. [58]. A more detailed analysis of the (Yb-Alk)+ compounds (where Alk

is an alkali-metal atom among Li, Na, K, Rb, Cs) will be presented in a forthcoming

study.

A full configuration interaction (FCI) is finally achieved to obtain the relevant PECs

and TEDMs displayed in Fig. 1, limited to the X and A states and their transition.

The origin of energies is taken at the (Alke)+(ns) + Rb(5s) (or Yb+(6s) + Li(2s))

dissociation limit corresponding to the entrance channel relevant for the present study.
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By construction of our approach, the energies of the Rb(5s), Li(2s), and Yb+(6s) ground

levels are adjusted to the experimental values. Thus the dissociation energy matches

the experimental one in the former case, while for the latter case it results from the

CI calculation performed on the neutral (Alke) atom. These calculated (Alke) ground-

state ionization energies are reported in Ref. [62] for all atoms except Yb. In this latter

case, we obtained an ionization energy of 50330 cm−1, smaller by 113 cm−1 compared

to the experimental one (50443 cm−1 [64]). This discrepancy of 113 cm−1 also holds for

the spacing between the Yb+(6s)+(Alk)(ns) and the Yb(6s2 1S)+(Alk)+ asymptotes

(equal to 16864.8 cm−1 in our method, in good agreement with the experimental value

of 16752.2 cm−1 [64]). It favorably compares to the discrepancy of 322 cm−1 reported

in Ref. [66], and to Ref. [67] which reported an energy difference of 16279 cm−1 between

these two asymptotes. Finally, in their work on LiYb+ [13] the authors report an

ionization energy for the Yb ground state of 50267 cm−1.

All PECs for the A state consistently behave in the same way at large distances

(Fig. 1a), varying as −C4/(2R
4) determined by the Rb (or Li) static polarizability

α ≡ 2C4. A rough fit with a single parameter of the long-range part of the PECs yields

2C4(Rb) ≈ 360±20 a.u. (depending on the Rb(Alke)+ species) and 2C4(Li) ≈ 192 a.u..

Note that a more relevant determination using our quantum chemistry approach

above, in the context of the finite field method, yields 2C4(Rb) = 318 a.u. and

2C4(Li) = 164 a.u. [68] in good agreement with the various determinations of the

Rb static polarizability [69]. The potential well of this state results from a strongly

avoided crossing with the lowest X1Σ+ PEC, which is located at about the same distance

range for all species. The well-depth decreases with increasing reduced mass along the

(RbAlke)+ series. As also observed in previous works [70, 71, 4], the RbBa+ PEC

exhibits a double well induced by an avoided crossing with an upper 1Σ+ curve not

displayed here. This feature is imprinted in the variation of the corresponding A-X

TEDM (Fig. 1c). Surprisingly, the PEC of RbCa+ and RbYb+ are very similar, which

could be related to the well-known f -shell contraction in the lanthanide atoms, yielding

to the Yb the character of a much smaller atom than expected from its mass [72]. In

contrast, the A potential well in LiYb+ is significantly less deep than for the (RbAlke)+

series due to the low value of the C4 long-range coefficient.

The PECs for the X state all look very similar along the (RbAlke)+ series (Fig. 1b).

Due to the smaller size of the Li+ ion compared to the Rb+ one, the minimum of the

well for LiYb+ is located at quite short distances, while its depth is larger than for

the Rb-Alke+ compounds. As above, the long-range part of the PEC varies as R−4,

with a coefficient depending on the static polarizability of the (Alke) neutral species.

Again, a simple fit of this long-range part with a single parameter gives 2C4 ≈ 140 a.u.,

220 a.u., 300 a.u., 154 a.u., and 154 a.u., for RbCa+, RbSr+, RbCa+, RbYb+ and LiYb+

respectively, in reasonable agreement with the static polarizabilities of Ca, Sr, Ba, and

Yb from our previous calculations [62] or from [69]. Note again that to determine more

rigorously these quantities within our quantum chemistry approach, a method like the

finite-field approach should be used, as we have done for instance in the Sr case [45].
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The main spectroscopic constants of these PECs are deduced from a parabolic fit

of the bottom of the wells around their minimum, and are reported in Tables 1 and 2,

allowing for comparison with the few other theoretical determinations available in the

literature. The choice of isotopologues is somewhat arbitrary, as it has no significant

influence on the present scattering calculations, as it will be discussed later.

There is only one other work reporting about the molecular structure of RbCa+

[38, 73] for the study of NRCT. The authors used a so-called ”‘small core”’ ECPs where

electrons from the 4s and 4p shells in Rb, and from the 3s and 3p shells in Ca+ are

explicitly treated besides the valence electrons. As for the 1Σ+ states, the authors

only provided figures for the PECs from which we estimated equilibrium distances and

potential well depths in good agreement with our results. This is a strong indication in

favor of the ability of our approach employing large-core ECPs to represent core-valence

electronic correlation.

The RbBa+ molecule already attracted several detailed non-relativistic studies

which are in quite good agreement among each other. We observe the same trend than

for RbCa+, i.e. for both X and A states we find slightly smaller equilibrium distances,

and slightly deeper potential wells than in Refs. [70, 71, 4]. In Ref. [4] the authors

investigated the role of the triple excitations in their approach, yielding a double-well

potential for the A state with a barrier located below the dissociation limit at about the

same position (estimated from their figure) than in our calculation. The TEDM between

the X and A states display a very similar shape with two maxima in both our results and

in those of Ref. [4], reflecting the double-well structure of the A PEC. The largest value

of dAm =2.84 a.u. is reached at a distance of RA
m =13 a.u. in our work, compared to

dAm ≈2.65 a.u. at RA
m =13.5 a.u. in Ref. [4]. Again, these are strong arguments in favor

of the present approach based on ECP and CPP to represent core-valence correlation

effects with the same quality than in other methods.

For RbSr+, there is no other calculation available than [45], but given the favorable

comparisons above, and as this ion is treated consistently with the same method than

the three other species, the present results are probably of satisfactory quality.

As already quoted above, the cases of RbYb+ and LiYb+ are peculiar, as the Yb+

ion and Yb atom have not been treated with large ECP before. Tables 1 and 2 reveal a

contrasted situation for RbYb+ in comparison with the results of Refs. [66, 74, 67] that

are all obtained with similar approaches based on small core ECPs. Our values for Re

and De of the X PEC are in good agreement with those of Ref. [67], while the potential

well depth from Refs. [66, 74] is twice smaller than ours, with a minimum located

at a significantly larger distance. This has been quoted by the authors of Ref. [74]

but no explanation has been provided. On the other hand for the A state, the three

previous papers have obtained results in good agreement among each other, while we

find an equilibrium distance shorter by about 1 a.u. and the well depth deeper by about

400 cm−1. Surprisingly the magnitude and the R variation of the TEDM of the X-A

transition look very similar among all determinations including ours, with a maximal

value of about 3 a.u. (Fig. 1), suggesting that electronic wave functions behave in the
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same way in all methods.

The only other work about the LiYb+ structure that we are aware of is the very

recent article by Tomza et al. [13], using the same approach than in Ref. [4] for RbBa+.

The conclusions looks similar to the case of RbYb+ and RbBa+ for both the X and A

PECs. The spectroscopic constants of the X PEC are in good agreement, with a smaller

harmonic constant and a smaller potential well by about 5% in our results compared to

those of Ref. [13]. We found the depth of the A PEC about 30% larger, with a minimum

located at a distance by about 1.15 a.u., and an harmonic constant smaller by about

3.5%, than the values obtained in Ref. [13]. In contrast with these large differences, the

present TEDM between the X and A states are in very good agreement with this latter

work, as already observed for the other ions above.

Table 1. Main spectroscopic constants for the X1Σ+ electronic state of Rb(Alke)+ and

LiYb+: the bond length, re (a. u.), the harmonic constant, ωe (cm−1), the potential

well depths, De (cm−1), the rotational constant, Be (cm−1). Other published values are

also provided when available. Two sets of results were published in Ref. [71], (a) using

a multireference configuration interaction (MRCI), and (b) using the coupled-cluster

method. The ∗ symbol for Ref. [13] indicates that the authors reported spectroscopic

constants for the 7Li172Yb+ isotope.

(X)1Σ+ re ωe Be De

87Rb40Ca+

this work 7.96 73.02 0.0346 3850.9

[38] ≈8.0 - - ≈3730
87Rb87Sr+

this work 8.23 59.41 0.0205 4265.7

[45] 8.2 58 - 4285
87Rb137Ba+

this work 8.53 51.01 0.0155 5292.5

[71]a 8.72 51.77 - 5055.0

[71]b 8.75 52.79 - 5034.0

[4] 8.67 - - 5136
87Rb173Yb+

this work 7.99 49.73 0.0162 3435.88

[67] 8.08 - - 3496

[66] 9.03 33.77 0.0127 1776

[74] 9.0 - - 1807.4
7Li173Yb+

this work 6.14 223.4 0.2370 9383.7

[13]∗ 6.20 231 0.23 9412

For completeness we report in Fig. 3 the PEDMs for both the A and X states of

these molecular ions. They have been computed with respect to the origin of coordinates



10

Table 2. Same as Table 1 for the A1Σ+ electronic states of Rb(Alke)+ and LiYb+. In

addition the transition energy Te (cm−1) between the bottom of the A and X potential

wells is reported. For RbBa+, values for the inner and outer wells are displayed on the

same line. The position of the top of the barrier, and its energy below the dissociation

limit, are also indicated under the re and De columns. The ∗ symbol for Ref. [13]

indicates that the authors reported spectroscopic constants for the 7Li172Yb+ isotope.

(A)1Σ+ re ωe Be De Te
87Rb40Ca+

this work 12.86 29.89 0.0133 1271.64 18171.2

[38] ≈13 - - ≈1170 -
87Rb87Sr+

this work 13.79 20.94 0.0073 933.0 15752.3

[45] 13.8 21 - 960 -
87Rb137Ba+

this work 8.98/14.81 40.49/15.94 0.0140/0.0051 964.81/679.27 12849.8/13135.3

(inner/outer)

this work 11.61 - - 65.3 -

(barrier)

[71]a 9.03 - - - -

[71]b -

[4] 9.02/15.19 - - 911/576 12569/12904

(inner/outer)
87Rb173Yb+

this work 12.82 21.08 0.0063 1258.25 19138.2

[67] 13.8 - - 836.0 -

[66] 14.362 16.807 0.00505 875.1 -

[74] 14.0 - - 875.1 -
7Li173Yb+

this work 13.25 46.57 0.0509 501.7 16046

[13]∗ 14.4 37.1 0.045 358 15857

placed at the center-of-mass of the molecule, with the axis oriented from the Rb or Li

atom towards the (Alke)+ ion. We note the total mass M = M((Alk)+) + M(Alke)

and the mass difference δM = M((Alk)+) − M(Alke). We checked that at large

distances - beyond 20 a.u., typically- the PEDMs linearly diverge as R/2(1 + δM/M)

and −R/2(1−δM/M) for the A and X states respectively, as the charge is carried either

by the (Alke) species or by the (Alk) one. The PEDM of the A state in RbBa+ has an

abrupt change of slope around 12 a.u. due to the occurrence of the barrier between the

two potential wells. Tomza et al. [13] have displayed the absolute value of the X and

A PEDMs in LiYb+, showing very similar variation to ours but with a slightly smaller
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amplitude.

The data for PECs, TEDMs, and PEDMs are collected in the Supplemental

Material attached to this paper [75].

4. Cross sections and rates for RA and RCT

The main objective of this study is to evaluate, through the comparison of five molecular

ions treated consistently by the same approaches for both their electronic structure and

their dynamics, the efficiency of the formation of molecular ions, and the possibility

to observe shape resonances with the current experimental resolution. We performed

about 40000 calculations per system in the collisional energy range between 100 µK to

80 mK, for all the total rotational quantum numbers between 0 and 80. The energy

step was fixed to 2µK in order to properly locate all the shape resonances.

Figure 4 displays the total cross sections (RA + RCT) for all five systems, which

present several similar features. As anticipated in section 2 they all present the same

ε
−1/2
i dependence with the entrance channel energy εi which corresponds to the Langevin-

type regime. However the magnitude of the cross sections is much smaller than the one

predicted by the original Langevin model [76]

σLang = pPLangπε
−1/2
i

√
2C4 (6)

with the statistical factor p = 1/4 and a reaction probability PLang following the

capture equal to 1. As the baseline of our calculated cross sections (i.e. ignoring shape

resonances) varies as ε
−1/2
i (Fig 4), we find a constant probability PLang = 0.88× 10−5,

2.2 × 10−5, 3.0 × 10−5, 3.9 × 10−5, and 5.9 × 10−5 for LiYb+, RbBa+, RbSr+, RbCa+,

and RbYb+, respectively.

Numerous narrow shape resonances arising from the entrance channel can be

observed in each system, with a density increasing with the reduced mass. In this

respect, only a few resonances are predicted in LiYb+ due to its comparatively small

reduced mass. The resonances have obviously energy positions which dramatically

depend on the calculated potential. By comparing the baseline above to a ε
−1/2
i fit

of the total cross-sections, we estimate the contribution of the shape resonances to

about 20±2 % for all these species over the displayed energy range. Apart from the

resonances, the hierarchy of the cross sections reflected by their baselines mostly reflects

the increasing magnitude of the ω3
if factor in Eqs. (1) and (2) along the series LiYb+,

RbBa+, RbCa+, RbSr+, and RbYb+ which can be roughly appreciated from the relative

position in energy of the relevant turning points in the X and A PECs (Fig. 1).

The RA process is predicted to dominate for all systems in comparison with RCT,

by a factor ≈ 2.4 for RbCa+, ≈ 3.8 for RbSr+, ≈ 13.6 for RbBa+, ≈ 2.1 for RbYb+, and

≈ 22.4 for LiYb+ (Fig. 5). This is due to the favorable relative position of the X and

A potential wells which are shifted against each other in R, so that the classical inner

turning point of the A potential is aligned with the one of quite deeply bound levels of

the X potential (see dotted lines in Fig. 1). The very similar behavior between RbCa+
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and RbYb+ reflects the strong similarities of the PECs and TEDMs functions. The

RA process is even more favored in RbBa+ due to the double well in the A potential

curve, which enhances the spontaneous emission towards X bound levels around the top

of the barrier where the TEDM is large. In all cases, the shape resonances in the RA

and RCT cross sections are the same, as they are due to the centrifugal barrier in the

entrance channel (see also Refs. [73, 67]). In the framework of the present model, the

choice of the isotopologues for each ionic species does not yield significantly different

cross sections in magnitude, as the reduced mass (which differs by less than one percent

among a series of isotopologues of a given ion) is involved only through the kinetics

described by the radial wave functions. Sayfutyarova et al. reached the same conclusion

for isotopologues of RbYb+ [67], as well as Tomza et al. for LiYb+ [13]. But of course,

the energy positions of the shape resonances will vary with the chosen isotopologue.

In Fig. 6 are presented the vibrational distributions of the ground state vibrational

levels vX produced by RA for all species, in the J = 1 case and εi = 0.1 mK as a

representative example. The fraction of population of a given vibrational level vX of the

X state is defined as the ratio of the matrix element in Eq. (2) for J ′ = 1 and v = vX ,

divided by the sum over all vibrational levels of the X state, for J ′ = 1, of the matrix

elements. As expected, these distributions are similar for the three ions RbCa+, RbSr+,

and RbYb+, due to their similar electronic structure. The peak in the distributions

fulfills the Franck-Condon principle as it is located at a transition energy close to the

energy difference between the inner classical turning point of the A potential (located

in the 10-12 a.u. range) and the outer turning point of the X potential (see vertical

dotted lines in Fig. 1). In contrast, the double-well pattern in RbBa+ is manifested

by a distribution extended to much lower vibrational levels than for the other species,

due to the inner turning point of the A potential located around 8a.u.. The vibrational

distribution is double-peaked as well, the peak at low vX (resp. high vX) corresponding

to the energy difference between the inner classical turning point of the A potential and

the inner (resp. outer) turning point of the X potential. The peak at low vX is small

however, due to the small magnitude of the TEDM in the corresponding distance range

(see Fig. 1c). Finally, the low reduced mass of LiYb+ is reflected in the low density

of vibrational levels in the X state compared to the species above. But the trend is

similar, i.e. only the uppermost levels are expected to be populated by RA. Note that

the overall shape of the vibrational distribution looks the same than in Ref.[13], with

slightly shifted extrema due to the obtained differences in the potential well depths.

The molecular ions are all expected vibrationally hot, as well as rotationally hot

given the number of partial waves involved in the present energy range, even around

1 mK where many partial waves are still involved. Due to their non-vanishing PEDM

(Fig. 3) they can radiatively decay in principle down two lower vibrational levels. We

computed the radiative lifetime of a given level v for decaying down to the level v − 1

for all systems, and found that it always exceeds 10 s because of the slow R variation

of the PEDM.

In order to mimic the measured rate constant behavior as a function of the collision
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energy, the total cross sections (RA + RCT) above must be convoluted with a reliable

energy distribution. Such distributions have been modeled using molecular dynamics

simulations (see Refs. [18, 19, 20]), reflecting the dominant role of the micromotion of

the trapped ions which is much faster than the thermal motion of the ultracold atoms.

These energy distributions reflect both the fact that ions are located at well-defined

places in the ion trap, and that their micromotion strongly depends on the ion number

and thus on their places. This results into quite broad distributions which completely

smooth out the shape resonances. Nevertheless, new experimental developments are in

progress in various experimental groups aiming at better controlling the relative velocity

of the ion and the atom. In order to illustrate the required width which would allow to

observe the predicted shape resonances, we convolved the RbSr+ computed rates with

Gaussian distributions of half-width varying from 1 mK to 5 mK (Fig. 8). We see that a

width of about 2 mK would be acceptable. We extended this result to all studied species

(Fig. 7), leading to the same statement. As expected from the ε
−1/2
i variation of the

cross sections, the obtained rates are almost constant over the 1 mK–80 mK collision

energy range (see the dashed lines in Fig. 7). Their relative magnitude still reflects the

change in the ω3
if factor invoked earlier for the cross section. For instance, this factor is

larger by a magnitude of almost 8 in RbYb+ compared to LiYb+, which can be retrieved

in the average level of the rates. It is worthwhile to note that Tomza et al. [13] reported

a thermally averaged RA rate almost 100 times larger than the RCT one around 10 mK,

and a total rate of about 1.5 × 10−14 cm3s−1, namely about 4 times larger than ours.

This latter issue may be due to the statistical factor of 1/4 for populating the singlet

state in the entrance channel, which is not mentioned in Ref.[13].

5. Discussion and prospects

We have computed in a consistent way the electronic structure of a series of molecular

ions involved in ongoing hybrid experiment merging cold ion and cold atom traps, as

well as their radiative emission rate leading either to the formation of cold molecular

ions, or to charge exchange. For the first time, molecular ions involving Yb+ or Yb have

been modeled using effective large-core potentials completed with a core polarization

potential, in the framework of a full configuration interaction approach. Such a simple

description provide results for the electronic structure which are generally in good

agreement with other determinations, when available. Results for radiative emission

rate are computed for the first time for the ionic species RbSr+ mixing an ion and an

atom of close mass. The consistent calculation of rates for a series of molecular ions

allows us to infer a uniform quality and accuracy over the entire series, which is of great

help for comparison with experimental results, as discussed below.

In the experiments quoted in the introduction, the rate measurements are based on

the observation of the decreasing of the number of trapped laser-cooled ions with time,

due to all possible processes. In some cases, a careful analysis of the data allows for

extracting a rate for a particular process. Before discussing the comparison with the
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published experimental results, it is first worthwhile to check the consistency among all

theoretical studies focusing on the radiative processes (RA and RCT) occurring during

the collision between two ground state particles.

The dashed lines in Fig. 7 indicates the average level of the calculated total radiative

rates (RA + RCT), yielding 3.1×10−14 cm3/s, 1.9×10−14 cm3/s, 1.2×10−14 cm3/s,

3.1×10−14 cm3/s, and 0.31×10−14 cm3/s, for RbCa+, RbSr+, RbBa+, RbYb+, and

LiYb+, respectively. The remarkably close values of these rates along the species is

well understood from the similarities of their electronic structure invoked earlier, while

their differences play only a minor role. This is exemplified by the results from Refs.

[67, 74] of 2.9×10−14 cm3/s for the RA + RCT rate in RbYb+, where the large difference

of the A potential well compared to the present one only slightly influences the final

rate, as the main contribution is controlled by the inner classical turning point of the

PEC. The magnitude of the present rates is also consistent with the smaller theoretical

rate of 1.5×10−15 cm3/s computed for the same processes in Ca-Yb+ mixture [39], as

the energy difference δRt
X−A between the inner classical turning point of the A2Σ+

potential curve in the entrance channel, and the outer classical turning point of the

X2Σ+ potential curve in the exit channel is smaller (about 9000 cm−1) than in the

present series of species. Similarly, Makarov et al. modeled the same processes in

Na-Ca+, and obtained a total rate of 2.3×10−16 cm3/s which reflects the relatively

small difference δRt
X−A ≈ 10700 cm−1 (similar to the situation of RbBa+ and LiYb+),

combined with a significantly smaller TEDM of about 0.6 a.u. compared to the present

cases.

As visible from Fig. 1a the case of RbCa+ is peculiar, due to the presence of the

b3Π state dissociating to the Rb++Ca(4s4p 3P ) limit which is energetically open to the

entrance channel. Tacconi et al. [38] modeled the non-adiabatic coupling related to the

spin-orbit interaction between the b3Π state and the A1Σ+ state, thus inducing non-

radiative charge transfer (NRCT) which is predicted to dominate the dynamics of the

charge exchange process. We note that this process cannot lead to subsequent radiative

formation of molecular ions due to spin selection rule. In a further work [73], the NRCT

cross sections are found to approximately vary as expected by the Langevin model as

ε
−1/2
i , and to exhibit shape resonances of the same kind than those expected in the RA

and RCT cross sections, due to the centrifugal barrier in the entrance channel. Over the

present energy range, the NRCT cross section, is evaluated to be about 200 times larger

than the total radiative cross section [18]. Around 2 K the NRCT rate is found of the

same order of magnitude (3.5×10−12 cm3/s) than the experimental rate, conservatively

estimated of the order of 2 to 3×10−12 cm3/s [18, 19]. The hypothesis for NRCT has

been also invoked in the Ca-Yb+ system, with a rate evaluated to a few 10−14 cm3/s

[21].

As for the Rb-Yb+ system, the experimental rates measured in Ref. [23] are

3±1 × 10−14 cm3/s and 4.5±1.5 × 10−14 cm3/s, corresponding to the 172Yb+ and the
174Yb+ isotope, respectively, and when Rb is prepared in the (F = 2,MF = 2) hyperfine

level (F being the total angular momentum including nuclear spin and MF its projection
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on the magnetic field axis used for the preparation). The present computed rate as well

as those of Refs. [67, 74] are thus in remarkable agreement within the error bars with the

experimental results. It is noteworthy to quote that the same experimental group later

discovered a huge effect of the initial preparation of the Rb atoms in a given hyperfine

level, with a rate 35 times larger than the above one when Rb is in the (F = 1,MF = 1)

hyperfine level [26]. This effect cannot be retrieved at the present level of the theoretical

model which do not include the still unexplored dynamics of the numerous hyperfine

channels. Moreover the present agreement between experiment and theory suggests that

our computed values for LiYb+ rates are correct as well.

The situation for the Rb-Ba+ system is somewhat intermediate in comparison with

the two previous cases above. Indeed, there is no possibility for NRCT, and only an

upper bound of 5×10−13 cm3/s is given for the experimental rate in Ref. [20], compatible

with the present calculation but suggesting that it is at most 40 times larger than the

calculated one. In another experiment with Rb atoms prepared in the (F = 1,MF = −1)

state in an almost Bose-condensed sample, Schmid et al. [27] estimated an inelastic

cross section presumably due to radiative processes between ground state particles in

the range of 10−15 cm2 to 10−14 cm2 at about 30 mK, corresponding to rate 3 to 30

times larger than the calculated one.

To be complete with such comparisons with experimental results, it is worthwhile

to mention the exceptional case of Ca-Yb+ – not interpreted yet – where a considerable

rate for inelastic collision between ground state particles of ≈ 2 × 10−10 cm3/s, i.e. of

the same order of magnitude than quasi-resonant charge transfer reaction between an

atom and an ion of the same species but different isotopes (Grier et al. [17] measured

a rate of ≈ 6× 10−10 cm3/s in Yb-Yb+; see also Refs. [1, 34]).

Last but not least, beside this quite contrasted situation for the comparison between

experimental rate for inelastic collisions and calculated rates for radiative processes,

there is another puzzling and not yet understood feature in this kind of experiments:

while the theoretical models all consistently predict that RA should dominate RCT,

molecular ions are directly observed by mass spectrometry only in the experiments of

Hall et al. on Rb-Ca+ [18, 19] and Rb-Ba+ [20]. An indirect detection of CaYb+ has

been also reported in Ref. [21]. This statement strongly suggests that the dynamic

in such merged cold atom-cold ion traps is much more complicated than anticipated.

Several elements may have a significant impact on the interpretation of the experimental

results:

• The laser light used for cooling and trapping atoms and ions is recognized to have

a strong influence on the measured rates, as inelastic processes with excited species

may be very large (see for instance Refs. [18, 19, 20, 22]). Furthermore, such –quite

intense– light could prevent the produced molecular ions to be detected before

being photodissociated. On the theoretical side, such light-assisted processes may

be tedious to describe accurately, as much more collision channels are open due to

the presence of numerous excited electronic states (see for instance Ref. [18]) which

are more sensitive to the quality of quantum chemistry calculations.
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• The quoted experiment are achieved with various conditions of atomic densities: Rb

atoms are either trapped in MOT with a quite low density of a few 109atoms/cm3,

or in almost Bose-condensed gases with density up to 1012atoms/cm3. Therefore

collisions between surrounding Rb atoms and the formed molecular ions could well

occur, and they are strongly exoergic for all systems studied here (see Table 3),

assuming that there is no activation potential barrier in the triatomic collisional

complex which would prevent the reaction to occur. One product would be Rb+
2

ions which are indeed observed in the Rb-Ca+ experiment of Refs. [18, 19], and

presumably present in the Rb-Ba+ experiment of Ref. [20]. Note that the energy

of a Rb+ - Rb(Alke) complex at zero collisional energy is higher than the one

of a Rb -Rb(Alke)+ complex (with respect to their common dissociation limit

(Rb++Rb+Ca)) due to the weak binding energy De of the Rb(Alke) molecule

compared to the one of the related Rb(Alke)+ molecule. Therefore charge exchange

reactions between a Rb(Alke)+ ion and a Rb atom is energetically forbidden.

• At high atomic density, three-body collisions could well occur, as it has been recently

probed [30, 77]. Such processes may contribute to the formation of molecular

ions, as well as to their destruction if they are radiatively created. Experiments of

Ref. [27] on Rb-Ba+ and of Ref. [23] on Rb-Yb+ both use an almost Bose-condensed

atomic sample and have not observed yet any molecular ions.

To summarize, the present work focused on the cold inelastic collisions inducing

radiative decay between ground state Rb or Li atoms and a series of ground state

ionic species (Ca+, Sr+, Ba+, Yb+). The consistent treatment of these series of pairs

with the same quantum chemistry approach and the same dynamical model allows for

general conclusions about the magnitude of the rate constants, and the efficiency of the

formation of cold molecular ions. Dynamical results for RbSr+ are published here for the

first time, as well as the modeling of a heavy diatomic compound containing Yb with a

large core ECP. These results could stimulate future joint experimental and theoretical

investigations. For instance, the detection of a couple of shape resonances in one of these

systems would put strong constraints on its electronic structure. Photodissociation

experiments of the produced molecular ions such like those performed on MgH+

[78] could also provide more insight on their spectroscopy, and on their vibrational

distribution (see for instance Ref. [79]).

The exploration of a family of such systems like in the present work where a Rb

atom interacts with an ion of a given class allows for varying – discontinuously – a

characteristic parameter of the system, its reduced mass, revealing then the changes in

the dynamics while the nature of the interactions are similar over the entire series. The

same study is already achievable on the series of (Alk)-Sr+ (with (Alk) = Li, Na, K,

Rb, Cs) species that we previously studied [45]. Based on the arguments developed in

the present work, we can already draw some conclusions for this family:

• the LiSr+ will not be favorable for the formation of deeply-bound molecular ion.

Indeed, despite a noticeable TEDM of about 2a.u., the A PEC of the entrance
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channel – which is almost repulsive – has an inner turning point which coincides in

position with the outer turning point of the uppermost vibrational levels of the X

PEC. Moreover, the energy difference δRt
X−A is quite small, lower than 3000 cm−1.

• the RbSr+ has been explicitly treated here, and the NaSr+ and KSr+ species

smoothly progress toward the RbSr+ with increasing δRt
X−A concerning deeper

vibrational levels

• the CsSr+ case is specific: due to the large spin-orbit in Sr(5s5p 3P ), the entrance

channel Cs(6s) + Sr+(5s) is located at an energy of about 20 cm−1 and 200 cm−1

above the Cs+ + Sr(5s5p 3P1) and the Cs+ + Sr(5s5p 3P0) dissociation limits,

respectively. Therefore, just like in the Rb-Ca+ combination, NRCT should

dominate the dynamics of this system.

Note finally that the electronic ground state of species like LiBa+ and LiCa+

dissociates into Li+Ba+ and Li+Ca+ respectively, so that in the context of hybrid

trap experiments invoked here, the entrance channel is the lowest one and no loss is

expected due to radiative processes. A central goal remains to progress towards lower

temperature in order to approach the quantum s-wave collisional regime, which will

be of crucial importance for the understanding and the control of such collisions which

clearly departs from the semiclassical Langevin model, and for improving theoretical

models.

Table 3. Energies (in cm−1) of the quoted atom-molecule complexes in their ground

state with respect to an origin of energy taken when all three atomic fragments (one

(Alk) atom, one (Alk)+ ion, one (Alke) atom) are at infinity. Therefore the reported

quantities corresponds to the well-depths of the relevant molecular ions (from the

present work) or neutrals in their electronic ground state. The Rb+
2 well depth is

taken from Ref. [80], and the Li+2 (experimental) one from Ref. [81].

Origin System Energy System Energy System Energy

Rb+Rb+ + Ca Rb + RbCa+ -3851 Ca + Rb+
2 -5816 Rb+ + RbCa -1046 [82]

Rb+Rb+ + Sr Rb + RbSr+ -4266 Sr + Rb+
2 -5816 Rb+ + RbSr -1073 [61, 83]

Rb+Rb+ + Ba Rb + RbBa+ -5292 Ba + Rb+
2 -5816 Rb+ + RbBa -1471 [84]

Rb+Rb+ + Yb Rb + RbYb+ -3435 Yb + Rb+
2 -5816 Rb+ + RbYb -656 [85]

Li+Li+ + Yb Li + LiYb+ -9383 Yb + Li+2 -10464 Li+ + LiYb -1594 [86]
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Figure 1. Potential energy curves of (a) the A1Σ+ state, and (b) of the X1Σ+ state,

for the [(Alk)-(Alke)]+ molecules, with (Alk)=Li or Rb (n′ = 2, 5), and (Alke) = Ca,

Sr, Ba, and Yb (n =4, 5, 6, 6). The origin of energies is taken at the dissociation

of the A1Σ+ PEC for all systems. The lowest 3Π PEC of Rb-Ca+ is also displayed

for completeness. (c) Transition electric dipole moments between the X and A states.

Open circles: Ref. [74]. The vertical dotted lines tag the inner turning points of

the incoming continuum wave function – in the entrance channel – with the respective

points in the exit channel and the transition dipole moment magnitude at that position.
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Figure 2. (a) Centrifugal barrier for J = 35 in the A1Σ+ potential energy curve of

RbSr+ (dashed line), with radial wave functions vertically placed at the appropriate

collision energies, namely 0.08, 0.015, and 0.1 cm−1 to illustrate the various tunneling

regimes. (b) Partial cross sections as a function of the collision energy (in mK) at

11 given values of rotational quantum numbers (J ′ = 29 to 39). Shape resonances

gradually evolve with increasing J .
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