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We consider the dynamics and the cyclization kinetics of Gaussian semiflexible chains, in which the interaction
potential tends to align successive bonds. We provide asymptotic expressions for the cyclization time, for the
eigenvalues and eigenfunctions, and for the mean square displacement at all time and length scales, with explicit
dependence on the capture radius, on the positions of the reactive monomers in the chain, and on the finite number
of beads. For the cyclization kinetics, we take into account non-Markovian effects by calculating the distribution
of reactive conformations of the polymer, which are not taken into account in the classical Wilemski-Fixman
theory. Comparison with numerical simulations confirms the accuracy of this non-Markovian theory.
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I. INTRODUCTION

The theoretical description of reactions involving polymer
chains has attracted growing interest over the last few years.
A prototypical example is given by cylization reactions,
which are ubiquitous in chemistry and biochemistry: examples
range from the formation of RNA hairpins [1–4], the folding
of polypeptide chains [5–7], to the formation of loops in
DNA strands, which play a role for the regulation of gene
expression [8] and were proposed to be used as a tool to
measure polymer mechanical properties [9,10]. However, even
in the simplest example of the Rouse chain, the theoretical
determination of the mean reaction time is a nontrivial
problem due to the multiple time scales involved in the
polymer dynamics [11]. An important step has been provided
by the Wilemski-Fixman approach [12,13], which, however,
implicitly relies on an effective Markovian description of
the dynamics of the reactive monomers. Recently several
extensions have been proposed [14–19], and in particular it was
shown that memory effects, neglected so far in the available
Markovian approaches, could be quantitatively important [19–
21]. We recall that so far these analytical descriptions were
essentially restricted to flexible chains, i.e., polymers for which
the bending stiffness was neglected.

Semiflexible polymers are characterized by a finite bending
stiffness, which implies the existence of an additional length
scale in the problem, namely, the persistence length. Semiflex-
ible polymers behave as flexible polymers when their length
is much longer than the persistence length and are similar
to rigid rods at smaller length scales. They are ubiquitous
and play an essential role in biology: a number of biological
polymers, such as the components of the cytoskeleton (actin
and microtubules), or nucleic acid DNA and RNA chains
are often modeled as wormlike chains [22–24]. A number of
studies have characterized very well the equilibrium properties
of semiflexible polymers, such as the distribution of the end-
to-end vector, or the equilibrium contact probability between
two monomers of the same chain, called the cyclization
factor [8,22,25]. The dynamic properties of semiflexible
chains [22,26,27], and their impact on the cyclization kinetics,
are far less understood than their equilibrium properties, in part
because of the multiple length scales present in the problem.

One existing analytical approach to the calculation of the
cyclization time consists in considering a simplified dynamics
involving only one degree of freedom [28,29]. Interestingly,
recent Brownian dynamics simulations [30] indicate that this
approach fails to predict the cyclization time, leading to the
conclusion that the collective dynamics of all the monomers
have a significant impact on the reaction time.

In this paper, we focus on the impact of the collective
dynamics of the monomers on the cyclization kinetics in
the framework of a Gaussian model [31,32] of semiflexible
polymer dynamics that takes into account all time scales (see
Fig. 1). This Gaussian model is a simplified version of the
wormlike chain model, where the inextensibility constraint is
satisfied only on average. This arbitrary assumption is ques-
tionable, but this model predicts almost exact asymptotic forms
for a number of quantities such as the intrinsinc viscosity and
the relaxation times [31], which justifies the use of this model
as a first step to understand cyclization in semiflexible chains.
Earlier studies of cyclization kinetics using this model have
dealt with simplified geometries [33,34], or with numerical
integration of the Wilemski-Fixman equations [35,36]. In this
context, the first goal of the present work is to identify all
the regimes of cyclization kinetics that are present in this
model, in order to understand the impact of the position of
the reactive monomers, the capture radius, or the polymer
length. As mentioned above, the fact that the motion of the
end-to-end vector displays memory is another aspect that is
neglected in existing theoretical approaches [28,29,33–36].
Our second goal in this paper will be to explicitly characterize
the non-Markovian effects in all the regimes by using the
method introduced in Refs. [19,21]. Memory effects will be
found to be quantitatively important in the regime controlled
by the small length scales bending fluctuations of the chain.

The paper is organized as follows. In Sec. II, we introduce
the Gaussian model of semiflexible chains, first in the discrete
picture of beads linked by springs that tend to align with their
neighbors, and second in the associated continuous model,
more suitable for analytical calculations. Then, in Sec. III,
we derive explicitly all the asymptotic regimes present in the
model. In Sec. IV, we then identify all the regimes of the
cyclization time, first in the Wilemski-Fixman approximation
(Sec. IV A), where one implicitly neglects the presence of
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FIG. 1. (Color online) In this paper we calculate the mean first
cyclization time 〈T〉, defined as the mean first time that two given
monomers of a Gaussian semiflexible chain, here represented at the
chain ends, reach a relative distance smaller than a capture radius a.

memory in the motion of the relative vector between the
reactive monomers. In Sec. IV B, we identify the magnitude
of the memory effects in all the different regimes. Finally,
in Sec. IV C we report the results of numerical simulations,
which confirm the accuracy of our approach. We discuss our
results and the hypotheses made in the conclusion.

II. DISCRETE AND CONTINUOUS GAUSSIAN MODELS
OF SEMIFLEXIBLE CHAINS

A. Discrete model

We first introduce the discrete model of Gaussian semi-
flexible chains. The chain is represented by N beads moving
in a three-dimensional space. We call ri(t) (1 � i � N ) the
position of the center of the ith bead at time t , where
quantities in bold represent three-dimensional vectors. Two
successive beads are linked by a bond di = ri+1 − ri (1 �
i � N − 1). We consider the dynamic model introduced
by Bixon and Zwanzig [31], which satisfies the following
requirements: (i) the mean square length of each bond at
equilibrium is 〈d2

i 〉eq = b2, (ii) the correlations between differ-
ent bonds at equilibrium follow the freely rotating conditions,
〈di .di+p〉eq = gpb2 for any integer p, where g is a dimension-
less stiffness parameter satisfying 0 � g < 1, and (iii) the po-
tential is quadratic. These conditions lead to the potential [31]

V ({di}) = 3kBT

2b2(1 − g2)

[ N−1∑
i=1

(1 + g2)d2
i

− g2
(
d2

1 + d2
N−1

) − 2g

N−2∑
i=1

di .di+1

]
. (1)

In this expression, the terms −gdi .di+1 indicate an energy
penalty when two successive bonds are not aligned. When
g = 0, one recovers the Rouse model [37] of flexible chains,
whereas for g → 1 the polymer becomes much stiffer. In
Eq. (1), the particular terms for the first and last bonds are
important to ensure that the constraint 〈d2

i 〉 = b2 is satisfied
everywhere along the chain. To derive the equations of motion,
we assume that each bead experiences a friction force −ζ∂tri ,
a stochastic force fi(t) due to the solvent temperature, and the
forces Fi = −∂ri

V that are derived from the potential (1) and
come from the interactions between neighboring beads in the
chain. Then the equations of motion of the chain are given in
Langevin form by

∂tri = −ζ−1∇iV + fi(t), (2)

where ∇i = ∂/∂ri and the forces fi(t) are uncorrelated white
noise sources, whose amplitudes obey 〈fi,α(t)fj,β(t ′)〉 =
2kBT ζ−1δ(t − t ′)δαβδij , where α and β represent the spatial
coordinates x,y,z. Note that the hydrodynamic interactions
are not taken into account in Eq. (2), and that the stochastic
process {ri(t)} is Gaussian, since the forces Fi = −∂ri

V are
linear functions of the bead positions.

B. Continuous model

In order to perform analytical calculations, it is useful to
introduce the continuous form of the model. We introduce
the polymer contour length L = Nb, its persistence length
Lp = b/(1 − g), and the friction coefficient per unit length,
γ = ζ/b, which has the dimension of a viscosity. We call
� = L/Lp the ratio of the contour length over the persistence
length: � � 1 corresponds to a stiff polymer, whereas for �� 1
the polymer is flexible and is much longer than its persistence
length. We also introduce si , the position in the chain of the ith
monomer, defined by si = [(i − 1/2)b − L/2], with −L/2 �
si � L/2. The continuous model is obtained by taking the limit
N → ∞ while the parameters Lp,L and γ remain constant,
which implies that b → 0 and g → 1. The continuous form
of the Langevin equation (2) has been determined by Harnau
et al. [32] and reads

∂tr(s,t) = τ−1
c L2

p

(−L2
p∂4

s + ∂2
s

)
r(s,t) + f(t,s), (3)

〈fα(s,t)fβ(s ′,t ′)〉 = 2kBT γ −1δ(t − t ′)δ(s − s ′)δαβ, (4)

where we have defined the characteristic time τc:

τc = 2γL3
p

3kBT
. (5)

The time τc is of the order of the rotational relaxation time
of a polymer of length Lp. The fourth derivative ∂4

s r in
Eq. (3) accounts for the bending rigidity, while the term ∂2

s r
accounts for the polymer entropic stiffness. The equation of
motion (3) must also be supplemented with a set of boundary
conditions [32] that directly arise from the presence of the
particular terms for the first and last bonds in the potential (1):

(
Lp∂2

s − ∂s

)
r(s,t)|s=−L/2 = 0,(

Lp∂2
s + ∂s

)
r(s,t)|s=L/2 = 0,

(6)(
L2

p∂3
s − ∂s

)
r(s,t)|s=−L/2 = 0,(

L2
p∂3

s − ∂s

)
r(s,t)|s=L/2 = 0.

The equations of motion (3) with the boundary conditions (6)
ensure that the inextensibility constraint 〈(∂sr)2〉 = 1 is sat-
isfied on average, and that the equilibrium average square
distance between two monomers on the chain have the same
value as for the wormlike chain model [38].
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III. DYNAMICS OF THE RELATIVE DISTANCE
BETWEEN TWO MONOMERS

A. Eigenvalue expansion

We introduce the vector joining two monomers at positions
s1 and s2 along the chain

R(t) = r(s1,t) − r(s2,t). (7)

In this section, we focus on the description of the dynamics of
the vector R(t) in various limiting cases, in order to identify all
the dynamical regimes present in the model. The variable R(t)
will be conveniently expressed in terms of normal modes. We
introduce the eigenfunctions gq(s) and eigenvalues λq (with
λ0 = 0 < λ1 < λ2 < · · · ), that satisfy

−L4
p ∂4

s gq(s) + L2
p ∂2

s gq(s) = −λqτc gq(s), (8)

with gq(s) satisfying the boundary conditions (6) and the
normalization condition∫ L/2

−L/2
ds gq(s)2 = 1. (9)

Then the dynamics of the chain can then be decomposed as

r(s,t) =
∞∑

q=0

aq(t)gq(s), (10)

where the normal mode amplitudes aq(t) are independent of
each other and satisfy the Langevin equation:

∂taq(t) = −λqaq(t) + f̃q(t), (11)

〈f̃qα(t)f̃q ′β(t ′)〉 = 2kBT γ −1δ(t − t ′)δqq ′δαβ. (12)

The vector joining the two reactive monomers can also be
written as a linear combination of eigenmodes:

R(t) =
∑
q�1

bq(s1,s2) aq(t), (13)

where the coefficients bq(s1,s2) are simply deduced from the
values of the eigenfunctions at positions s1 and s2:

bq(s1,s2) = gq(s1) − gq(s2). (14)

From Eq. (11), it is straightforward to calculate the correlation
between the eigenmodes:

〈aq(t).aq ′ (0)〉 = δqq ′
3kBT

γ λq

e−λq t . (15)

Using Eqs (13) and (15), we deduce the value of the normalized
autocorrelation function φ(t) of the vector R(t):

φ(t) ≡ 〈R(t)R(0)〉
R2

eq

= 3kBT

γR2
eq

∑
q�1

b2
q

λq

e−λq t , (16)

where R2
eq = 〈R2〉 in our Gaussian model has the same

expression as in the wormlike chain model [38]:

R2
eq = 2

[|s1 − s2|Lp − L2
p(1 − e−|s1−s2|/Lp )

]
. (17)

The autocorrelation function φ(t) is normalized such that
φ(0) = 1 and has the following meaning: if at time t = 0 the
vector R is observed to have a value R0, then at later times t

its value is on average 〈R(t)〉 = R0φ(t). We also define ψ(t),
as the variance of each coordinate of R at t , given that R(0)
has some well-defined initial value R0, and that the rest of the
chain is initially at equilibrium:

ψ(t) = 〈[R(t) − φ(t)R0]2〉/3. (18)

Taking into account the definition (16) of φ(t), we obtain

ψ(t) = R2
eq[1 − φ(t)2]/3. (19)

The functions ψ(t) and φ(t) encode the dynamics of the vector
R(t) at all time scales, and their asymptotics in various limiting
cases will be described in the next section.

B. Large eigenvalues and short time behavior of the mean
square displacement function

Here we identify the asymptotic behavior of eigenfunctions
g(s) associated with large eigenvalues λ → ∞. These eigen-
functions vary rapidly with the position s, and we therefore
define a rescaled position variable, u = s(αλq)β with β an
exponent and α a scaling factor that will be determined below.
We write g(s) = g̃(u), which we insert into the definition (8)
of the eigenfunctions, where we keep only the leading order
terms when λ → ∞:

L4
p(αλ)4β∂4

ug̃(u) = (τcλ)g̃(u). (20)

From this equation, we see that the expansion is consistent for
λ → ∞ if we set the exponent β = 1/4, and the scaling factor
α = τc/L

4
p. The equation for g̃(u) is simply (∂4

u − 1)g̃(u) =
0, whose solutions can be separated into odd and even
eigenfunctions. The even eigenfunctions take the form

g̃(u) = A cos(u) + B cosh(u). (21)

The boundary conditions (6) are also simplified for large λ: we
obtain ∂3

ug̃ = ∂2
ug̃ = 0 at the positions u = ±L(τcλ)1/4/2Lp.

Inserting these boundary conditions into Eq. (21), we obtain

cos

[
L(τcλ)1/4

2Lp

]
sinh

[
L(τcλ)1/4

2Lp

]

+ sin

[
L(τcλ)1/4

2Lp

]
cosh

[
L(τcλ)1/4

2Lp

]
= 0. (22)

For large values of λ, the solutions of this equation are

L(λτc)1/4

2Lp

= −π

4
+ nπ, (23)

where n is a positive integer. Taking into account the boundary
conditions and the normalization condition (9), the expression
of the corresponding even eigenfunction is

g̃(u) 

√

2

L

[
cos(u) +

√
2 cosh(u)e− L(τcλ)1/4

2Lp

]
, (24)

where the cosh term is negligible everywhere except near the
boundaries. The odd eigenfunctions can be identified in the
same way, and we can gather the results by identifying
the asymptotic form taken by the large eigenvalues:

λq 
 (q − 1/2)4π4

τc �4
, (25)
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FIG. 2. (Color online) Eigenfunctions close from a boundary in
the bending regime, as a function of the variable u = π (2q −
1)(L/2 − s)/2L, together with the theoretical prediction (26). The
eigenvectors were obtained numerically from the discrete model with
N = 3000 beads.

while the associated normalized eigenfunctions read

gq(s) 

√

1

L

{√
2 cos

[
π

4
+ π (2q − 1)(L − 2s)

4L

]

+ e−π(2q−1) (L−2s)
4L + (−1)qe−π(2q−1) (L+2s)

4L

}
. (26)

In Fig. 2 we represent several eigenfunctions obtained nu-
merically, which all collapse to a single curve, as predicted
by Eq. (26), thereby proving that our expansion is correct.
The eigenfunctions in this regime are essentially cosine
functions, except for a correction near the boundaries, where
the exponential correction matters. Since our expansion is valid
when gq(s) varies more rapidly than the two other length scales
of the problem, Lp and L, its validity regime is q � 1 and
q � L/Lp. We note that (25) is identical to the expression
of the eigenvalues given in Ref. [32] in the “weakly bending
regime,” that is, in the limit of short chains, L/Lp → 0 (at
fixed q). This could be surprising since our expression (25)
is only true asymptotically, in the limit q → ∞. However, we
found that in the limit of small L, the expression (25) is already
an excellent approximation for the second eigenvalue, with an
error made of less than 1.5%, while the error for λ3 is only
0.04%. Our expansion makes it clear that the eigenfunctions
given by Eqs. (25) and (26) are valid for large q, be it for either
short (L � Lp) or long (L � Lp) chains, and characterize the
small-length scale-bending fluctuations in both cases.

The modes with large q characterize the small length scales
fluctuations and are associated to an anomalous behavior of
the mean square displacement function ψ(t), which can be
written from Eqs. (16) and (19) as

ψ(t) = kBT [1 + φ(t)]

γ

∑
q�1

b2
q(1 − e−λq t )

λq

. (27)

For small times, this series is dominated by the asymptotics
of the large eigenvalues (16). Remembering that φ(0) = 1, the

following expression is valid at leading order in t :

ψ(t) 
 4L4

3Lp

∞∑
q=qmin

b2
q(1 − e−q4π4t/τc�

4
)

π4q4
, (28)

where we have used Eq. (5), and where the sum starts at
qmin 
 max(�,1). In Eq. (28), the coefficient b2

q varies much
more rapidly with q than the other terms and can be replaced by
its value b2

q averaged over neighboring values of q, which can
be deduced by considering the definition (14) and the explicit
form of the eigenfunctions (26):

b2
q 
 βb

L
; βb =

⎧⎨
⎩

8 if s2 = L/2 = −s1,

5 if −L/2 < s1 < s2 = L/2
2 if −L/2 < s1 < s2 < L/2.

. (29)

Then the series (28) is well approximated by the following
integral, obtained by defining y = q(t/τc)1/4/�:

ψ(t) 
 4L2
pβb

3

(
t

τc

)3/4 ∫ ∞

0
dy

(1 − e−y4π4
)

π4y4
. (30)

This integral can be evaluated analytically:

ψ(t) 
 4�(1/4)βb

9π
L2

p

(
t

τc

)3/4

≡ κ t3/4, (31)

where �(.) is the Gamma function. This regime characterizes
the subdiffusion at small times scales due to the small length
scale bending fluctuations. Note that the effect of monomer
position is entirely taken into account through the coefficient
βb, and this formula predicts that the motion of the end
monomers is enhanced. Although the scaling t3/4 has been
identified in previous works (for circular chains in Ref. [33],
and averaged over the monomer positions in Ref. [39]), the
dependence of the prefactor κ with the monomer positions
has not been identified before. The same scaling holds for the
perpendicular displacements of the slightly bent inextensible
wormlike chains; see, e.g., Ref. [27].

C. Other dynamic regimes

Additionally to the subdiffusive regime (31) due to small-
scale bending fluctuations, other regimes emerge for ψ(t) in
the limit of short chains (� → 0) and long chains (� → ∞).
We describe these regimes now and summarize them in Fig. 3.

The asymptotics of the eigenvalues are well known in the
limit � → ∞ and � → 0 for a fixed value of q, that is, for
a fixed value of the length scale. In the limit of long chains
(or short persistence length Lp → 0), the eigenfunctions can
be readily identified by keeping the leading order terms in
Eq. (8), from which we get L2

p∂2
s g(s) = −λτcg(s), and the

boundary conditions (6) simplify into ∂sg = 0 for s = ±L/2.
Consequently, we readily obtain that the eigenfunctions are
those of the Rouse model,

λq = q2π2

τc �2
, gq(s) =

√
2

L
cos

[
qπ (L/2 − s)

L

]
. (32)
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FIG. 3. Summary of all the regimes for the mean square dis-
placement function ψ(t) described by Eqs. (31), (34), (37), and (36).
The dashed area region corresponds to a polymer with less than one
monomer and is meaningless. Scales are logarithmic, and numerical
coefficients are not written in this figure. np represents the number of
beads per persistence length in the discrete model, np = N/�.

We define the average of the coefficients b2
q over neighboring

values of q:

b2
q(s1,s2) = βe

L
; βe =

⎧⎨
⎩

4 (exterior-exterior)
3 (exterior-interior)
2 (interior-interior).

(33)

Inserting (32) and (33) into the the series (27) and transforming
the resulting series into an integral, we obtain the anomalous
diffusive behavior characteristics of long (Rouse) chains:

ψ(t) 
 4βeL
2
p

3
√

π

(
t

τc

)1/2

. (34)

In the opposite limit of short chains, � → 0, there is
essentially one eigenvalue which is much smaller than the
others, associated to the global rotational and extensional
degree of freedom of the chain. The first eigenvalue and the
corresponding eigenvector in this regime are given by [32]

λ1 = 24

τc�3
= 36kBT

γL3
, g1(s) = ±

√
12

L3/2
s. (35)

The time scale λ−1
1 
 L3 in this regime is of the order of

the rotational time of a rigid rod of length L. The other
eigenvalues are of order O(�−4) and their dynamics is much
faster than that of the first mode. The corresponding mean
square displacement function is

ψ(t) 
 |s1 − s2|2
3

[1 − e−48t/(τc�
3)]. (36)

In this regime, the monomers behave as if they were linked by
a single spring, as a result of a contractional degree of freedom
in this Gaussian model that has the same value as the rotational
relaxation time scales. This regime can be termed “unimodal
motion,” since only one mode contributes to the dynamics.

Finally, if the number of beads N in the chain is finite, as
in the discrete model, there is one regime for small time scales
where the monomers do not feel their neighbors and diffuse

freely, as can be seen by considering Eq. (2). In this regime,
the mean square displacement function reads

ψ(t) 
 4Dt (t → 0,fixed N ), (37)

where D = kBT /ζ is the diffusion coefficients of individual
monomers in the discrete model.

The different dynamical regimes, given by
Eqs. (31), (34), (37), and (36), are reported in Fig. 3,
where one can easily see the validity domain of each of these
expressions.

IV. MEAN CYCLIZATION TIME

A. Markovian approach

We now identify all the regimes of cyclization time in the
Gaussian semiflexible model: we determine the mean first
passage time, 〈T〉, that the vector R(t) joining the reactive
monomers reaches the reactive region: |R(t)| < a with a the
capture radius. We first make use of a Wilemski-Fixman (WF)
-type approach, which neglects memory effects. Let us assume
that initially the polymer is at equilibrium and that the capture
radius is initially so small that we can neglect the probability
to be inside the reactive region at t = 0. We call PS the
equilibrium probability density to observe R = 0. Let us call
f ({a},t) the probability density that the first passage to the
reactive region occurs at time t , with a polymer configuration
{a} = (a1,a2, . . .). By partitioning over the first passage events,
we write the renewal equation [40]

PS =
∫ t

0
dt ′

∫
d{a′}f (t ′,{a′})P (0,t − t ′|{a′},0). (38)

Taking the temporal Laplace transform and expanding for
small values of the Laplace variable leads to [19]

〈T〉PS =
∫ ∞

0
dt[P (0,t |π,0) − PS], (39)

where P (0,t |π,0) represents the probability to observe R = 0
at time t , given that at time 0 the distribution of poly-
mer conformations is π ({a}) ≡ ∫ ∞

0 dtf (t,{a}). As shown
in Refs. [11,19,21], in the Wilemski-Fixman approach, the
distribution of reactive conformations is approximated by an
equilibrium distribution of modes, with the constraint that
|R| = a. We remind that, if a chain at equilibrium at time
t = 0 is observed with a value R0 for the reactive vector,
then the average of R at t is R0φ(t) and the variance of
each coordinate is ψ(t). Hence, in the Wilemski-Fixman
approximation, Eq. (39) becomes

〈T〉WFPS =
∫ ∞

0
dt

{
e−a2φ(t)2/2ψ(t)

[2πψ(t)]3/2
− PS

}
, (40)

as shown for example in Ref. [20]. In Eq. (40), the quantity
PS is the equilibrium contact probability density of the two
reactive monomers, that is, the probability density that R = 0,
given by PS = [3/2πR2

eq]3/2. Note that the Wilemski-Fixman
approach takes into account the dynamics at all time scales
through the dynamical functions φ(t) and ψ(t) and can be
reasonably used to identify the asymptotics of the mean
reaction time in limiting regimes. However, this approach is
Markovian and neglects memory effects, which can lead to
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quantitative overestimates of the reaction time [19,20], as we
will show in Sec. IV B.

Let us focus on the limit of small reactive radius (a → 0).
In this limit, the integral in Eq. (40) is controlled by the short
time behavior ψ ∼ κt3/4, so that

〈T〉WFPS 

∫ ∞

0
dt

1

[2πκt3/4]3/2
e−a2/(2κt3/4). (41)

An analytical evaluation of this formula gives

〈T〉WF 
 37/6
√

2π4/3�(7/6)

�(1/4)4/3
× R3

eqτc

β4/3a1/3L
8/3
p

. (42)

In this regime a → 0, the mean reaction time is controlled
by the small-length scale bending fluctuations, which leads
to novel scalings with a and Lp. The effect of the relative
positions of the monomers is taken into account through
Req and βb. This expression shows that the reaction will
be 6.3 times faster for the two extremal monomers than
for two monomers in the bulk of the chain (assuming an
identical curvilinear distance between reactive monomers).
This increase of the reaction rate for extremal monomers is
due to the fact that fluctuations are more important at these
ends. The similar scaling 〈T〉 ∼ a−1/3 was already derived by
Berg [34] in the case of a monomer of a circular semiflexible
chain reacting with an external target. The exponent −1/3 can
be understood by considering that the problem is equivalent to
the search of a target of size a in an effective volume P −1

S , the
walker having a walk dimension [defined by ψ(t) = t2/dw ],
dw = 8/3. In this case, the fact that dw is smaller than the
spatial dimension (d = 3) implies that the search time is
controlled by the target size [41,42] and that 〈T〉 ∼ adw−d ,
consistent with the result in Eq. (42).

Depending on the respective values of a and L, other
regimes emerge, as summarized in Fig. 4. For long chains
� → ∞, the mean cyclization time scales as

〈T〉WF ∼ τc�
2, (43)

as in the case of a continuous flexible chain. For short chains
� � 1, the dynamics is controlled by the first mode only, so
that it is equivalent to a single spring. As a consequence, the

FIG. 4. Summary of the regimes of end-to-end cyclization de-
scribed by Eqs. (42), (43), (45), and (46).

mean cyclization time reads

〈T〉WF 
 P −1
S

∫ ∞

0
dt

e−a2τc�
3/(32|s1−s2|2t)

[32π |s1 − s2|2t/(τc�3)]3/2
. (44)

This expression can be simplified:

〈T〉WF 

√

π

6

L3 γ |s1 − s2|
36 a kBT

. (45)

This formula is due to the extensible nature of the polymer
in the Gaussian model, implying that stretching is favored
compared to bending to make a contact between the two ends.
The 1/a dependence of 〈T〉 is characteristic of diffusive search
in a three-dimensional space.

Finally, in the discrete model where np = N/� denotes the
number of monomers per persistence length, the continuous
description becomes irrelevant for a < Lp/n

3/2
p , and the

kinetics is controlled by finite size effects independent of
bending. In this regime, the mean cyclization time is controlled
by the microscopic diffusion coefficient D of individual
monomers at short time scales,

〈T〉WF 
 P −1
S

∫ ∞

0
dt

e−a2/(8Dt)

[8πDt]3/2
= π1/2R3

eq

6
√

6 aD
(46)

and scales as 〈T〉 
 R3
eq/Da. Again, the 1/a dependence of

〈T〉 is linked to the fact that the motion is purely diffusive
at this scale. In this regime, the reactive monomers behave
as independent Brownian walkers moving in a space of
effective volume P −1

S , leading to Eq. (46), which is exactly
the same as in the case of discrete Rouse polymers in the limit
a → 0 [11,17,19,20].

We illustrate the dependence of the mean reaction time with
the contour length in the continuous regime in Fig. 5, where it
is observed that, for small values of a, the mean reaction time is

FIG. 5. (Color online) End-to-end cyclization time of continuous
semiflexible chains in the Wilemski-Fixman approximation for three
different values of a/Lp . Curves are obtained from the analysis of
the discrete model; the number of beads is always chosen so that
the continuous regime is reached (for practical reasons, we require
that N = np� � 3000, which prevents us to explore the regime of
long polymers with small capture radius). Curves corresponding to
asymptotic regimes are also shown [“unimodal” regime: Eq. (45),
“bending” regime: Eq. (42), “Rouse” regime Eq. (43)].
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first given by the stiff regime formula for small polymer length,
then passes through the bending regime for intermediate values
of �, and then becomes asymptotically equal to its value in the
Rouse regime. It should be noted that, the smaller the capture
radius, the larger the contour length must be to observe the
Rouse regime. For example, for a = 0.002Lp, the cyclization
time is comparable to its value in the Rouse regime only if the
contour length exceeds a few hundreds of persistence lengths.

B. Mean cyclization time: Non-Markovian effects
in the bending regime

Up to now, we have considered the results of the Wilemski-
Fixman theory, whose main assumption is that the distribution
of reactive conformations is an equilibrium distribution.
The non-Markovian effects in the Rouse regime have been
investigated in detail in previous works [19,20], where they
lead to a quantitative decrease of the reaction time for long
chains by a factor of 20%–50% according to the value of the
capture radius. They have also been found to be negligible in
the finite size regime, because in this regime only the short
time diffusive behavior of R(t) matters, which is Markovian.
We also expect that non-Markovian effects are negligible in
the stiff limit, where there is only one relaxation time and
the problem becomes Markovian. Therefore, we focus here
only on the characterization of the non-Markovian effects in
the bending regime, a → 0 and � finite. We make use of a
theory that was proposed recently [19,20], in which the main
assumption is that the distribution of reactive conformations
is a multivariate Gaussian distribution, whose moments are to
be determined by solving a set of self-consistent equations.

More precisely, we define the direction of reaction as
being the spatial orientation û of the vector R at the instant
of reaction. We assume that, at the instant of first contact,
the modes aq have an average value mπ

q in the direction û,
and that their average is 0 in the two other perpendicular
directions. For simplicity, we also assume that the covariance
matrix of the modes aq is given by its equilibrium value.
The values of the modes mπ

q are defined by a set of self-
consistent equations, obtained by multiplying Eq. (39) by
aπ

q δ(R − ∑
q bqaq) and integrating over all conformations.

The result of this calculation is [20]
∫ ∞

0
dt

e−Rπ (t)2/2ψ(t)

ψ(t)5/2

{
μπ,0

q Rπ (t)

3
+ bqφ(t)[φ(t) − e−λq t ]

λq

}

= 0, (47)

where μπ,0
q and Rπ (t) read

μπ,0
q = mπ

q e−λq t − Rπ (t)bq[1 − φ(t)e−λq t ]

λqψ(t)
, (48)

Rπ (t) = a −
∑
q�1

bqm
π
q (1 − e−λq t ). (49)

The quantity Rπ (t) represents physically the average position
of the vector R at a time t after the first passage, in the direction
û [20]. Equations (47) and (48) are exactly Eqs. (30) and (31)
of Ref. [20], in which the terms containing the functions “Z”
and “G” (in the notations of Ref. [20]) have been omitted,
which is justified in the limit a � Req.

In the non-Markovian theory, the mean reaction time can be
calculated by integrating Eq. (39) over all configurations {a}
satisfying

∑
q bqaq = R and can therefore be written as [20]

〈T〉PS =
∫ ∞

0
dt

{
e−[Rπ (t)]2/2ψ(t)

[2πψ(t)]3/2
− PS

}
. (50)

This expression is similar to the corresponding expression in
the Wilemski-Fixman approximation (40), but now involves
the reactive trajectory Rπ (t). We note that the multiplication
of Eq. (47) by bqe

−λqτ for some positive τ leads to a single
equation for the reactive trajectory:

∫ ∞

0
dt

{
Rπ (t)Rπ (t + τ ) − Rπ (t)2R2

eq[φ(τ ) − φ(t)φ(t + τ )]

3ψ(t)

+φ(t)R2
eq[φ(t)φ(τ ) − φ(t + τ )]

}
e
− [Rπ (t)]2

2ψ(t)

ψ(t)5/2
= 0, (51)

which must be satisfied for all τ > 0 with the boundary condi-
tion Rπ (0) = a. Hence, the variables mπ

q have been eliminated.
We are now going to analyze this equation for a → 0, in order
to estimate the magnitude of the non-Markovian effects in the
bending regime. We introduce the characteristic time scale
in the bending regime t∗ = a8/3/κ4/3, where κ was defined
in (31), and we set t̃ = t/t∗, and τ̃ = τ/t∗. Introducing the
scaling function h defined by

Rπ (t) = a h(t/t∗), t∗ = a8/3/κ4/3, (52)

Eq. (51) leads to lowest order in a → 0 to∫ ∞

0

dt̃

t̃15/8
e−h(t̃)2/2t̃3/4

{
h(t̃)[h(t̃ + τ̃ ) − h(t̃)]

+ 3

2

[
(t̃ + τ̃ )

3
4 − t̃

3
4 − τ̃

3
4
][

1 − h(t̃)2

3 t̃
3
4

]}
= 0. (53)

This equation fully determines h(t̃) and was solved numeri-
cally. The result is represented in Fig. 6, which shows that
Rπ (t) sharply increases at short times (as compared to the
time scale t∗) before saturating to a plateau [the analysis of
the properties of Eq. (53) shows that the behavior of h(t) for
t → ∞ is h(t) 
 A + B/t1/8].

FIG. 6. Numerical solution h(t̃) = h(t/t∗) of the nonlinear inte-
gral equation (53), representing the rescaled reactive trajectory (see
text).

052601-7
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Rewriting Eq. (50) in the limit a → 0 in terms of h yields

〈T〉PS 
 κ−4/3

(2π )3/2a1/3

∫ ∞

0

dt̃

t̃ 9/8
exp

[
− h(t̃)2

2 t̃ 3/4

]
. (54)

Thus, the non-Markovian effects do not change the influence of
the positions of the reactive monomers on the mean cyclization
time. Using our numerical evaluation of h, we find that

〈T〉 
 3.3 × R3
eqτc

β
4/3
b a1/3L

8/3
p

. (55)

Comparing with the formula (42) in the Wilemski-Fixman
approximation, we observe that the magnitude of the non-
Markovian effects in the mean reaction time are of the order
of 18% in the bending regime.

C. Numerical stochastic simulations

Finally, in order to test the capability of the theory to
deal with non-Markovian effects, we performed numerical
stochastic simulations of the Langevin equation (2) in the
case that the polymer is formed by a finite number of beads.
Simulations to obtain the mean first contact time between
the two end monomers were performed by using the Ermak
algorithm [43]. In short, we used a constant time step �t , and
if (xi,k,yi,k,zi,k) represent the coordinates of the position of the
ith monomer at the kth time step, the positions at the (k + 1)th
step are deduced from the equation:

xi,k+1 = xi,k + �t

ζ

N∑
j=1

Aijxj,k +
√

2D�t uk, (56)

with uk a list of independent Gaussian random numbers with
zero mean and variance 1, and A is the pentadadiagonal matrix
such that the force on monomer i is Fi = ∑N

j=1 Aij rj , so that
the elements Aij = ∂xi

∂xj
V are deduced from the potential V

in Eq. (1). The other coordinates yi and zi of all the monomers
evolve through the same equation as Eq. (56). At each step, we
compare |rN − r1| to the value of the capture radius a, if it is
smaller the simulation stops and the current time is recorded.
The simulations are always performed with a time �t at least
10 times smaller than the inverse of the largest eigenvalue of
A/ζ , in order to be sure to seize all the time scales of the
polymer dynamics. The algorithm was used for smaller and
smaller values of the time steps in order to be sure that the
final results for the mean first passage time do not depend on
the time step used.

The results of the simulations are presented in Table I for
several values of parameters for finite numbers of beads N .
In this table, they are compared with the predictions of
the non-Markovian theory, which are determined by solving
numerically Eqs. (47) and (48) written for a finite number of
beads [more precisely, the equations to be solved are exactly
Eqs. (30) and (31) of Ref. [20], where one uses the eigenvalues
and eigenvectors of the dynamical matrix of the semiflexible
chain]. We also report the predictions of the Wilemski-Fixman
theory in Table I.

Comparison between theory and simulation reveals that
the Wilemski-Fixman systematically overestimates the mean
cyclization time. This is consistent with the general consider-
ations of Portman et al. [44,45], who showed that Wilemski-

TABLE I. Results of stochastic simulations of end-to-end cy-
clization (〈T〉simu) of the Gaussian discrete semiflexible chain of
N beads described by Eqs. (1) and (2), compared to the predictions
of the (Markovian) Wilemski-Fixman theory (〈T〉WF) and the non-
Markovian theory (〈T〉NM) for the same parameters.

a/Lp � N 〈T〉simu/τc 〈T〉NM/τc 〈T〉WF/τc

0.2 5 25 7.3 ± 0.1 7.33 8.62
0.2 1 5 0.0615 ± 0.0005 0.0611 0.0648
0.2 1 10 0.0652 ± 0.0005 0.0654 0.0752
0.2 1 20 0.064 ± 0.001 0.06601 0.0798
0.1 1 10 0.132 ± 0.006 0.134 0.156

0.01 0.1 10 (2.222 ± 0.002)10−4 2.224 × 10−4 2.417 × 10−4

Fixman approach provides an upper bound on the mean
cyclization time. In turn, Table I clearly shows that the result of
the non-Markovian theory are in quantitative agreement with
the simulations for all the tested values of a,�,N , and Lp. The
precision is of the order of the percent, and we infer that our
non-Markovian effects are correctly estimated by our theory.

V. CONCLUSION

Let us now summarize our findings. In this paper, we have
focused on the impact of the complex, collective dynamics of a
semiflexible chain on the mean cyclization time. We have used
a simplified (Gaussian) description of semiflexible chains,
where the inextensibility of the chain constraint holds only on
average. We have derived all the different dynamical regimes,
arising from the multiplicity of length scales in the problem,
and derived the corresponding regimes of the cyclization time,
as summarized in Fig. 4. The asymptotic results for the mean
reaction time were first derived in the framework of the
Wilemski-Fixman theory, where the complex dynamics of
the chain is partly taken into account, with the assumptions that
the relative motion of two monomers is Markovian. Then, we
evaluated the importance of non-Markovian effects by using
the recent method introduced in Refs. [19,20], which takes into
account the impact of the (nonequilibrium) configuration of
the chains at the instant of the reaction. These non-Markovian
effects were proved to be quantitatively important (
18%)
in the regime controlled by the small length scale bending
fluctuations. Non-Markovian effects are also important in the
previously studied regime of flexible (Rouse) chains, giving
numerical factors around 1–2 for the mean cyclization time, but
are unimportant in all other limiting cases, which are controlled
by diffusion. Thus, we could quantify precisely the magnitude
of non-Markovian effects in all limiting cases. Comparison
with Brownian dynamics simulations of the Gaussian model
for finite numbers of beads shows that our analysis of the
non-Markovian effects is accurate.

In the regime controlled by small length scale bending
fluctuations, the cyclization time varies with the capture radius
as 〈T〉 ∼ a−1/3. Notably, we could seize the dependence of the
prefactor with the monomer positions, leading the prediction
that the cyclization time between two interior monomers is
more than six times faster than for monomers located at
the chain ends. This strong dependence of the reaction time
with the positions of the reactive monomers is the same in
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the Marvovian and non-Markovian theories. We could also
describe the effect of having a chain with a finite number of
beads on the cyclization time. Due to the fact that, at very small
time scales, individual monomers behave as free Brownian
walkers, the behavior 〈T〉 ∼ a−1/3 breaks down and becomes
〈T〉 ∼ 1/a. This means that, in a simulation, the smaller the
capture radius, the larger the number of beads must be in
order to describe the regime controlled by small length scales
bending fluctuations.

The main limitation of this model is that it does not take
rigorously into account the inextensibility constraint of the
wormlike chain model. As a consequence, the probability to
be in contact, PS , is not correctly evaluated in the limit of
short chains in our Gaussian model, which cannot take into
account the energy cost for making a loop in a stiff rod.
However, for long chains the results for the cyclization time
are expected to be valid, and to properly take into account
bending fluctuations. Interestingly, numerical simulations of
the cyclization of inextensible chains [30] have revealed
regimes where 〈T〉 varies slower with a than a−1, to be
compared with the a−1/3 regime predicted by our theory. In
the case of short chains, our study still reveals that, when
the size of the capture radius is not infinitely small, the
rotational diffusion of the chain should play a role in the

cyclization, giving rise to regimes that differ from the 1/a1/3

dependence.
In conclusion, although we presented a simplified descrip-

tion of semiflexible chains, it still exhibits a large number of
time and length scales, which give rise to complex cyclization
regimes that are richer than previously recognized. There
is a need for analysis that would take into account both
inextensibility constraints and the collective dynamics of the
polymer chain. Such theories exist for now only for slightly
bent chains, not for looping configurations. It is our hope
that the present work will help to elucidate the cyclization
properties of polymers in more complex models that would
take into account the inextensibility or the hydrodynamic
interactions in semiflexible chains.
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