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Abstract. An important field of chemoinformatics consists in the pre-
diction of molecule’s properties, and within this field, graph kernels con-
stitute a powerful framework thanks to their ability to combine a natural
encoding of molecules by graphs, with classical statistical tools. Unfor-
tunately some molecules encoded by a same graph and differing only by
the three dimensional orientation of their atoms in space have different
properties. Such molecules are called stereoisomers. These latter proper-
ties can not be predicted by usual graph methods. In this report, ordered
graphs are introduced in order to represent those molecules. Then the
stereoisomerism property of each atom of a molecule is encoded by a lo-
cal ordered subgraph. Finally a graph of interactions between those local
subgraphs is constructed.
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1 Introduction

The prediction of molecule’s properties through Quantitative Structure Activ-
ity (resp. Property) Relationships are two active research subfields of chemoin-
formatics named QSAR and QSPR. Methods of those fields are based on the
similarity principle: two structurally similar molecules should have similar prop-
erties.

One common method to predict chemical properties consists to design a vec-
tor of descriptors from a molecule and use statistical machine learning algorithms
to predict molecule’s properties. Such methods [4, 8], can use structural infor-
mation, physical properties or biological activities in order to compute vectors
of descriptors. However, such an approach requires to either select a random set
of predefined descriptors (before a variable selection step) or to use an heuristic
definition of appropriate descriptors by a chemical expert. In both cases, the
transformation of the graph into a finite vector of features induces a loss of
information.

Another approach consists to encode a molecule by a graph, and use it to
predict properties. A molecular graph is a labeled simple graph G = (V,E, µ, ν)
representing a molecule. The unlabeled graph (V,E) encodes the structure of
the molecule, each node v ∈ V encoding an atom and each edge e = (v, w) ∈ E
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a bond between two atoms. The labelling function µ associates to each vertex
v ∈ V a label µ(v) encoding the nature of the atom and the function ν associates
to each edge e a type of bond ν(e) (single, double, triple or aromatic). Note that
for the rest of this report, we denote the neighborhood of a vertex v ∈ V by
N(v):

∀v ∈ V, N(v) = {u ∈ V | (v, u) ∈ E}

Note that v does not belong to N(v).
Several methods based on graph theory use this representation to predict

molecular properties. One approach consists to search subgraphs with a large
difference of frequencies between a set of positive and a set of negative exam-
ples [15]. Another approach consists to encode each class of molecules by a graph
prototype and to measure the structural similarity between each prototype and
an input molecule [2]. However, these methods can not be easily combined with
machine learning algorithms. Conversely graph kernel methods can be coupled
to machine learning algorithms provided that the kernel is definite positive. Let
G be the set of all graphs. A definite positive kernel is a symmetric function
k : G × G → R such that:

n∑
i=1

n∑
j=1

cicjk(Gi, Gj) ≥ 0 where n > 0, G1, . . . , Gn ∈ G, c1, . . . , cn ∈ R

Such a definite positive kernel corresponds to a scalar product between two
vectors ψ(G) and ψ(G′) in an Hilbert space induced by the kernel.

A large family of graph kernel methods, associate a bag of patterns to each
graph, and define the kernel value from a measure of similarity between those
bags [13, 14, 7]. In [13] a graph kernel is defined as a measure of similarity between
sets of walks extracted from each graph. But those walks are linear features and
thus have limited expressiveness. An infinite set of tree patterns is used in [14]
to define kernels. However, the similarity between two graphs is based on an
implicit enumeration of their common tree patterns which does not allow to
readily analyze the influence of a pattern on the prediction. Finally [7] is based
on an explicit enumeration of patterns. All subtrees of a labeled graph up to size
6, called treelets are enumerated.

However, some molecules may have a same molecular formula, a same molec-
ular graph but a different relative positioning of their atoms. Such molecules are
said to be stereoisomers. Different stereoisomers may be associated to different
properties. However, usual graph kernels based on the molecular graph represen-
tation are not able to capture any dissimilarity between these molecules encoded
by a same graph. From a more local point of view, an atom or two connected
atoms are called stereocenters if a permutation of the positions of two atoms
belonging to the union of their neighborhoods produces a different stereoisomer.

One example of stereocenter is an asymmetric carbon, which is a carbon
atom with four different neighbors. We can represent each of its neighbors on a
summit of a tetrahedron. If we permute two of the atoms, we obtain a different
spatial configuration and hence an alternative stereoisomer (Figure 1a).



Taking into account interaction between stereocenters 3

(a) Two different spatial configurations
of the neighbors of a carbon

(b) Two different spatial configurations
of two carbons linked by a double bond.

Fig. 1: Two types of stereocenters.

Two carbons, connected by a double bond, can also define stereoisomers
(Figure 1b). Indeed, on the left side of Figure 1b fluorine (F) and iodine(I)
atoms are located on the same side of the double bond while they are located
on opposite sides on the stereoisomer represented on the right. In this case both
carbon atoms of the double bond correspond to a stereocenter.

According to chemical experts [12], within molecules currently used in chem-
istry, 98% of stereocenters correspond either to asymmetric carbons (Figure 1a)
or to couples of two carbons adjacent through a double bond (Figure 1b). We
thus restrict the present report to such cases.

To distinguish those configurations, we introduce the two following subsets
of the set of vertices V of a molecular graph:

Definition 1. Potential Asymmetric Carbons
Let us denote VPAC the subset of V containing all vertices encoding atoms

of carbon with four neighbors:

VPAC = {v ∈ V | µ(v) = ’C’ and |N(v)| = 4}

Since being an atom with four neighbors is a necessary condition to define an
asymmetric carbon, the set VPAC contains all vertices which may encode such
atoms.

Definition 2. Set of double-bonds connecting carbon atoms
The subset of V containing all atoms of carbon which share a double bond

with another carbon is noted VDB :

VDB =

v ∈ V | ∃e(v, w) ∈ E, ν(e) = 2,

 |N(v)| = |N(w)| = 3
and
µ(v) = µ(w) = ’C’


An atom of carbon with two double bounds must have a degree equal to two.
Hence, each vertex v belonging to VDB is incident to a single double bound and
we denote n=(v) the other carbon connected by this double bond. Note that
n=(v) ∈ VDB .
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Brown et al. [1] have proposed to incorporate this information through an
extension of the tree-pattern kernel [14]. In this method, similarity between
molecules are deduced from the number of common tree-patterns between two
molecules. These patterns take into account the configuration around stereo-
centers. One drawback of this method is that, patterns which encode stereo
information, and patterns which do not, are combined without any weighting
in the final kernel value. So for a property only related to stereoisomerism, pat-
terns that do not encode stereo information may be assimilated to noise which
deteriorates the prediction. When several stereocenters are close to each other,
one pattern may encode all of them. However the size of patterns are limited, so
in some cases the influence of a permutation around stereocenters may not be
detected by patterns containing them.

Intuitively, stereoisomerism property is related to the fact that permuting
two neighbors of a stereocenter produces a different spatial configuration. If
those two neighbors have a same label, the influence of the permutation should
be searched beyond the direct neighborhood of this stereocenter. Based on this
ascertainment, we have proposed in [11] to characterized locally a stereocenter
by a subgraph, big enough to highlights the influence of each permutation of
neighbors of this stereocenter. We then proposed a kernel based on those sub-
graphs.

One drawback of our previous approach is that each subgraph, and thus each
stereocenter, are considered independently.

In the next section we present an encoding of molecules distinguishing stereoiso-
mers, which was introduced in our previous report [9]. In Section 3 we present
the construction of a subgraph, which allows to characterizes locally a stereocen-
ter, introduced in [11]. Then in Section 4 we present a method which take into
account interactions between the different subgraphs which characterize stereo-
centers. Finally, we demonstrate the validity of our kernel through experiments
in Section 5.

2 Encoding of stereoisomers

The spatial configuration of the neighbors of each atom may be encoded through
an ordering of its neighborhood. For example, considering the left part of Figure
1a, and looking at the central carbon from the hydrogen atom (H), the sequence
of remaining neighbors of the carbon: Cl, Br and F may be considered as lying
on a plane and are encountered clockwise. Thus, this spatial configuration is
encoded by the sequence H, Cl, Br, F and the sequence H, Br, Cl, F encodes
the second configuration. The configuration around a double bond can also be
encoded by ordered sequences. Considering the left part of Figure 1b and assum-
ing a clockwise orientation with the plane embedding provided by this figure, we
encounter F and Cl when turning around the carbon at the top of the molecule,
and H and O for the carbon at the bottom. Thus this configuration may be
encoded by both sequences F, Cl and H, O respectively for the top and bottom
carbon atoms. Sequences F, Cl and O, H encode the second configuration.
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In order to encode this information in a graph, we have introduced in [9]
ordered graphs:

Definition 3. Ordered Graphs
An ordered graph G = (Ĝ = (V,E, µ, ν), ord) is a molecular graph Ĝ and a

function ord which maps each vertex v belonging to a subset Vord of V to an
ordered list of its neighbors:

ord

{
Vord → V ∗

v 7→ v1 . . . vn

where N(v) = {v1, . . . , vn} denotes the neighborhood of v.
Vord is defined as VPAC ∪VDB . The function ord is defined as follows for each

vertex v ∈ Vord:

– If v ∈ VPAC :
We set randomly one of its neighbor v1 at the first position. The three other
neighbors of v are ordered such that if we look at v from v1, the three re-
maining neighbors are ordered clockwise. One of the three orders (defined up
to circular permutations) fulfilling this condition is chosen randomly (Fig-
ure 2a).

– If v ∈ VDB :
Let us consider w = n=(v) and the two neighborhoods N(v) = {w, a, b} and
N(w) = {v, c, d}. The order on the neighborhood of v is set as ord(v) =
w, a, b and the order on w’s neighborhood is set as ord(w) = v, c, d, whereby
a, b, c, d are traversed clockwise when turning around the double bond for a
given plane embedding (Figure 2b).

The set of ordered graph is denoted OG.

Lemma 1. Let G = (Ĝ = (V,E, µ, ν), ord) and G′ = (Ĝ′ = (V ′, E′, µ′, ν′), ord′)

be two ordered graph such that it exists f in Isom(Ĝ, Ĝ′).
Then f(Vord) = V ′ord

Proof. By Definition 1, v ∈ VPAC ⇔ µ(v) = ’C’ and |V (v)| = 4.
As f is an isomorphism we have µ(v) = ’C’ and |V (v)| = 4 ⇔ µ(f(v)) =

’C’ and |V (f(v))| = 4.
Then again by Definition 1, v ∈ VPAC ⇔ f(v) ∈ V ′PAC .

By Definition 2, v ∈ VDB ⇔ ∃e(v, w) ∈ E, ν(e) = 2, |V (v)| = |V (w)| = 3,
and µ(v) = µ(w) = ’C’.

As f is an isomorphism we have ∃e(v, w) ∈ E, ν(e) = 2, |V (v)| = |V (w)| =
3, and µ(v) = µ(w) = ’C’ ⇔ ∃e′(f(v), f(w)) ∈ E, ν(e′) = 2, |V (f(v))| =
|V (f(w))| = 3, and µ(f(v)) = µ(f(w)) = ’C’.

Then again by Definition 2, v ∈ VDB ⇔ f(v) ∈ V ′DB .

By Definition 3, we have Vord = VPAC ∪ VDB , so v ∈ Vord ⇔ f(v) ∈ V ′ord.
Thus f(Vord) = V ′ord.
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Definition 4. Isomorphism between Ordered Graphs
Two ordered graphs G and G′ are isomorphic (G '

o
G′) if there exists an

isomorphism f between their respective molecular graphs Ĝ and Ĝ′ which respect
the order around each vertex:

G '
o
G′ ⇔ ∃f ∈ Isom(Ĝ, Ĝ′) s.t.

∀v ∈ Vord with ord(v) = v1 . . . vn, ord
′(f(v)) = f(v1) . . . f(vn)

where N(v) = {v1, . . . , vn} denotes the neighborhood of v. Notice that by
Lemma 1, if v ∈ Vord then f(v) ∈ V ′ord, so ord′(f(v)) is always defined.

In this case, f is called an ordered isomorphism between G and G′, and we
denote IsomOrd(G,G′) ⊂ Isom(Ĝ, Ĝ′) the set of ordered isomorphism between
G and G′.

As we have to make some arbitrary choice to define an order (Definition 3), a
spatial configuration of atoms may be encoded by several equivalent orders. We
thus have introduced in [9] the notion of re-ordering function, which associates to
each vertex of an ordered structured object a permutation on its neighborhood.

Definition 5. Re-ordering functions
A re-ordering function σ on an ordered graph G = (Ĝ = (V,E, µ, ν), ord),

associates to each vertex v ∈ Vord a permutation ϕv on {1, . . . , |N(v)|}.

σ

{
Vord → P
v 7→ ϕv ∈ Π|N(v)|

where Πn is the group of permutations of n elements and P is the union of
Πn for all n ∈ N.

Application of a re-ordering function on an ordered graph provides a new
ordered structured graph defined as follows:

Definition 6. Re-ordered structured objects
Let G = (Ĝ = (V,E, µ, ν), ord) denotes an ordered graph, σ(G) = (Ĝ, ordσ)

is defined as the ordered graph obtained after applying the re-ordering function
σ on the ordered list of neighbours of each vertex:

∀v ∈ Vord s.t.

ord(v) = v1, . . . , vn
and
σ(v) = ϕv,

 ordσ(v) = vϕv(1), . . . , vϕv(n)

Re-ordering functions previously defined may apply any re-ordering on a
structured object hence removing the notion of order on these objects. In order
to obtain a useful notion of re-ordering, we define a set of specific re-ordering
functions.
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Definition 7. Set of re-ordering functions
The set Σ of re-ordering functions contains all the re-ordering functions σ

such that:

– For each v in VPAC , σ(v) is an even permutation:

∀v ∈ VPAC , ε(σ(v)) = 1.

– For each v in VDB , σ(v) and σ(n=(v)) have the same parity:

∀v ∈ VDB , ε(σ(v)) = ε(σ(n=(v)))

where ε denotes the signature of a permutation.

With this set we can define a notion of equivalent orders, such that two
identical molecules will be represented by ordered graphs of equivalent orders.

(a) Element of VPAC (b) Two elements of VDB

Fig. 2: Example of elements of VPAC and of VDB with their ordered list (top)
and the ordered lists obtained using two permutations σ and σ′

Definition 8. Equivalent orders
Let us consider two ordered graphs G = (Ĝ, ord) and G′ = (Ĝ′, ord′). These

graphs are said to be equivalent G '
Σ
G′ according to the set of re-ordering

functions Σ if:

∃σ ∈ Σ s.t σ(G) '
o
G′ (1)

In other word, we consider that two ordered graphs are equivalent if, up to
a valid re-ordering σ we can establish an ordered graph isomorphism f between
them. In that case the ordered isomorphism f is called an equivalent ordered
isomorphism through σ between G and G′. We denote by IsomEqOrd(G,G′) the
set of equivalent ordered isomorphism between G and G′:

IsomEqOrd(G,G′) =
⋃
σ∈Σ

IsomOrd(σ(G), G′)

As the set defined in Definition 7 is a valid family of re-ordering functions [9],
the relationships defined in Definition 8 is an equivalence relationship [9]. We
have thus now a way to encode stereoisomers.
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Potentials asymmetric carbons, and double bonds between carbons, are not
necessarily stereocenters. For example if the label of vertex Br of Figure 1a is
replaced by Cl, both left and right molecules of Figure 1a would be identical. In
the same way, if the label of the vertex F in Figure 1b is replaced by Cl, the left
and right molecules of this figure would also become identical. For those cases,
any permutation in the ordered list of the carbons would lead to an equivalent
ordered graph, i.e it exists an equivalent ordered isomorphism between the graph
and a permuted graph :

Definition 9. Set of Isomorphism of non-stereocenter
Let G = (Ĝ = (V,E, µ, ν), ord) be an ordered graph. Let v ∈ Vord.
We denote by FvG the set of ordered isomorphism f such that :

FvG =
⋃

(i,j)∈{1,...,|N(v)|}2
i 6=j

{f | f ∈ IsomEqOrd(G, τvi,j(G)) with f(v) = v}

where τvi,j is a re-ordering function equals to the identity on all vertices except
v for which it permutes the vertices of index i and j in ord(v).

We define a stereo vertex as a vertex for which any permutation of two of its
neighbors produces a non-equivalent ordered graph:

Definition 10. Stereo vertices
Let G = (Ĝ = (V,E, µ, ν), ord) be an ordered graph. A vertex v ∈ Vord is

called a stereo vertex iff:

FvG = ∅

We denotes SV(G) the set of stereo vertices of G.

Lemma 2. Let us consider a graph Ĝ and one of its automorphism f , f ∈
Isom(Ĝ, Ĝ).
∀v ∈ VDB s.t f(v) = v, we have f(n=(v)) = n=(v).

Proof. Let v ∈ VDB with f(v) = v.
By Definition 2 ∃!w ∈ V s.t e = (v, w) ∈ E with ν(e) = 2 and w = n=(v).

Since f is an isomorphism (f(v), f(w)) = (v, f(w)) ∈ E with ν((f(v), f(w))) =
2. By Definition 2, w is the unique neighbor of v incident to an edge with a label
2, so we have f(w) = w.

Proposition 1. v ∈ VDB is a stereo vertex iff n=(v) is a stereo vertex.

Proof. We consider an ordered graph G = (Ĝ = (V,E, µ, ν), ord). Let us consider
v ∈ VDB . We denote w = n=(v) ∈ VDB .

Let us suppose that v 6∈ SV(G).
Then FvG 6= ∅ and so, ∃(i, j) ∈ {1, 2, 3}2, with i 6= j,

∃f ∈ IsomEqOrd(G, τvi,j(G)) with f(v) = v, where τvi,j is a re-ordering function
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equals to the identity on all vertices except v for which it permutes the vertices
of index i and j in ord(v).

As f ∈ IsomEqOrd(G, τvi,j(G)) ⊂ Isom(Ĝ, Ĝ), by Lemma 2 we have f(w) =
w.

We define σ = τwi′,j′ ◦ τvi,j where (i′, j′) ∈ {1, 2, 3}2 s.t i′ 6= j′.

By Definition 7 and since ε(σ(v)) = ε(τvi,j) = −1 and ε(σ(w)) = ε(τwi′,j′) = −1,
σ is a valid re-ordering function.

By Definition 8, ∃σ′ ∈ Σ s.t f is an ordered isomorphism between σ′(G) and
τvi,j(G). Thus, by [9](Lemma 1), f is an ordered isomorphism between σ ◦ σ′(G)
and σ ◦ τvi,j(G) = τwi′,j′(G).

As the valid family of re-ordering function is a group [9] σ ◦σ′ ∈ Σ, and thus
f ∈ IsomEqOrd(G, τwi′,j′(G)) with f(w) = w. So FwG 6= ∅

So v 6∈ SV(G) implies that w = n=(v) 6∈ SV(G).

Since ∀u ∈ VDB , n=(n=(u)) = u, this last statement is equivalent to :

n=(u) 6∈ SV(G)⇒ u 6∈ SV(G)

The contrapositive of the above implication provides the expected implication.
Furthermore, an additional use of the relationship n=(n=(u)) = u provides the
expected equivalence relationship.

As Proposition 1 shows, two carbons linked by a double bond are simultane-
ously stereo vertices or non-stereo vertices. So we have to consider their stereo
property together. We thus introduce the following notations :

Definition 11. Set of bounded Stereo vertices

For s ∈ SV(G) we define its set kernel(s) of bounded stereo vertices as :

kernel(s) =

{
{s} if s ∈ VPAC
{s, n=(s)} if s ∈ VDB

Definition 12. Star of Stereo vertices

For s ∈ SV(G) we define its set StereoStar(s):

StereoStar(s) =

{
N(s) ∪ {s} if s ∈ VPAC
N(s) ∪N(n=(s)) if s ∈ VDB

Definition 13. Set of neighbours of Stereo vertices

For s ∈ SV(G) we define its set of neighbour StereoStar∗(s):

StereoStar∗(s) =

{
N(s) if s ∈ VPAC
N(s) ∪N(n=(s)− {s, n=(s)} if s ∈ VDB

Note that StereoStar∗(s) = StereoStar(s)− kernel(s).
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3 From a global to a local characterization of stereo
information

Definition 10 is based on the whole graph G to test if a vertex v is a stereo vertex.
However, given a stereo vertex s, one can observe that on some configurations,
the removal of some vertices far from s should not change its stereo property.
In order to obtain a more local characterization of a stereo vertex, we should
thus determine a vertex induced subgraph H of G, including s, big enough to
characterize the stereo property of s, but sufficiently small to encode only the
relevant information characterizing the stereo vertex s. Such a subgraph is called
a minimal stereo subgraph of s.

Definition 14. Subgraph characterizing a Stereo vertex

Let G = (Ĝ = (V,E, µ, ν), ord) be an ordered graph. Let S be a subgraph of
G. We say that the stereo property of s ∈ SV(G) is captured by S if:

– StereoStar(s) ⊂ S.

– FsS = ∅.

Remark 1. With the same argument than for the proof of Proposition 1, we
can show that if the stereo property of s ∈ SV(G) is captured by S and s ∈ VDB
then the stereo property of n=(s) is captured by S.

Thus a couple of carbons linked by a double bond only needs one subgraph
to characterizes both of them.

Definition 15. Set of vertices inducing isomorphism

Let G = (Ĝ = (V,E, µ, ν), ord) be an ordered graph. Let s be a stereo vertex.
Let H be a subgraph of G that do not capture the stereo property of s and such
that StereoStar(s) ⊂ H.

By Definition 14, FsH is not empty. Let f ∈ FsH .

We define EHf as the set of vertices inducing the isomorphism f in H:

EHf = {v ∈ V (H) | ∃p = (v0, . . . , vq) ∈ H with v0 ∈ kernel(s) and vq = v

s.t. f(v1) 6= v1} (2)

where (v0, . . . , vq) denotes a path in H (Hence v0 6= v1).

Proposition 2. For H and f defined as in Definition 15, EHf is not empty.

Proof. Let G = (Ĝ = (V,E, µ, ν), ord) be an ordered graph. Let s be a stereo
vertex. Let H be a subgraph of G that do not capture the stereo property of s
and such that StereoStar(s) ⊂ H.

Let us consider f ∈ FsH .

By definition of equivalent ordered isomorphism, it exists σ ∈ Σ such that f
is an ordered isomorphism between H and σ

(
τsi,j(H)

)
.
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– If s ∈ VPAC :
By definition of ordered isomorphisms, and since f(s) = s, we have:

∀l ∈ {1, . . . , |N(s)|}, f(vl) = vσ(s)◦τs
i,j(l)

.

with ord(s) = v1, . . . , vn.
As σ(s) is an even permutation, σ(s) ◦ τsi,j is an odd one. Hence it exists l
in {1, . . . , |N(s)|} such that l 6= σ(s) ◦ τsi,j(l).
Thus f(vl) 6= vl, and EHf is not empty as it contain at least vl.

– If s ∈ VDB :
Let us consider w = n=(s). Since f ∈ IsomEqOrd(H, τ si,j(H)) ⊂ Isom(Ĥ, Ĥ),
by Lemma 2 we have f(w) = w.
We denote by N(s) = {s1, s2, w} the neighbourhood of s and N(w) =
{w1, w2, s} the neighbourhood of w.
Let us suppose that f(w1) = w1.
As f(s) = s, we have f(w2) = w2 and since f is an ordered isomorphism
between H and σ

(
τsi,j(H)

)
we have σ(w) = Id where Id is the identity

permutation. Thus ε(σ(s)) = ε(σ(w)) = 1 and σ(s) ◦ τsi,j is odd.
Hence f defines an odd permutation on the ordered neighbour of s and
f(w) = w, thus by definition of ordered isomorphisms, we have f(s1) = s2 6=
s1.
Thus we have either f(w1) 6= w1 or f(s1) 6= s1, so EHf is not empty as it
contains at least w1 or s1.

Definition 16. Minimal stereo subgraph
Let G = (Ĝ = (V,E, µ, ν), ord) be an ordered graph. Let s ∈ SV(G). We

consider a sequence (Hk
s )k∈N of vertex induced subgraphs of G defined such

that:

– V (H0
s ) = StereoStar(s)

– V (Hk+1
s ) = V (Hk

s ) ∪
⋃

f∈F
Hk

s

N(EH
k
s

f ).

We define Ss as:

Ss = lim
k→+∞

Hk
s

The vertex induced subgraph Ss is called the minimal stereo subraph of s.
We say that s is the stereo vertex of Ss (if s ∈ VDB , the stereo vertex of Ss is
arbitrarily chosen between s and n=(s) as they have a same role). We denote
H(G) the set of minimal stereo subraphs of G. Figure 3 shows one exemple of
minimal stereo subraph.

Proposition 3. The sequence (Hk
s )k∈N converges.
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Fig. 3: An asymmetric carbon and its associated sequence (Hk
C)k∈N. Its minimal

stereo subgraph is SC = H3
C .

Proof. As (Hk
s )k∈N is a sequence of vertex induced subgraphs of G, we know

that ∀k ∈ N Hk
s E G. The sequence is thus upper bounded.

By Definition 16, we have ∀k ∈ N V (Hk+1
s ) = V (Hk

s )∪
⋃

f∈F
Hk

s

N(EH
k
s

f ). Thus

(Hk
s )k∈N is an increasing sequence.
As (Hk

s )k∈N is upper bounded and increasing, (Hk
s )k∈N converges.

Remark 2. (Hk
s )k∈N is a sequence of vertex induced subgraphs of G, so it is a

discrete sequence, and thus the limit is reached: ∃n ∈ N s.t ∀k > n, Hk
s = Ss.

Proposition 4. For any k ∈ N such that V (Hk
s ) 6= V (Ss), the stereo property

of s is not captured by Hk
s .

Proof. We consider k ∈ N such that V (Hk
s ) 6= V (Ss).

As Hk+1
s is only constructed from Hk

s (V (Hk+1
s ) = V (Hk

s )∪
⋃

f∈F
Hk

s

N(EH
k
s

f )),

and V (Hk
s ) 6= V (Ss), we have V (Hk

s ) 6= V (Hk+1
s ).

Thus
⋃

f∈F
Hk

s

N(Ekf ) 6= ∅. So it exists at least one f ∈ FHk
s

such that Ekf 6= ∅

and thus FHk
s
6= ∅.

Then by Definition 14 and 9 the stereo property of s is not captured by
Hk
s .

Lemma 3. Let G = (Ĝ = (V,E, µ, ν), ord) be an ordered graph. Let s be a stereo
vertex. Let H be a connected vertex induced subgraph of G that do not capture
the stereo property of s and such that StereoStar(s) ⊂ H. Let f ∈ FsH .

We denotes cc1 . . . ccn the set of connected components obtained by removing
kernel(s) from H.

We define the sets of indices :
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– I = {i | cci ∩ EHf 6= ∅}.
– J = {j | ccj ∩ EHf = ∅}.

We denote ccI =
⋃
i∈I

cci and ccJ =
⋃
j∈J

ccj.

Then we have :

ccI ⊂ EHf . (3)

∀j ∈ J , ccj ∩ StereoStar∗(s) 6= ∅ and

∀v ∈ ccj ∩ StereoStar∗(s) we have f(v) = v. (4)

Proof. We first show that:

ccI ⊂ EHf .

Let i ∈ I. By definition of I we have cci ∩ EHf 6= ∅. We denote u one

vertex such that u ∈ cci and u ∈ EHf . By definition of EHf , it exists a path
pu = (u1, . . . , uq) ∈ H with uq = u, u1 ∈ StereoStar∗(s) and f(u1) 6= u1. As
cci is a connected component of H − kernel(s), we have that pu ∈ cci and so
u1 ∈ cci.

As cci is a connected component ∀v ∈ cci, ∃p = (u1, v1, . . . , v) ∈ cci. So
v ∈ EHf and cci ⊂ EHf .

We now show that:

∀j ∈ J , ccj ∩ StereoStar∗(s) 6= ∅ and

∀v ∈ ccj ∩ StereoStar∗(s) we have f(v) = v.

H is connected, thus for each u ∈ H, ∃p = (u0, . . . , uq) ∈ H with uq = u
and u0 ∈ kernel(s). So ∀u ∈ ccj , ∃p = (u1, . . . , uq) ∈ ccj with uq = u and
u1 ∈ StereoStar∗(s). Hence u1 ∈ ccj and ccj ∩ StereoStar∗(s) 6= ∅

Let us consider v ∈ ccj ∩ StereoStar∗(s), if we suppose that f(v) 6= v then
v ∈ EHf and thus ccj ∩ EHf = ∅ is false. So ∀v ∈ ccj s.t v ∈ StereoStar∗(s) we
have f(v) = v.

Remark 3. By definition of ccI and ccJ we have :

– V (H) = ccI ∪ ccJ ∪ kernel(s)
– V = V (G−H) ∪ ccI ∪ ccJ ∪ kernel(s)

Lemma 4. With the same hypothesis and notations than in Lemma 3 we have:

f(ccI) = ccI



14 Pierre-Anthony Grenier†, Luc Brun†, and Didier Villemin‡

Proof. Let v ∈ cci with i ∈ I.
Thus ∃p = (v1, . . . , vq) ∈ H with vq = v, v1 ∈ StereoStar∗(s) and f(v1) 6=

v1. So the sequence (f(v1), . . . , f(vq)) is also a path of H.
We denote ṽ1 = f(v1).
As v1 ∈ StereoStar∗(s), ṽ1 ∈ StereoStar∗(s). As f(v1) 6= v1 and f is bijec-

tive, f(ṽ1) = f(f(v1)) 6= f(v1) = ṽ1.
In conclusion we have ∃p′ = (ṽ1, . . . , f(vq)) ∈ H with vq = v, ṽ1 ∈ StereoStar∗(s)

and f(ṽ1) 6= ṽ1, so f(v) ∈ cci′ with i′ ∈ I.
So f(ccI) ⊂ ccI .
As f is bijective we have |f(ccI)| = |ccI |. So f(ccI) = ccI .

Lemma 5. Using the same hypothesis and notations than in Lemma 3, ∀f ∈ FsH
we have N(EHf ) 6⊂ V (H).

Proof. Let us supposed N(EHf ) ⊂ V (H).
To obtain a contradiction we will construct an equivalent ordered isomor-

phism between G and τsi,j(G). To prove that the function we will construct is an
ordered isomorphism between G and τsi,j(G) we will need some properties about
the cci and ccj defined previously which are consequences of our assumption
N(EHf ) ⊂ V (H).

We need to prove that we have :

∀v ∈ V (G−H), ∀p = (v0, . . . , vq) with v0 = v, vq ∈ H and kernel(s)∩p = ∅,
we have vq ∈ ccJ . (5)

Let us suppose that ∃v ∈ V (G −H), ∃p = (v0, . . . , vq) with v0 = v, vq ∈ H
and kernel(s) ∩ p = ∅ such that vq ∈ cci with i ∈ I.

Let us denote vr ∈ p with r ∈ {0, . . . , q− 1} one vertex such that vr 6∈ V (H)
and vr+1 ∈ cci. Such a vertex exists as v0 6∈ V (H) and vq ∈ cci.

As vr+1 ∈ cci, vr+1 ∈ EHf by (3) of Lemma 3. Thus vr ∈ N(EHf ) and vr 6∈
V (H). As we have supposed N(EHf ) ⊂ V (H) we have a contradiction, so vq ∈
ccJ .

Equation (5) and Remark 3 implies that:

∀v ∈ V (G−H), N(v) ⊂ V (G−H) ∪ ccJ (6)

∀v ∈ ccJ , N(v) ⊂ V (G−H) ∪ ccJ ∪ kernel(s) (7)

∀v ∈ ccI , N(v) ⊂ ccI ∪ kernel(s) (8)

Let us now define a function g such that:

∀v ∈ V, g(v) =

f(v) if v ∈ ccI
v if v ∈ ccJ ∪ V (G−H)
v = f(v) if v ∈ kernel(s)

We want to prove that g ∈ IsomEqOrd(G, τsi,j(G)).
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First, we have to prove that g is bijective.
By Lemma 4 we have f(ccI) = ccI so g(ccI) = ccI .
We have g ccI = f is bijective, g G−ccI = Id is bijective and g(ccI) = ccI ,

so g is bijective.

We now prove that g ∈ Isom(Ĝ, Ĝ) = Isom(Ĝ, τ̂si,j(G)).
Let e = (u, v) ∈ E:

– If u ∈ ccI .
We have g(u) = f(u) and v ∈ ccI or v ∈ kernel(s) by (8). In both
cases we have g(v) = f(v). As f ∈ IsomEqOrd(H, τ si,j(H)), (g(u), g(v)) =
(f(u), f(v)) ∈ E.

– If u ∈ ccJ or u ∈ V (G−H).
We have g(u) = u and v ∈ V (G−H), v ∈ ccJ or v ∈ kernel(s) by (6) and
(7). In each case we have g(v) = v. Thus (g(u), g(v)) = (u, v) ∈ E.

– If u ∈ kernel(s).
We have g(u) = f(u) and v ∈ StereoStar∗(s) or v ∈ kernel(s). If v ∈ ccI ,
then f(v) = g(v). However if v ∈ ccJ , then g(v) = v. But by (4) of Lemma 3
we have v = f(v), so g(v) = v = f(v). Finally if v ∈ kernel(s), g(v) = v =
f(v).
So, in each case we have g(v) = f(v). As f ∈ IsomEqOrd(H, τ si,j(H)),
(g(u), g(v)) = (f(u), f(v)) ∈ E.

In each case we have either (g(u), g(v)) = (f(u), f(v)) or (g(u), g(v)) = (u, v),
thus :

e = (u, v) ∈ E ⇒
e′ = (g(u), g(v)) ∈ E, ν(e) = ν(e′), µ(g(u)) = µ(u) and µ(g(v)) = µ(v). (9)

We define g̃ such that:

g̃

{
V × V → V × V
(u, v) → (g(u), g(v))

As g is bijective, g̃ is bijective.
By (9) we have g̃(E) ⊂ E, and as g̃ is bijective we have g̃(E) = E.
So ∀(u, v) ∈ V × V , such that g̃(u, v) = (g(u), g(v)) ∈ E we have (u, v) ∈ E.

With (9) we can conclude that :

e = (g(u), g(v)) ∈ E ⇒
e′ = (u, v) ∈ E, ν(e) = ν(e′), µ(g(u)) = µ(u) and µ(g(v)) = µ(v). (10)

By (9) and (10) we have g ∈ Isom(Ĝ, Ĝ) = Isom(Ĝ, τ̂si,j(G)).

We finally have to prove that ∃σ ∈ Σ such that g ∈ IsomOrd(σ(G), τsi,j(G)).
f ∈ IsomEqOrd(H, τ si,j(H)) so by Definition 8 ∃σ ∈ Σ, σ(H) '

o
τsi,j(H).
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We denote σ′ the re-ordering function such that:

∀v ∈ Vord, σ′(v) =

{
σ(v) if v ∈ ccI ∪ kernel(s)
Idn if v ∈ ccJ ∪ V (G−H)

where Idn is the identity permutation of n elements and n is the degree of v.
Let v ∈ VPAC .
If v ∈ kernel(s)∪ccI then σ′(v) = σ(v). σ ∈ Σ so by Definition 7 σ(v) is even.

If v ∈ V (G −H) ∪ ccJ then σ′(v) = Idn. The identity is even, so ∀v ∈ VPAC ,
σ′(v) is even.

Let v ∈ VDB .

– By Definition 11 v ∈ kernel(s) iff n=(v) ∈ kernel(s).
So, if v ∈ kernel(s), then σ′(v) = σ(v) and σ′(n=(v)) = σ(n=(v)).
σ ∈ Σ so by Definition 7 σ(v) and σ(n=(v)) have a same parity.

– If v ∈ ccI then by (8) n=(v) ∈ ccI ∪ kernel(s).
As n=(v) ∈ kernel(s) iff v ∈ kernel(s) (Definition 11) and v ∈ ccI , n=(v) 6∈
kernel(s) and so n=(v) ∈ ccI .
Thus σ′(v) = σ(v) and σ′(n=(v)) = σ(n=(v)).
σ ∈ Σ so by Definition 7 σ(v) and σ(n=(v)) have a same parity.

– Finally if v ∈ V (G − H) ∪ ccJ then by (6) and (7) n=(v) ∈ V (G − H) ∪
ccJ ∪ kernel(s).
As n=(v) ∈ kernel(s) iff v ∈ kernel(s) (Definition 11) and v ∈ V (G−H) ∪
ccJ , n=(v) 6∈ kernel(s) and so n=(v) ∈ V (G−H) ∪ ccJ .
So σ′(v) = Idn and σ′(n=(v)) = Idn have a same parity.

Using Definition 7, we deduce from the previous considerations that σ′ ∈ Σ.
Let us now show that g ∈ IsomOrd(σ′(G), τsi,j(G)). We denote by ord′ the

order in τsi,j(G). We stress here that ∀v ∈ Vord − {s}, ord′(v) = ord(v).
Let v ∈ Vord with ordσ′(v) = v1, . . . , vn :

– If v ∈ ccI .
We have g(v) = f(v). We know that σ(H) '

o
τsi,j(H) and v ∈ H, so

ord′(g(v)) = ord′(f(v)) = f(v1), . . . , f(vn).
By (8) we know that ∀k ∈ {1, . . . , n} we have vk ∈ ccI or vk ∈ kernel(s). In
both cases we have f(vk) = g(vk) and thus ord′(g(v)) = g(v1), . . . , g(vn).

– If v ∈ ccJ or v ∈ V (G−H).
We have g(v) = v. So ord′(g(v)) = ord′(v). As v ∈ Vord − {s}, ord′(v) =
ord(v), and thus ord′(g(v)) = ord(v). As σ′(v) = Idn, we have ord(v) =
ordσ′(v) = v1, . . . , vn. So ord′(g(v)) = v1, . . . , vn.
By (7) and (8) we know that ∀k ∈ {1, . . . , n} we have vk ∈ V (G−H), vk ∈
ccJ or vk ∈ kernel(s). So vk = g(vk) and thus ord′(g(v)) = g(v1), . . . , g(vn).

– If v ∈ kernel(s).
We have g(v) = f(v). We know that σ(H) '

o
τsi,j(H) and v ∈ H, so

ord′(g(v)) = ord′(f(v)) = f(v1), . . . , f(vn).
Let k ∈ {1, . . . , n}. If vk ∈ ccI , then f(vk) = g(vk). However if vk ∈ ccJ ,
then g(vk) = vk. But by (4) we have vk = f(vk), so g(vk) = vk = f(vk).
Thus ord′(g(v)) = g(v1), . . . , g(vn)
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In each case we have ord′(g(v)) = g(v1), . . . , g(vn), so σ′(G) '
o
τsi,j(G).

Thus g ∈ IsomEqOrd(G, τsi,j(G)) and g(s) = s. This is not possible since

s ∈ SV(G), thus N(EHf ) 6⊂ V (H).

Theorem 1. The stereo property of s is captured by Ss.

Proof. We denote n ∈ N an integer such that Hn
s = Ss (Remark 2).

The sequence is initialized by V (H0
s ) = StereoStar(s). As the sequence is

increasing we have V (H0
s ) ⊂ V (Hn

s ), so the first condition of Definition 14 is
true.

We thus have to prove that FsHn
s

= ∅.

Let us suppose that ∃(i, j) ∈ {1, . . . , |N(s)|}2 with i 6= j,
∃f ∈ IsomEqOrd(Hn

s , τ
s
i,j(H

n
s )) with f(s) = s.

Thus by Lemma 5 we have N(EH
n
s

f ) 6⊂ V (Hn
s ). So V (Hn+1

s ) = V (Hn
s ) ∪⋃

f∈F
Hk

s

N(EH
k
s

f ) 6= V (Hn
s ).

This is in contradiction with the fact that Hn
s = Ss = lim

k→+∞
Hk
s , so the

stereo property of s is captured by Hn
s = Ss.

Thus for each stereo vertex we can construct its minimal stereo subgraph to
characterize it. We consider two stereo vertices as similar if they have a same
minimal stereo subgraphs, and to test it efficiently, we transform our minimal
stereo subgraphs S into codes cS thanks to the method described in [17].

4 Interactions between stereo vertices

In the previous section we have defined a way to construct an oriented subgraph
which characterizes a stereocenter. We may use the set of subgraphs, associated
to each stereocenter of a molecule, to compare molecules. However two stereo-
center may not have the same influence on a property if they are close from each
other or far from each other in a molecule. In the same way, two same minimal
stereo subgraph may not have a same influence on a property if they have dif-
ferent surroundings. We now propose to construct some new graphs, based on
the set of minimal stereo subgraphs, to encode more information about those
subgraphs.

4.1 Graphs of interaction

To represent the interactions between stereo vertices we define different func-
tions of interactions, which encode different degrees of information about the
interactions between stereo vertices:
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Definition 17. Functions of interactions
Let G = (Gm = (V,E, µ, ν), ord) an ordered graph and H(G) its set of

minimal stereo subgraphs.
Functions of interactions are defined according to a sequence of conditions

(c0, . . . , cn). These conditions are increasingly constraining:

∀i ∈ {1, . . . , n− 1} ci+1 ⇒ ci and c0 = ¬c1

Let H1 and H2 be two minimal stereo subgraphs, such that s1 is the stereo
vertex of H1 and s2 is the stereo vertex of H2. The value F (H1, H2) is obtained
by taking the maximum index j of conditions cj which represents the strongest
interaction between H1 and H2:

F (H1, H2) = max{j ∈ {0, . . . , n} | cj}

We consider 4 sequences of conditions defining 4 functions of interactions Fi
:

– F1 is defined by using


c1 : H1

⋂
H2 6= ∅

c2 : kernel(s1) ⊂ H2

c3 : StereoStar(s1) ⊂ H2

c4 : H1 ⊂ H2

– F2 is defined by using

 c1 : H1

⋂
H2 6= ∅

c2 : StereoStar(s1) ⊂ H2

c3 : H1 ⊂ H2

– F3 is defined by using

 c1 : kernel(s1) ⊂ H2

c2 : StereoStar(s1) ⊂ H2

c3 : H1 ⊂ H2

– F4 is defined by using

{
c1 : StereoStar(s1) ⊂ H2

c2 : H1 ⊂ H2

Note that the Fi is not symmetric.

We define thanks to those functions, 4 graphs of interactions Gi where each
vertex v ∈ Vi represent a minimal stereo subgraph and each edge encode the
interaction between two minimal stereo subgraphs.

Definition 18. Directed Graph of interactions
A directed graph of interactions Gi = (Vi, Ai, µi, νi) is a graph constructed

from an ordered graph G = (Gm = (V,E, µ, ν), ord) such that :

– ∀u ∈ Vi, ∃!H(u) ∈ H(G).
– ∀u ∈ Vi, µi(u) = cH(u), where cH is the code defined in [17] (Section 3).
– ∃a = (u1, u2) ∈ Ai ⇐⇒ Fi(H(u1), H(u2)) 6= 0.
– ∀a = (u1, u2) ∈ Ai, νi(a) = Fi(H(u1), H(u2).

where Fi is one of the function defined in Definition 17.
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As very few nodes have the same label in the directed graph of interactions,
the direction of edges does not provide a lot of information. We thus define
undirected graphs of interactions, which encode not a lot less infromation than
directed graphs of interactions, but which is simpler.

Definition 19. Graph of interactions
A graph of interactions Gi = (Vi, Ei, µi, νi) is a graph constructed from an

ordered graph G = (Gm = (V,E, µ, ν), ord) such that :

– ∀u ∈ Vi, ∃!H(u) ∈ H(G).
– ∀u ∈ Vi, µi(u) = cH(u), where cH is the code defined in [17] (Section 3).
– ∃e = (u1, u2) ∈ Ei ⇐⇒ Fi(H(u1), H(u2)) 6= 0 or Fi(H(u2), H(u1)) 6= 0.
– ∀e = (u1, u2) ∈ Ei, νi(e) = min(Fi(H(u1), H(u2)), Fi(H(u2), H(u1))) �

max(Fi(H(u1), H(u2)), Fi(H(u2), H(u1))).

where � denotes the concatenation and Fi is one of the function defined in
Definition 17.

Figure 4 show all graphs of interactions we can construct from an ordered
graph by taking the four different functions of interactions.

The first graph G1 is constructed by taking 4 different types of interaction.
However we may suppose that some of those type of interaction are less relevant
than the other.

Indeed, a vertex s1 is a stereo vertex because of the relative positioning of
its neighbour. So we may suppose that, if a stereo vertex is present in a stereo
subgraph (kernel(s1) ⊂ H2), but not its neighbourhood (StereoStar(s1) 6⊂ H2),
the stereo vertex may have a similar influence in H2 than a non-stereo vertex.
G2 is thus constructed without taking kernel(s1) ⊂ H2 as a type of interaction.

We also may suppose that an intersection between two minimal stereo sub-
graphs may not be a sufficiently relevant information. Thus the graph G3 is
constructed with 3 different type of interaction, by considering that two stereo
vertex are related if we have at least kernel(s1) ⊂ H2 or kernel(s2) ⊂ H1.

Finally G4 is constructed by taking the two previous assumptions together.
As graphs of interaction are graphs without order, we may apply any graph

kernel (for the experiment in Section 5 we apply the treelet kernel [7]) to measure
their similarity.

5 Experiments

We have tested our method on two datasets. For both of them we use the same
protocol, a nested cross-validation, to choose the parameter and estimate the
performance. The outer cross-validation is a leave-one-out procedure, used to
compute an error for each molecule of the dataset. For each fold, we use another
leave-one-out procedure on the remaining molecules, to compute a validation
error. We use standard SVM method [5, 6] for classification and regression of
molecules.
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(a) An ordered graph and its minimal stereo subgraphs

(b) G1 (c) G2

(d) G3 (e) G4

Fig. 4: One ordered graph and its different graph of interactions, obtained by
taking different function of interactions.
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Table 1: Averages values of numbers of vertices (|V |), edges (|E|), different
labels(|LV |,|LE |), and mean degree (d) of graph of interactions.

|V | |E| |LV | |LE | d

Graph 1 5 7 4.5 3 2.8

Graph 2 5 7 4.5 3 2.8

Graph 3 5 2 4.5 2 0.8

Graph 4 5 1 4.5 1 0.4

(a) ACE dataset

|V | |E| |LV | |LE | d

Graph 1 8.55 17.4 8.38 5.71 4.07

Graph 2 8.55 17.4 8.38 3.71 4.07

Graph 3 8.55 11.3 8.38 4.71 2.62

Graph 4 8.55 6.14 8.38 2.71 1.43

(b) Vitamin dataset

Our first experiment is based on a dataset composed of all the stereoisomers
of the perindoprilate [3]. As this molecule has 5 stereocenters, the dataset is
composed of 25 = 32 molecules. In this dataset, we try to predict if a molecule
inhibit the angiotensin-converting enzyme (ACE). Basic statisistics about the
graphs of interactions Gi = (Vi, Ei, µi, νi) deduced from this dataset is displayed
in Table 2a.

Table 2: Classification of the ACE inhibitory activity of perindopirilates
stereoisomers

Method Accuracy

Brown [1] 96.875
Stereo Kernel [11] 87.5
Stereo + Extended subgraphs [10] 96.875
Graph of interaction 1 93.75
Graph of interaction 2 93.75
Graph of interaction 3 93.75
Graph of interaction 4 84.375
Graph of interaction 1 with MKL 100
Graph of interaction 2 with MKL 100
Graph of interaction 3 with MKL 87.5
Graph of interaction 4 with MKL 90.625

For this first experiment we have not included results of method which
do not include stereoisomerism information [14, 7]. Indeed all molecules of the
dataset are stereoisomers of each other, so those methods cannot differentiate
any molecule of this dataset and are consequently unable to predict the consid-
ered property. Moreover, information not related to stereoisomerism included in
kernel [1] consists of the same patterns for all molecules. This leads to add a
constant shift to all values of the kernel and hence does not deteriorate the pre-
diction for this dataset. In this dataset two stereocenters have a same minimal
stereo subgraph, but different surrounding. The stereo kernel [11] and one of the
graph of interactions (G4), can not differentiate those two stereocenters, which
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have different influence on the property, this explains why other method ([1, 10]
and the three other graphs of interactions) obtain a better accuracy. However,
for our graphs of interactions, treelet of size one have a negative effect on the
classification, this explains why we do not obtain better results than [1, 10]. By
using a multiple kernel learning algorithm [16], we can learn a weight for each
treelet, that allow us to discard treelet of size 1 and to obtain the best results
with the first and second graph of interactions. The third graph of interactions
have very few edges and a low degree (Table 2a) which explains why the treelet
kernel with multiple kernel learning obtains poor results with this graph.

The second dataset is a dataset of synthetic vitamin D derivatives, used in [1].
This dataset is composed of 69 molecules, with an average of 9 stereocenters per
molecule. This dataset is associated to a regression problem, which consists in
predicting the biological activities of each molecules. As for the previous dataset,
statistics about the graphs of interactions deduced from this dataset can be found
in Table 2b.

Table 3: Prediction of the biological activity of synthetic vitamin D derivatives.

Method RMSE

1 - Tree patterns Kernel [14] 0.251
2 - Treelet Kernel [7] 0.271
3 - Brown [1] 0.184
4 - Stereo Kernel [11] 0.194
5 - Stereo + Extended subgraphs [10] 0.180
6 - Graph of interaction 1 0.177
7 - Graph of interaction 2 0.177
8 - Graph of interaction 3 0.169
9 - Graph of interaction 4 0.172

Methods which do not encode stereoisomerism information [14, 7] obtain poor
results as we can see in Table 3 (lines 1-2). The adaptation of the tree pattern
kernel to stereoisomerism [1] and our previous kernels [11, 10] (lines 3-5) improves
the results over the two previous methods hence showing the insight of adding
stereoisomerism information. Taking into account relationships between minimal
stereo subgraphs (lines 6-9) allows us to obtain better results than our previous
method [10].

6 Conclusion

The study and the definition of new stereoisomers constitutes an important
subfield of chemistry and thus a major challenge in chemoinformatics. Indeed,
stereoisomers of some common drugs may be considered as violent poisons. For
example, a molecule called thalidomide was sold in the late fifties as an anti
nausea for pregnant women. However, it turns out that one of the stereoisomer
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of this molecule could cause fetal malformation. Up to now, only few meth-
ods have proposed pattern recognition methods taking explicitly into account
stereoisomerism.

We have presented previously a graph kernel based on an explicit enumeration
of all the stereo subgraphs of a molecule. Each stereo subgraph is associated to
a stereo vertex and encodes the part of the graph which provides the stereo
property to this vertex. In this report we have proposed an extension of this
previous methods which consists in construct a new graph, where each nodes
represent a stereo subgraph and each edge encode the interaction between stereo
subgraphs. This graph allows us to take into account relationships between stereo
subgraphs. The relevance of this approach is demonstrated by our experiments
on two datasets.
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