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Introduction

Mixed-effects models are used to analyse repeated measurements with similar functional form but with some variability between experiments (see e.g. [START_REF] Davidian | Nonlinear models for repeated measurement data[END_REF][START_REF] Pinheiro | Mixed-effect models in S and Splus[END_REF][START_REF] Diggle | Analysis of longitudinal data[END_REF]. The advantage is that a single estimation procedure is used to fit the overall data simultaneously. In the present work the model of interest is a mixed-effects stochastic differential equation (SDE). Each equation represents the behaviour of one subject and corresponds to one realization of the random effects. Hence the random effects represent the particularity of each process. Mixed-effects SDEs have various applications such as neuronal or pharmacokinetic modelling (see e.g. [START_REF] Picchini | Parameters of the diffusion leaky integrate-and-fire neuronal model for a slowly fluctuating signal[END_REF][START_REF] Donnet | A review on estimation of stochastic differential equations for pharmacokinetic -pharmacodynamic models[END_REF]. Estimation methods in SDEs with random effects have been proposed in literature. The main purposes are the estimation of the common distribution of the random effects in a parametric or nonparametric way. The estimation of the common density of the random effects is mainly parametric. Most methods assume normality of the random effects and estimate the population parameters (see e.g. [START_REF] Picchini | Parameters of the diffusion leaky integrate-and-fire neuronal model for a slowly fluctuating signal[END_REF]Delattre et al., 2013;[START_REF] Delattre | Coupling the SAEM algorithm and the extended Kalman filter for maximum likelihood estimation in mixed-effects diffusion models[END_REF]). However, one can ask if this assumption is reasonable in some application contexts. Nonparametric estimation can allow us to get around this problem. To the best of our knowledge, the first reference in this context is Comte et al. (2013) who propose different nonparametric estimators and then [START_REF] Dion | Nonparametric estimation in a mixed-effect Ornstein-Uhlenbeck model[END_REF] who develops two adaptive nonparametric estimators for the Orsntein-Uhlenbeck model with an application to a neuronal database. But these two references focus on a one-dimensional random effect.

In the present work we study the case of two random effects or, in other words, of one bidimensional random effect. We want to deal with two points: the estimation of the random effects and the nonparametric estimation of their common density. This bivariate context makes the study more complex. In fact the estimation of the random effects is done using matrix norm and operator, and anisotropy appears in the density estimation part. We consider N trajectories, observed on the interval [0, T ] where T is given. For j = 1, ..., N the dynamics of each process is described by the stochastic differential equation dX j (t) = b t (X j (t))φ j dt + σ(X j (t))dW j (t) X j (0) = γ j

(1)

where φ j = (φ j,1 , φ j,2 ) t ∈ R 2 is the bidimensional random effect, b(.) = (b 1 (.), b 2 (.)) t , σ(.) are known functions defined on R, (W j ) 1≤j≤N are N independent Wiener processes and γ j is a real valued random variable. The random variables ((φ 1 , γ 1 ), . . . , (φ N , γ N )) are i.i.d. and the sequences ((φ 1 , γ 1 ), . . . , (φ N , γ N )) and (W 1 , . . . , W N ) are independent. The two random effects are not assumed independent. This model is more general than the ones investigated in Comte et al. (2013) where the drift has the form b(.)φ or b(.) + φ with φ a real valued random effect. Notice that the N trajectories (X j (t), 0 ≤ t ≤ T ) 1≤j≤N are i.i.d.. We assume that the φ j = (φ j,1 , φ j,2 ) t 's have a common bivariate density f . Our goal is twofold: first estimate the random effects φ j 's and then their density f , from the observations (X j (t), 0 ≤ t ≤ T ) 1≤j≤N , with large T and N . The estimation of the random variables φ j 's follows the steps of [START_REF] Genon-Catalot | Estimation for stochastic differential equations with mixed effects[END_REF] where only one multiplicative random effect in the drift is considered. We build an estimator A j (T ) of φ j based on the trajectory (X j (t), 0 ≤ t ≤ T ) and study its L 2 -risk. This leads to a bound of order 1/T . Then we propose a kernel estimator of the density f which uses the sample ( A j (T )) j . When f is in a Nikol'ski space a bound of the mean integrated squared error is established and the rate of convergence is evaluated. Finally a data-driven choice of the bandwidth based on a Goldenshluger and Lepski's criterion for anisotropic multi-index is proposed (see e.g. [START_REF] Kerkyacharian | Nonlinear estimation in anisotropic multiindex denoising[END_REF][START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF] and leads to an adaptive estimator. Section 2 is dedicated to assumptions and definitions of some useful quantities for the estimation of φ j . In Section 3 the estimator of the random effects is built and its L 2 -risk is bounded. In particular we deal with two main examples: the Ornstein-Uhlenbeck model and the Cox-Ingersoll-Ross model.

In Section 4 the estimator of the density f is studied. Finally, Section 6 is devoted to numerical simulations to illustrate estimators. Proofs are relegated in Section 8.

Notation and assumptions

2.1. General assumptions on the model. Consider real valued processes (X j (t)) j=1,...,N given by (1). We assume that (W j ) j=1...,N and (φ j , γ j ) j=1,...,N are defined on a common probability space (Ω, F, P). Consider the following assumptions (see e.g. [START_REF] Kutoyants | Statistical Inference for Ergodic Diffusion Processes[END_REF]Kessler et al., 2012, for details). (A2) There exists an open set Φ of R 2 and an interval (l, r) ⊂ R such that σ 2 (x) > 0 for x ∈ (l, r), and for all ϕ ∈ Φ the function s ϕ : x → exp(-2

(A1) The real valued functions x → b 1 (x), x → b 2 (x)
x x 0 b t (u)ϕ σ 2 (u) du), x 0 ∈ (l, r) satisfies l s ϕ (y)dy = +∞, r s ϕ (y)dy = +∞.
The function

m ϕ : x → 1/(σ 2 (x)s ϕ (x)) satisfies M (ϕ) = r l m ϕ (x)dx < +∞. We set π ϕ (x) := 1 (l,r) (x) m ϕ (x) M (ϕ) . ( 2 
) (A3) φ j takes values in Φ, has distribution f (ϕ)dϕ and (φ j , γ j ) has distribution on Φ × (l, r) π(dϕ, dx) = f (ϕ)dϕ ⊗ π ϕ (x)dx.
Assumption (A1) ensures the existence and uniqueness of a strong solution X j (.) to (1) for all random variables (φ j , γ j ) ∈ R 3 , adapted to the filtration (F t = σ((φ j , γ j ) j=1,...,N , W j (s), s ≤ t, j = 1 . . . , N ), t ≥ 0). Then (φ j , γ j ) is F 0 -measurable and W j is a (F t , t ≥ 0) Brownian motion.

In the following, for ϕ = (ϕ 1 , ϕ 2 ) t a fixed value in Φ we denote by X ϕ the process solution of the stochastic differential equation with fixed ϕ:

dX ϕ j (t) = b t (X ϕ j (t))ϕdt + σ(X ϕ j (t))dW j (t) X ϕ j (0) ∼ π ϕ , X ϕ j (0) independent of W j .
(3)

Under (A1)-(A2), for ϕ ∈ Φ, the process defined by ( 3) is strictly stationary and ergodic with scale density s ϕ , speed density m ϕ and marginal distribution π ϕ (x)dx. Under (A1)-(A3), according to Genon-Catalot and Larédo (2014), the conditional distribution of X j given φ j = ϕ is identical to the distribution of (3), the process ((φ j , X j (t)), t ≥ 0) is strictly stationary with marginal distribution π and P(X j (t) ∈ (l, r), ∀t > 0) = 1.

Finally under (A1)-(A3) as for j = 1, . . . , N , for all t ≥ 0, X j (t) ∈ (l, r), ∀T > 0: Example.

T 0 b 2 1 σ 2 (X j (s))ds < +∞, T 0 b 2 2 σ 2 (X j (s))ds < +∞, a.s.
[1] The Ornstein Uhlenbeck model (O-U) with two random effects is defined as

dX j (t) = (φ j,1 -φ j,2 X j (t))dt + σdW j (t) X j (0) = γ j (4) 
with σ(x) = σ > 0, (l, r) = R, and b(x) = (1, -x) t . Assumption (A2) requires Φ = R × (0, +∞) and leads to π ϕ = N ϕ 1 /ϕ 2 , σ 2 /(2ϕ 2 ) as invariant distribution for fixed ϕ.

Example.

[2] The Cox-Ingersoll-Ross model (C-I-R) with two random effects is defined as

dX j (t) = (φ j,1 -φ j,2 X j (t))dt + σ X j (t)dW j (t) X j (0) = γ j (5) with σ(x) = σ √
x with σ > 0, and b(x) = (1, -x) t . Assumption (A2) requires 2ϕ 1 /σ 2 ≥ 1 and 2ϕ 2 /σ 2 > 0 (in particular the process is always positive). This leads to consider Φ = (σ 2 /2, +∞) × (0, +∞). The invariant distribution, for fixed ϕ, π ϕ = Γ(2ϕ 1 /σ 2 , σ 2 /(2ϕ 2 )) is the Gamma distribution with shape parameter 2ϕ 1 /σ 2 and scale parameter σ 2 /(2ϕ 2 ).

2.3. Specific assumptions and notations for estimation. Our estimation is based on the following quantities. As in Comte et al. (2013) we define for j = 1, ..., N,

U j (T ) := T 0 b σ 2 (X j (s))dX j (s), (6) 
which is a column vector with size 2 × 1 and the 2 × 2 symmetric matrix:

V j (T ) := T 0 b b t σ 2 (X j (s))ds = T 0 b 2 1 σ 2 (X j (s))ds T 0 b 1 b 2 σ 2 (X j (s))ds T 0 b 1 b 2 σ 2 (X j (s))ds T 0 b 2 2 σ 2 (X j (s))ds . (7) 
Using (1), U j (T ) can be decomposed as follows

U j (T ) = V j (T )φ j + M j (T ) with M j (T ) := T 0 b σ (X j (s))dW j (s). (8) 
Note that

V j (T ) =< M j > T (9)
where < . > is the quadratic variation of a continuous local martingale. For all measurable function h : (l, r) → R π ϕ -integrable for all ϕ ∈ Φ, we define the random variable π φ j (h) := r l h(x)π φ j (x)dx. (A4) For ϕ ∈ Φ and i ∈ {1, 2}, we assume

π ϕ b 2 i σ 2 = r l b 2 i σ 2 (x)π ϕ (x)dx < +∞.
We define the random matrix

L j := π φ j b b t σ 2 .
(A5) For j = 1, . . . , N , P (L j invertible) = 1.

Under (A1)-(A4), Theorem 3.1. of Genon-Catalot and Larédo (2014) gives:

< M j > t t = V j (t) t → t→+∞ L j , a.s. ( 10 
)
One can notice that assumption (A5) implies that V j (t) is invertible for t large enough.

In the study we denote . the L 2 (R)-norm, . p the L p (R)-norm when p = 2, 2 the euclidean norm of R 2 and F the Frobenius norm of matrices defined for A ∈ M 2 (R) by A 2 F = i,j A 2 i,j = Tr( A t A). We denote S 2 (R) the subset of symmetric matrices of M 2 (R).

Random effect estimation

We define first for each j an estimator of the random variable φ j based on the trajectory X j (t), t ∈ [0, T ]. Then these estimators are used to build an estimator of the density f . 3.1. Definition of the estimator of the random effects. Let us define N bidimensional random variables

A j (T ) := (A j,1 (T ), A j,2 (T )) t = V j (T ) -1 U j (T ), (11) 
which corresponds to the maximum likelihood estimator of φ j when φ j = ϕ is deterministic. Note that

A j (T ) = φ j + V j (T ) -1 M j (T ). (12) 
Thus A j (T ) is a consistent estimator of φ j as T tends to infinity according to convergence (10).

Because of the presence of the inverse matrix V j (T ) -1 in formulae ( 11)-( 12), it is difficult to prove that A j (T ) has finite moments and to compute any of them. To overcome this theoretical difficulty, we consider a truncated estimator of φ j . Let

A j (T ) := A j (T )1 B j (T ) , B j (T ) := {V j (T ) ≥ κ √ T I 2 } = {min(λ 1,j (T ), λ 2,j (T )) ≥ κ √ T } (13)
where λ i,j (T ), i = 1, 2 are the eigenvalues of V j (T ) and I 2 is the identity matrix of M 2 (R). The inequality in the definition of B j (T ) has a matrix sense: for two matrices (A, B) ∈ S 2 (R), A ≤ B if and only if B -A is a non negative matrix (see Appendix 8.5). Relations ( 7) and (9) show that V j (T ) is a non negative symmetric matrix, thus its eigenvalues are non negative. We are able to bound the L 2 -risk of the estimator A j (T ) of φ j . This bound is needed to evaluate the mean integrated squared error of the nonparametric estimator of the density f . 3.2. Main result. We denote L ϕ the infinitesimal generator of the process (3), given for F ∈ C 2 ((l, r)), by L ϕ F (x) := (σ 2 (x)/2)F (x) + ( b t (x)ϕ)F (x). Its domain is included in L 2 πϕ which is the space of functions f such that r l f 2 dπ ϕ < ∞ (for details see e.g. [START_REF] Genon-Catalot | Stochastic volatility models as hidden markov models and statistical applications[END_REF]). When F is a matrix, the notation L ϕ F indicates that we apply the operator on each coefficient of the matrix. We also define analogously F as the matrix of derivatives. For all g = (g i,k ) 1≤i,k≤2 ∈ M 2 (R) such that π ϕ (g 2 i,k ) < +∞ for all ϕ ∈ Φ, we associate the matrix

F g ϕ = F g 1,1 ϕ F g 1,2 ϕ F g 2,1 ϕ F g 2,2 ϕ
satisfying -L ϕ F g ϕ = g -π ϕ g for all ϕ ∈ Φ . We denote for simplicity

H φ j := F b b t /σ 2 φ j . ( 14 
)
Examples below show how H φ j can be constructed. We are now able to announce the main result on the estimator on the random effects.

Proposition 1. Consider the processes (X j (t), j = 1, . . . , N ) given by ( 1) under (A1)-(A5). Assume that for j = 1, . . . , N ,

E L j 2 F [det(L j )] 2 Tr (L j ) < ∞, E L j 4 F [det(L j )] 4 Tr π φ j b b t σ 2 2 < ∞, E φ j 2 2 1 L 2 j,1,1 + 1 L 2 j,2,2 π φ j ( H φ j 2 F ) + E φ j 2 2 1 L 2 j,1,1 + 1 L 2 j,2,2 π φ j ( H φ j 2 F σ 2 ) < ∞ and E π φ j ( H φ j 4 F ) + E π φ j ( H φ j 4 F σ 4 ) < ∞.
Then, there exists a constant C > 0 such that

E A j (T ) -φ j 2 2 ≤ C T . ( 15 
)
The two last assumptions of Proposition 1 correspond to the application of Proposition 7 given in Section 8.1 with g = b b t /σ 2 , p = 1 and p = 2. This proposition is the key of the nonparametric estimation procedure set up in Section 4.

Key examples continued. Let us investigate the two examples given in Section

2.2. Example. [1](continued) In this case b b t σ 2 (x) = 1 σ 2 1 -x -x x 2 , V j (T ) = 1 σ 2 T - T 0 X j (s)ds - T 0 X j (s)ds T 0 X j (s) 2 ds .
For simplicity we set here φ j = φ = (φ 1 , φ 2 ) t . The limit matrix L of V (T )/T is given by

L = π φ b b t σ 2 = 1 σ 2 1 -φ 1 φ 2 -φ 1 φ 2 σ 2 2φ 2 + φ 2 1 φ 2 2 , det(L) = σ 2 2φ 2 > 0.
We can check that

H φ (x) =   1 -1 φ 2 σ 2 (x -φ 1 φ 2 ) -1 φ 2 σ 2 (x -φ 1 φ 2 ) 2φ 1 σ 2 φ 2 2 x -φ 1 φ 2 + 1 2σ 2 φ 2 x -φ 1 φ 2 2 -σ 2 2φ 2   .
Details are in Appendix. The assumptions of Proposition 1 are fulfilled if

E[φ 6 1 + φ -10 2 ] < ∞. Example. [2](continued) In this case, b b t σ 2 (x) = 1 σ 2 1 x -1 -1 x , V j (T ) = 1 σ 2 T 0 1 X j (s) ds -T -T T 0 X j (s)ds . For Φ = (σ 2 , +∞) × (0, +∞), π ϕ (x → 1/x 2 )
< ∞ for all ϕ ∈ Φ and the limit matrix L is given by:

L = π φ b b t σ 2 = 1 σ 2 2φ 2 2φ 1 -σ 2 -1 -1 φ 1 φ 2 . , det(L) = σ 2 2φ 1 -σ 2 > 0.
One can verify (see Appendix) that

H φ (x) = 2 σ 2 (2φ 1 -σ 2 ) log(x) 1 1 1 φ 2 σ 2 x -φ 1 φ 2 .
The details are relegated in Appendix. For the assumptions of Proposition 1 we must have

π φ (x → | log(x)|), π φ (x → 1/x 2 ) and π φ (x → 1/x 4 ) finite. The last condition imposes a reduction of Φ to Φ = (2σ 2 , +∞) × (0, +∞). Moreover the other assumptions are fulfilled if E[log 2 (φ 2 ) + φ 5 1 + φ 8 2 + φ -4 2 + ψ 2 (2φ 1 /σ 2 -1)] < ∞, where ψ(x) := Γ (x)/Γ(x) is the digamma function.

Nonparametric estimation

In this section we assume that f ∈ L 2 (R 2 ) and set up a nonparametric estimation procedure based on a kernel estimator. We study the obtained estimator and determinate its rate of convergence. 4.1. Nonparametric estimator of the density of the random effects. By Proposition 1, A j (T ) is a consistent estimator of φ j when T tends to infinity. It is therefore natural to define a kernel estimator based on the A j (T )'s. Let us denote by K a kernel in C 1 (R 2 ) such that the partial derivatives

∂K ∂u and ∂K ∂v are in ∈ L 2 (R 2 ), K is integrable, K(u, v)dudv = 1 and K 2 = K 2 (u, v)dudv < +∞. For all h = (h 1 , h 2 ), h 1 > 0, h 2 > 0, for all (u, v) ∈ R 2 , we denote K h (u, v) = 1 h 1 h 2 K u h 1 , v h 2 .
For example one can consider the Gaussian kernel

K(u, v) = K 1 (u)×K 1 (v), with K 1 (u) = (1/ √ 2π) exp(-u 2 /2).
We define the estimator of the density f for

x = (x 1 , x 2 ) ∈ R 2 by f h (x) = 1 N N j=1 K h (x -A j (T )). ( 16 
) Denoting f h (x) := K h f (x) = f (y 1 , y 2 )K h (x 1 -y 1 , x 2 -y 2
)dy 1 dy 2 , the following result holds.

Proposition 2. Under (A1)-(A5) and under the assumptions of Proposition 1,

E[ f h -f 2 ] ≤ 2 f -f h 2 + 2 max 1 h 3 1 h 2 , 1 h 1 h 3 2 ∂K ∂u 2 + ∂K ∂v 2 C T + K 2 N h 1 h 2 (17)
with C the constant which appears in Proposition 1.

This bound comes from the bias-variance decomposition:

E[ f h -f 2 ] ≤ 2 f -f h 2 + 2 E[ f h ] -f h 2 + E[ f h -E[ f h ] 2 ].
The first term is a bias term due to the approximation of f by f h , it decreases when h 1 , h 2 decrease. The third term is a variance term which increases when h 1 , h 2 decrease. Finally, the middle term is an error term due to the approximation of the φ j 's by the A j (T )'s also increasing when h 1 , h 2 decrease. Note that the orders are consistent with the result of Comte et al. (2013), Proposition 1 for the multiplicative model. In fact in the case of a single random effect, multiplicative in the drift, the second term has the order 1/(T h 3 ) and the third term: 1/(N h).

To choose the best h, a compromise must be done between between the bias term and the variance and middle terms. 4.2. Rates of convergence. We consider anisotropic Nikol'ski classes of functions which are well fitted to evaluate the order of the bias term (see [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF] and [START_REF] Comte | Anisotropic adaptive kernel deconvolution[END_REF] for example).

Definition 3. A function f is in the Nikol'ski class N (β, R) if f : R 2 → R admits partial derivatives of order β i , i ∈ {1, 2} such that, with y 1 = (y, 0), y 2 = (0, y), for all y ∈ R, for i ∈ {1, 2}   ∂ β i f (∂x i ) β i ((x 1 , x 2 ) + y i ) - ∂ β i f (∂x i ) β i (x 1 , x 2 ) 2 dx   1/2 ≤ R|y| β i -β i , ∂ β i f (∂x i ) β i ≤ R
(with β denotes the largest integer strictly less than β).

Recall that kernel K : R → R is of order l ∈ N * if for j = 1, . . . , l, |x| j |K(x)|dx < +∞ and x j K(x)dx = 0 (see [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF]). In this context we are now able to bound the bias term

f -f h 2 . Proposition 4. If f ∈ N (β, R) and K(x) = K(x 1 , x 2 ) = K 1 (x 1 )K 2 (x 2 ) where K 1 is a kernel of order l 1 := β 1 , K 2 a kernel of order l 2 := β 2 , |K 1 (u)u β 1 |du < ∞ and |K 2 (u)u β 2 |du < ∞, then there exist two constants c 1 , c 2 > 0 such that f -f h 2 ≤ c 1 h 2β 1 1 + c 2 h 2β 2 2 . ( 18 
)
In order to minimize the MISE, if we only consider the first and the last term of the right hand side of (17), we have to minimize the following function of two variables:

(h 1 , h 2 ) → ξ(h 1 , h 2 ) = 1 N h 1 h 2 + h 2β 1 1 + h 2β 2 2 .
With 1/ β = 1/(2β 1 ) + 1/(2β 2 ), we get the minimizing values

h * 1 = O N -1 2β 1 β β+1 , h * 2 = O N -1 2β 2 β β+1 (19) 
and this implies

ξ(h * 1 , h * 2 ) = O N - 4β 1 β 2 (2β 1 +1)(2β 2 +1)-1 = O N -2 β 2+2 β .
Therefore, we require (see ( 17))

1 T max 1 h * 3 1 h * 2 , 1 h * 1 h * 3 2 ≤ 1 T h * 1 h * 2 1 h * 2 1 + 1 h * 2 2 ≤ N - 4β 1 β 2 (2β 1 +1)(2β 2 +1)-1 .
This holds under the following condition

T ≥ N 1+ 4β 1 (2β 1 +1)(2β 2 +1)-1 + N 1+ 4β 2 (2β 1 +1)(2β 2 +1)-1 . ( 20 
)
This condition is implied by T ≥ N 3 , and if β i > 1/2 by T ≥ N 2 . We are now able to state the order of the risk, for large N and T .

Corollary 5. Under (A1)-(A5), under the assumptions of Proposition 4, under conditions ( 19) and (20), we have 2β+2) . The classical rate of convergence for a kernel density estimator, with one bandwidth, is N -2β/(2β+1) . We observe here a 2 on the denominator which comes from the number of bandwidths.

E[ f h * -f 2 ] = O N -2 β 2 β+2 with 1/ β = 1/(2β 1 ) + 1/(2β 2 ). Notice that if β 1 = β 2 = β, thus β = β and N -2β/(2β+2) = N -2β/(
In practice the regularity parameters β and R are unknown. Thus we propose a data-driven way of choosing h based on the [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF]) method. 4.3. Data-driven bandwidth and adaptation. The idea is to replace the unknown term f h -f 2 by an estimator. For this we introduce the iterated auxiliary kernel estimators

f h,h (x) := K h f h (x) = 1 N N j=1 K h K h (x -A j (T )).
Let H N,T be a finite set of bandwidths h = (h 1 , h 2 ). Following Goldenshluger and Lepski's approach, we define the estimator of the bias term by

B(h) = sup h ∈H N,T f h,h -f h 2 -v(h ) + ( 21 
)
where

v(h) := κ 1 K 2 K 2 1 N h 1 h 2 + κ 2 K 2 1 1 h 3 1 h 2 + 1 h 1 h 3 2 ∂K ∂u 2 + ∂K ∂v 2 C T , (22) 
is a term which has the same order as the variance terms in (17), C is the constant from Proposition 1 and κ 1 , κ 2 are numerical constants. The bandwidth is finally selected as follows

h = argmin h∈H N,T (B(h) + v(h)). ( 23 
)
Then we obtain the following Theorem.

Theorem 6. We assume that the elements of H N,T satisfy 0

< h i < 1, i = 1, 2, 1/(N h 1 h 2 ) ≤ 1, 1/(h 3 1 h 2 ) ≤ T, 1/(h 1 h 3 2 ) ≤ T, and that ∀c > 0, ∃Σ(c) < ∞, h∈H N,T (h 1 h 2 ) -1/2 e -c/ √ h 1 h 2 ≤ Σ(c).
Under (A1)-(A5), under the assumptions of Proposition 1 and if K 4/3 < +∞, there exist numerical constants κ 1 , κ 2 such that

E[ f h -f 2 ] ≤ C 1 inf h∈H N,T { f -f h 2 + v(h)} + C 2 N (24) with C 1 a positive constant depending on K 1 , C 2 is a positive constant depending on f , ∂K ∂u 2 + ∂K ∂v 2 , K 1 , K 4/3 and C (the constant from Proposition 1).
This is a non-asymptotic result proving that the bias variance compromise is automatically realized by the final estimator f h which is therefore adaptive. Theorem 6 is proved in [START_REF] Dion | Nonparametric estimation in a mixed-effect Ornstein-Uhlenbeck model[END_REF] for a single random effect. As the proof is analogous we do not repeat it here. The key is to prove that

E[B(h)] ≤ f -f h 2 + c/N
. The theoretical study gives κ 1 ≥ max(40/ K 2 1 , 40) and κ 2 ≥ max(10/ K 2 1 , 10). Nevertheless, the constants κ 1 , κ 2 obtained in the proof are not optimal and thus it is standard to calibrate them from a simulation study. The conditions of Theorem 6 are fulfilled for example with the set

H N,T = {(1/k 1 2 , 1/k 2 4 ), k 1 = 1 . . . , N 1/4 , k 2 = 1 . . . , N 1/8 , N 2 ≤ T }.
In practice, note that in v(h), the constant C is unknown, and must be replaced by a rough estimator.

From the proofs of Propositions 1 and 7 it appears that C = E[C(φ j )] for an explicit function C(φ j ), thus C can be estimated by (1/N ) N j=1 C( A j (T )).

Discrete data.

In practice, only discrete observations are available. The estimation method must take into account this fact. Let us assume that we observe synchronously (X j (t)), j = 1, . . . , N at times t k = k∆, k = 1, . . . , n and set T = n∆. As it is classically done, we replace the stochastic and ordinary integrals by their discretized versions. The estimator of φ j is thus defined by

A j,n := A j,n 1 B j,n , with A j,n = V -1 j,n U j,n , (25) 
and

U j,n := n-1 k=0 b σ 2 (X j (k∆))(X j ((k + 1)∆) -X j (k∆)), V j,n := n-1 k=0 ∆ b b t σ 2 (X j (k∆)), B j,n := {V j,n ≥ κ √ n∆I 2 }.
To extend the present work to discrete data, it is enough to find conditions ensuring that

E[ A j,n -φ j 2 2 ] ≤ C n∆
. The proof follows the steps of Proposition 1, with the discretized integrals instead of the continuous ones. We must study

E 1 n∆ (U j,n -U j (T )) 2p 2 , E 1 n∆ (V j,n -V j (T )) 2p F
for p = 1, 2 and extend Proposition 7 (see Section 7) to the discretized version of (1/T ) T 0 g(X j (s))ds. This is relatively standard as we assume that the processes (φ j , X j (t)) t≥0 are in stationary regime. The discretizations induce a new bias term which of order O(∆). To make this bias negligible, a classical condition on the sampling interval is : ∆ 1/(n∆), i.e. n∆ 2 1 (see [START_REF] Comte | Penalized nonparametric mean square estimation of the coefficients of diffusion processes[END_REF]; [START_REF] Kessler | Statistical methods for stochastic differential equations[END_REF] for example). Note that other approximation of stochastic or ordinary integrals based on discrete data are available and can improve the constraint n∆ 2 1 (see e.g. [START_REF] Kloeden | Numerical solution of stochastic differential equations[END_REF] [START_REF] Iacus | Simulation and Inference for stochastic differential equation[END_REF]).

Moreover, due to the presence of random effects, additional moment conditions on the distribution of the initial condition (φ j , γ j ) are required. To avoid technical developments, we do not give more details.

Simulation study

In this section, we illustrate on simulated data the performances of our nonparametric estimation procedure on the two examples of Sections 2.2 and 3.3. For simplicity we denote f := f h and

f 1 (x 1 ) = f (x 1 , x 2 )dx 2 , f 2 (x 2 ) = f (x 1 , x 2 )dx 1 . ( 26 
)
For the two examples, we simulate N independent discretized sample paths (X j (k∆), k = 1, . . . , n, j = 1, . . . , N ). This is done by simulating independently for each j first the random variable φ j , then, given φ j = ϕ, the initial variable γ j which is simulated according to the invariant distribution π ϕ corresponding to each model. Lastly, the discretized sample path is simulated. For the OU model, we use exact simulations of the discretized path. For the CIR model, we use a discretization scheme given in [START_REF] Alfonsi | On the discretization schemes for the cir (and bessel squared) processes[END_REF].

For simplicity we simulate independent components for φ j = (φ j,1 , φ j,2 ), thus the density f has the form

f (x 1 , x 2 ) = f 1 (x 1 ) × f 2 (x 2 ).
The computation of the estimators A j (T ) given by ( 13) requires to choose a value for the cut-off parameter κ. To choose κ, different functions f have been investigated with different values of ∆ and a large number of repetitions. We compared the MISEs of estimators as functions of the constant κ and selected the value κ = 0.125 as satisfactory. For comparison, we also computed the estimators for κ = 0 (no cut-off). For κ = 0 the estimator is denoted f and its marginals f 1 and f 2 .

There remains the choice of the adaptive bandwidth. In [START_REF] Dion | Nonparametric estimation in a mixed-effect Ornstein-Uhlenbeck model[END_REF] the kernel estimator with datadriven bandwidth selected by the Goldenshluger and Lepski criterion is implemented for one random effect. It is also implemented using the R-function density choosing the bandwidth by cross-validation or with the rule of thumb. The Goldenshluger and Lepski method performs better for mixture densities.

Here we have chosen to use the R-function kde2d for the choice of the bandwidths with a standard bivariate Gaussian kernel.

Example.

[1] The simulation scheme of each sample path given ϕ is as follows:

X ϕ (0) = γ ∼ N ϕ 1 ϕ 2 , σ 2 2ϕ 2
and G 1 , . . . , G n i.i.d. N (0, 1) independent of X ϕ (0),

X ϕ ((k + 1)∆) = X ϕ (k∆)e -∆ϕ 2 + ϕ 1 ϕ 2 (1 -e -∆ϕ 2 ) + σ 2 2ϕ 2 (1 -exp(-2∆ϕ 2 ))G k+1 . ( 27 
)
The following distributions are chosen for the components of the random effects. We drop the index j:

• φ 1 ∼ N (1, 0.5), φ 2 ∼ Γ(10.1, 0.25), • φ 1 ∼ N (1, 0.5), φ 2 ∼ 1/Γ(3, 0.25) • φ 1 ∼ Γ(1.8, 0.8), φ 2 ∼ Γ(2, 1)
• φ 1 ∼ Γ(1.8, 0.8), φ 2 ∼ 1/Γ(3, 0.25) Note that, for the third case, the distribution of φ does not satisfy all assumptions as E[φ -10 2 ] does not exist. However the simulations show that the estimation procedure works even when theoretical assumptions do not hold.

Example.

[2] The simulation scheme of each sample path given ϕ is the one given in [START_REF] Alfonsi | On the discretization schemes for the cir (and bessel squared) processes[END_REF] which is based on the following approximation for small δ:

X ϕ (k+1)δ ∼ = X ϕ kδ + (ϕ 1 -σ 2 /2 -ϕ 2 X ϕ (k+1)δ )δ + σ X ϕ (k+1)δ (W (k+1)δ -W kδ )
. Solving for X ϕ ((k + 1)δ) yields the explicit relation:

X ϕ ((k + 1)δ) =   √ δσG k+1 + σ 2 δG 2 k+1 + 4(δ(ϕ 1 -σ 2 /2) + X ϕ (kδ))(1 + ϕ 2 δ) 2 + 2ϕ 2 δ   2 ( 28 
)
where

G k+1 = (W (k+1)δ -W kδ )/ √ δ and X ϕ (0) = γ ∼ Γ(2 ϕ 1 σ 2 , σ 2 2ϕ 2 ).
The values δ = T /20000, ∆ = 10×δ and n = T /∆ = 2000 are chosen. The two random effects must be positive random variables and the first component must satisfy φ 1 > 2σ 2 . We have chosen to simulate:

•

φ 1 ∼ 2σ 2 + Γ(5, 0.5), φ 2 ∼ 1 + Γ(1.8, 0.8) • φ 1 ∼ 2σ 2 + Γ(5, 0.5), φ 2 ∼ 1/Γ(8.1, 0.05). The chosen distribution for φ 1 satisfies the assumption E[ψ 2 (2φ 1 /σ 2 -1)] < ∞. Indeed, when φ 1 ∼ 2σ 2 + Γ(k, θ), E[ψ 2 (2φ 1 /σ 2 -1)] = +∞ 2σ 2 ψ 2 (2x/σ 2 -1)e -(x-2σ 2 )/θ (x -2σ 2 ) k-1 dx.
One can use the asymptotic equivalent for the di-gamma function ψ(x) ∼ +∞ log(x) to see that the integral is convergent.

Here, the first case does not satisfy E[φ -4 2 ] < ∞. But the estimation results are satisfactory. Figures 1 and4 illustrate the influence of the cut-off κ on the estimators for the two examples. On top, the estimators A j (T ) (κ = 0) are plotted as function of the simulated variables φ j . Top left is for the first component, top right for the second. The bottom figures represent the estimators A j (T ) (κ = 0.125) as function of the simulated φ j . The random variables φ j are well estimated and On Figures 2 (OU example) and 5 (CIR example), estimators of the two marginal densities, i.e. the densities of the two components of the random effects, are shown. The true marginals are in bold black. Three density estimators f 1 (left) and f 1 (right), built using the A j (T )'s (κ = 0), are in dotted (blue) lines. Three density estimators f 1 (left), f 2 (right), built using the A j (T )'s (κ = 0.125), are in continuous (red) lines. The cut-off for estimating the φ j 's improves the density estimators: especially, the first marginal f 1 fits better the true density than f 1 .

Figures 3 and6 show the true bivariate density (top left) and the estimator f (top right). The bottom graphs correspond to sections x 1 → f (x 1 , x 2 ) (bold left) and x 1 → f (x 1 , x 2 ) (dotted left) for a fixed x 2 , and x 2 → f (x 1 , x 2 ) (bold right) and x 2 → f (x 1 , x 2 ) (dotted right) for a fixed x 1 . The estimators are close to the true density.

In order to evaluate with more acuracy the performances of our estimator on the two examples, we have computed their empirical MISE from 100 simulated data sets, for different values of σ and T and for the chosen distributions of (φ 1 , φ 2 ). Results are presented in Tables 1 and2.

On Tables 1 and2 the influence of the cut-off is often visible when N = 20: the MISEs of f are larger than the MISEs of f . It almost disappears on the Tables when N = 200. For a given value of N , when T increases from 10 to 100 the MISE decreases (twice smaller sometimes). The best results are obtained when T = 100 and N = 200. When φ 1 is Gaussian the estimation seems more difficult than when it is Gamma. The influence of σ may be seen when T is not very large. For example for the OU-model, the quantity σ 2 /T appears is the theoretical bound of the MISE and thus it must not T δ ∆ T /∆ f f 10 0.005 0.005 × 2 1000 0.038 0.037 100 0.05 0.05 × 2 1000 0.021 0.025 100 0.005 0.005 × 2 10000 0.019 0.020 T δ ∆ T /∆ f f 10 0.005 0.005 × 2 1000 0.029 0.025 100 0.05 0.05 × 2 1000 0.006 0.007 100 0.005 0.005 × 2 10000 0.006 0.007 be too large. When T is large (T = 100) there is very little difference between the MISE's values for σ = 0.1 and σ = 1.

σ T N f f f 1 f 2 φ 1 ∼ Γ, φ 2 ∼ Γ
Table 3 highlights the different roles of T and ∆. When T increases (from 10 to 100) with the same ∆, the MISEs are divided by 2. When both T and ∆ (from 0.005 × 2 to 0.05 × 2) increase, we still note a slight improvement. However, T /∆ has clearly no influence and this is why in the previous tables we fixed the number of observations per trajectory at T /∆ = 2000 (∆ = 10 × δ). The right table highlights again the role of N . 1

Concluding remarks

In this work, we first provide an estimator of a bivariate random effect in the drift of a stochastic differential equation based on the observation of one trajectory given by (1). The definition of the estimator uses a cut-off parameter which allows us to study and bound its L 2 -risk. Then, using the estimators of the random effects, we build a kernel estimator of the common bivariate density of the random effects, from N i.i.d. observed trajectories and propose a data-driven selection of the bandwidth. The Orsntein-Uhlenbeck and the Cox-Ingersoll-Ross models both with two random effects can be studied with our estimation procedure. Illustrations on simulated data are done and show the good performances of our estimator.

As these two models have many applications in finance and in neuroscience, it would be interesting to investigate our nonparametric method on real data.

The method developed here for two random effects can be easily developped for d random effects. The extension to more general drift forms would require further work and other tools to accommodate the estimation procedure, especially for estimating the random effects. Models including a linear random effect in the diffusion coefficient could be investigated, for instance using the ideas developed in [START_REF] Delattre | Estimation of population parameters in stochastic differential equations with random effects in the diffusion coefficient[END_REF].

1 Program codes are available on the web page: https://owncloud.math-info.univ-paris5.fr/public.php?service= files&t=bc269d7843f844a74b7cff211a751d26

The nonparametric estimation of the drift function in SDEs with no random effect has been largely investigated in the literature (see e.g. [START_REF] Kutoyants | Statistical Inference for Ergodic Diffusion Processes[END_REF][START_REF] Comte | Penalized nonparametric mean square estimation of the coefficients of diffusion processes[END_REF][START_REF] Schmisser | Penalized nonparametric drift estimation for a multidimensional diffusion process[END_REF]. In the case of SDEs with random effects and a general drift b(x, ϕ 1 , ϕ 2 ), the nonparametric estimation of the function b is open and of interest. 8. Proofs 8.1. An additional result and its proof. We denote L ϕ the generator of the process given by (1) when φ j = ϕ, given for all F ∈ C 2 ((l, r)), by L ϕ F (x) := (σ 2 (x)/2)F "(x) + ( b t (x)ϕ)F (x). Then when F is a matrix, the notation L ϕ F only indicated that we apply the operator on each coefficient of the matrix. We also define in this sense F as the derivative matrix coefficients by coefficients.

Proposition 7. Consider the processes (X j (t)) given by ( 1) under (A1)-(A4). Let g = (g i,k ) 1≤i,k≤2 a matrix of S 2 (R), such that π ϕ g 2 i,k < +∞ for all ϕ ∈ Φ. Assume that

F g ϕ = F g 1,1 ϕ F g 1,2 ϕ F g 1,2 ϕ F g 2,2 ϕ
satisfies -L ϕ F g ϕ = g -π ϕ g for all ϕ ∈ Φ . Let J(φ j ) be a non negative measurable function of φ j such that for all p ≥ 1

E J(φ j ) 1 T p π φ j F g φ j 2p F + π φ j (F g φ j ) 2p F σ 2p < ∞.
Then for all p ≥ 1, there exists a constant C p > 0 depending on p such that

E J(φ j ) √ T 1 T T 0 g(X j (s))ds -π φ j (g) 2p F ≤ C p 1 T p E J(φ j )π φ j F g φ j 2p F +E J(φ j )π φ j (F g φ j ) 2p F σ 2p .
We demonstrate the result without the function J but it can be added all along. The subscript j is omitted for simplicity. Denote g ϕ := g -π ϕ g. Ito's formula applied to F g ϕ term by term, and the equality L ϕ F g ϕ = -g ϕ , lead to

F g ϕ (X ϕ (T )) = F g ϕ (X ϕ (0)) + T 0 L ϕ F g ϕ (X ϕ (s))ds + T 0 (F g ϕ ) (X ϕ )σ(X ϕ (s))dW (s) = F g ϕ (X ϕ (0)) - T 0 g ϕ (X ϕ (s))ds + T 0 (F g ϕ ) (X ϕ (s))σ(X ϕ (s))dW (s). Thus, T 0 g ϕ (X ϕ (s))ds = T 0 (F g ϕ ) (X ϕ (s))σ(X ϕ (s))dW (s) + F g ϕ (X ϕ (0)) -F g ϕ (X ϕ (T )) .
Then with Hölder's inequality it yields

E T 0 g ϕ (X ϕ (s))ds 2p F ≤ 2 2p-1 (T a + T b )
with

T a := E T 0 (F g ϕ ) (X ϕ (s))σ(X ϕ (s))dW (s) 2p F , T b := E F g ϕ (X ϕ (0)) -F g ϕ (X ϕ (T )) 2p F . ( 29 
)
We study first the term T a given by (29). Again, Hölder's inequality gives

T a = E     1≤i,k≤2 T 0 (F g i,k ϕ ) (X ϕ (s))σ(X ϕ (s))dW (s) 2   p   ≤ 4 p-1 E   1≤i,k≤2 T 0 (F g i,k ϕ ) (X ϕ (s))σ(X ϕ (s))dW (s) 2p   .
The first term of the sum can by studied with the Burkholder-Davis-Gundy (B.D.G.) inequality (see e.g. [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF][START_REF] Gall | Calcul stochastique et processus de markov[END_REF]. Thus there exists a constant c p > 0 such that

E T 0 (F g 1,1 ϕ ) (X ϕ (s))σ(X ϕ (s))dW (s) 2p ≤ c p E T 0 ((F g 1,1 ϕ ) (X ϕ (s))σ(X ϕ (s))) 2 ds p ≤ c p T p-1 E T 0 ((F g 1,1 ϕ ) (X ϕ (s))σ(X ϕ (s))) 2p ds = c p T p-1 T π ϕ (((F g 1,1 ϕ ) σ) 2p
). Finally there is a constant C p := 4 p-1 c p verifying

T a ≤ C p T p π ϕ     1≤i,k≤2 (F g i,k ϕ ) 2p   σ 2p   ≤ C p T p π ϕ (F g ϕ ) 2p F σ 2p .
Furthermore, we study term T b (29) and Cauchy-Schwarz's inequality leads to

T b ≤ E ( F g ϕ (X ϕ (0)) 2p F + F g ϕ (X ϕ (T )) 2p F ) 1/(2p) 2 1-1/(2p) 2p ≤ 2 2p-1 E F g ϕ (X ϕ (0)) 2p F + F g ϕ (X ϕ (T )) 2p F = 2 2p π ϕ ( F g ϕ 2p F ).
Finally, with C p := max(2 2p , C p ) it yields

E 1 T p T 0 g ϕ (X ϕ (s))ds 2p F ≤ C p π ϕ (F g ϕ ) 2p F σ 2p + 1 T p π ϕ ( F g ϕ 2p F ) .
8.2. Proof of Proposition 1. The subscript j is omitted for simplicity.

Proof. First note that A -φ = (A -φ)1 B(T ) -φ1 B(T ) c . Thus:

T A -φ 2 2 = T (A -φ)1 B(T ) -φ1 B(T ) c 2 2 ≤ 2 (T 1 + T 2 ) with T 1 := T (A -φ) 2 2 1 B(T ) , T 2 := T φ 2 2 1 B(T ) c . ( 30 
)
• Study of T 1 . We have

T 1 = 1 B(T ) T V (T ) -1 M (T ) 2 2 = 1 B(T ) T V (T ) -1 M (T ) √ T 2 2 = 1 B(T ) (T V (T ) -1 -L -1 + L -1 ) M (T ) √ T 2 2 ≤ 2T 1 + 2T 1 "
with

T 1 := 1 B(T ) (T V (T ) -1 -L -1 ) M (T ) √ T 2 2 , T 1 " := 1 B(T ) L -1 M (T ) √ T 2 2 (31)
Let us study this two terms separately. Note that

E V (T ) T φ = 1 T T 0 E b b t σ 2 (X(s)) φ ds, E b b t σ 2 (X(s)) φ = ϕ = E b b t σ 2 (X ϕ (s)) = E b b t σ 2 (X ϕ (0)) = π ϕ b b t σ 2 . Thus L := π φ b b t σ 2 = E V (T ) T φ . • Study of T 1 ". As L is F 0 measurable, E[T 1 "] ≤ E L -1 2 F M (T ) √ T 2 2 = E L -1 2 F E M 2 1 (T ) T + M 2 2 (T ) T F 0 = E L -1 2 F < M 1 > T T + < M 2 > T T = E L -1 2 F Tr V (T )
T Thus we obtain:

E[T 1 "] ≤ E L -1 2 F E Tr V (T ) T φ = E L -1 2 F Tr(L) .
Using Property 9 (see Appendix), we must assume :

E L 2 F det(L) 2 Tr (L) < ∞. (32) 
• Study of T 1 given by ( 31). This term will use the cut-off B(T ). We have:

T V (T ) -1 -L -1 = (T V (T ) -1 L -I)L -1 = V (T ) -1 (T L -V (T ))L -1 . ( 33 
)
Then we obtain:

T V (T ) -1 -L -1 M (T ) √ T = V (T ) -1 (T L -V (T ))L -1 M (T ) √ T = T V (T ) -1 L - V (T ) T matrix L -1 M (T ) √ T vector and E[T 1 ] ≤ E T V -1 (T ) 2 F 1 B(T ) L - V (T ) T 2 F L -1 M (T ) √ T 2 2 . But V (T ) -1 2 F = det(V (T ) -2 ) V (T ) 2 F = λ 1 (T ) -2 + λ 2 (T ) -2 .
And the definition of the set B(T ) implies:

T V (T ) -1 2 F ≤ 2T κ 2 . ( 34 
)
Thus the Hölder inequality yields

E[T 1 ] ≤ E 2T κ 2 L - V (T ) T 2 F L -1 M (T ) √ T 2 2 ≤ 2 κ 2 (E[T c ]E[T d ]) 1/2 with T c := √ T L - V (T ) T 4 F , T d := L -1 M (T ) √ T 4 2 . ( 35 
)
• Study of term T c . We apply here Proposition 7 with p = 2 and g = b t b/σ 2 and get

E [T c ] ≤ C 1 T 2 E H φ 4 F + E H φ 4 F σ 4 < ∞. (36) 
• Study of term T d . We notice that:

E[T d ] ≤ E L -1 4 F M (T ) √ T 4 2 .
Proceeding as for T 1 " and using the B.D.G. inequality implies that for some constant c > 0,

E L -1 4 F M (T ) √ T 4 2 = E L -1 4 F M 2 1 (T ) + M 2 2 (T ) T 2 ≤ c E L -1 4 F E Tr V (T ) T 2 φ .
And by the Hölder inequality,

E Tr V (T ) T 2 φ = ϕ = E 1 T T 0 b 2 1 σ 2 (X ϕ (s)) + b 2 2 σ 2 (X ϕ (s)) ds 2 ≤ E 1 T T 0 b 2 1 σ 2 (X ϕ (s)) + b 2 2 σ 2 (X ϕ (s)) 2 ds = Tr π ϕ b b t σ 2 2 .
Thus,

E [T d ] ≤ E L -1 4 F Tr π φ b b t σ 2 2 .
Finally we must assume that

E L 4 F det(L) 4 Tr π φ b b t σ 2 2 < ∞. (37) 
• Study of term T 2 . Term T 2 is given by (30). Note that

E[T 2 ] = T E[E[ φ 2 2 1 {B(T ) c } φ]] = T E[ φ 2 2 E[ 1 {B(T ) c } φ]].
We need to compute the quantity P(B(T ) c |φ = ϕ)] for all ϕ. We have:

B(T ) c = V (T ) T ≤ κ √ T I 2 = L - V (T ) T ≥ L - κ √ T I 2 . If we denote l := π ϕ b b t σ 2 , l - κ √ T I 2 ≥ l 2 ⇔ l - l 2 ≥ κ √ T I 2 ⇔ l ≥ 2κ √ T I 2 . Furthermore, P V (T ) T ≤ κ √ T I 2 φ = ϕ ≤ 1 l≥ 2κ √ T I 2 P V (T ) T ≤ κ √ T I 2 φ = ϕ + 1 l≤ 2κ √ T I 2 ≤ T α + T β with T α := P l - V (T ) T ≥ l 2 φ = ϕ , T β := 1 l≤ 2κ √ T I 2 . ( 38 
)
We study the two terms separately. First:

T β = 1 l≤ 2κ √ T I 2 = 1 l -1 ≥ √ T 2κ I 2 = 1 min{ 1 λ ϕ,1 , 1 λ ϕ,2 }≥ √ T 2κ ≤ 4κ 2 T min 1 λ ϕ,1 , 1 λ ϕ,2
Secondly, for the term T α given by formula (38), we use Property 11 (Appendix)

l - V (T ) T ≥ l 2 ⇒ l i,i - V i,i (T ) T ≥ l i,i 2 , i = 1, 2 then T α ≤ P l 1,1 - V 1,1 (T ) T ≥ l 1,1 2 φ = ϕ + P l 2,2 - V 2,2 (T ) T ≥ l 2,2 2 φ = ϕ .
For the two terms of the right hand side we are able now to use Markov inequality:

T α ≤ 2 l 1,1 2 E l 1,1 - V 1,1 (T ) T 2 φ = ϕ + 2 l 2,2 2 E l 2,2 - V 2,2 (T ) T 2 φ = ϕ .
Finally we obtain

E[T 2 ] ≤ T E φ 2 2 2 L 1,1 2 L 1,1 - V 1,1 (T ) T 2 + 2 L 2,2 2 L 2,2 - V 2,2 (T ) T 2 (39) + 4κ 2 T min 1 λ 1 , 1 λ 2 ≤ E 4 φ 2 2 1 L 2 1,1 + 1 L 2 2,2 √ T L - V ( T ) T 2 + E 4κ 2 φ 2 2 min 1 λ 1 , 1 λ 2 (40) 
We are able to conclude this proof using the Proposition 7 with J

(φ) = φ 2 2 1 L 2 1,1 + 1 L 2 2,2
. Indeed, as

T E[ A -φ 2 ] ≤ 4E[T 1 ]4E[T 1 "] + 2E[T 2 ],
gathering the bounds (32), ( 36), (37),and (39) we obtain that there is a constant

C > 0 such that E[ A j (T ) -φ j 2 2 ] ≤ C/T . 8.3. Proof of proposition 2.
Proof. With the Cauchy-Schwarz inequality, we obtain the following decomposition

E[ f h -f 2 ] = f -E[ f h ] 2 + E[ E[ f h ] -f h 2 ] ≤ 2 f -f h 2 + 2 f h -E[ f h ] 2 + E[ f h -E[ f h ] 2 ].
Let us study the second term of the bound. For all

x = (x 1 , x 2 ) ∈ R 2 , E[ f h (x)] = 1 N N j=1 E[K h (x -A j (T ))] = E[K h (x -A 1 (T ))], thus f h = E[ f h ].
The subscript j (or 1) is omitted in the following for simplicity. Note that

f h (x) = f h (x 1 , x 2 ) = f K h (x 1 , x 2 ) = 1 h 1 h 2 R 2 f (u, v)K x 1 -u h 1 , x 2 -v h 2 dudv = E[K h (x -φ)]. Then to study f h -E[ f h ] 2 = R 2 E[K h (x -A(T )) -K h (x -φ)] 2 dx we denote DK h = ( ∂K h ∂u , ∂K h ∂v ) t , with ∂K h ∂u (u, v) = 1 h 2 1 h 2 ∂K ∂u u h 1 , v h 2 , ∂K h ∂v (u, v) = 1 h 1 h 2 2 ∂K ∂v u h 1 , v h 2
and applying Taylor's formula with U (x, t) := (U 1 (x, t), U 2 (x, t)) := x -φ + t(φ -A(T ), it yields

K h (x -A(T )) -K h (x -φ) = 1 0 DK h (U (x, t)).(φ -A(T ))dt. Thus f h -E[ f h ] 2 ≤ E (K h (x -φ) -K h (x -A(T ))) 2 dx = E (K h (x -φ) -K h (x -A(T ))) 2 dx ≤ E 2 R 2 1 0 2 h 2 1 h 2 ∂K ∂u U 1 (x, t) h 1 , U 2 (x, t) h 2 dt 2 dx 1 dx 2 (φ 1 -A 1 (T )) 2 +E 2 R 2 1 0 2 h 1 h 2 2 ∂K ∂v U 1 (x, t) h 1 , U 2 (x, t) h 2 dt 2 dx 1 dx 2 (φ 2 -A 2 (T )) 2 .
The first term of the previous sum is bounded according to Proposition 1:

E R 2 1 0 1 h 2 1 h 2 ∂K ∂u U 1,1 h 1 , U 1,2 h 2 dt 2 dx 1 dx 2 (φ 1,1 -A 1,1 (T )) 2 ≤ E 1 h 4 1 h 2 2 1 0 dt R 2 ∂K ∂u (y 1 , y 2 ) 2 dy 1 dy 2 h 1 h 2 (φ 1,1 -A 1,1 (T )) 2 ≤ 1 h 3 1 h 2 R 2 ∂K ∂u (y 1 , y 2 ) 2 dy 1 dy 2 E[(φ 1,1 -A 1,1 (T )) 2 ] ≤ C h 3 1 h 2 T ∂K ∂u 2
with C the constant from Equation (15). The same arguments works for the second term and finally it yields

f h -E[ f h ] 2 ≤ C max 1 h 3 1 h 2 , 1 h 1 h 3 2 ∂K ∂u 2 + ∂K ∂v 2 T .
Finally, the last term is bounded by

E[ f h -E[ f h ] 2 ] ≤ K 2 N h 1 h 2 .
8.4. Proof of Proposition 4. For all x = (x 1 , x 2 ) ∈ R 2 ,

f h (x) -f (x) = f K h (x) -f (x) = R 2 K(v)[f (x -vh) -f (x)]dv.
Then,

f (x 1 -v 1 h 1 , x 2 -v 2 h 2 )-f (x 1 , x 2 ) = f (x 1 -v 1 h 1 , x 2 -v 2 h 2 )-f (x 1 -v 1 h 1 , x 2 )+f (x 1 -v 1 h 1 , x 2 )-f (x 1 , x 2 ).
As in [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF] we apply Taylor's formula to the two partial functions: t → f (x 1 -v 1 h 1 , t) at the order l 2 and t → f (t, x 2 ) at the order l 1 . Using the orders of the two kernels yields for the first term,

B 1 (x) := R 2 K 1 (v 1 )K 2 (v 2 )[f (x 1 -v 1 h 1 , x 2 -v 2 h 2 ) -f (x 1 -v 1 h 1 , x 2 )]dv 1 dv 2 (41) = - R 2 (h 2 v 2 ) l2 (l 2 -1)! 1 0 (1 -t) l2-1 ∂ l2 ∂x l2 2 f (x 1 -v 1 h 1 , x 2 -v 2 h 2 + th 2 v 2 )dt K 1 (v 1 )K 2 (v 2 )dv 1 dv 2 = - R 2 (h 2 v 2 ) l2 (l 2 -1)! 1 0 (1 -t) l2-1 ∂ l2 ∂x l2 2 f (x 1 -v 1 h 1 , x 2 -v 2 h 2 + th 2 v 2 ) - ∂ l2 ∂x l2 2 f (x 1 -v 1 h 1 , x 2 -v 2 h 2 ) dtK 1 (v 1 )K 2 (v 2 )dv 1 dv 2
and the analogue term B 2 (x). To evaluate f -f h 2 = (f h (x) -f (x)) 2 dx we remind the generalized Minkowski's inequality (see [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF]: for any measurable function f on R 2 , we have

f (u, x)du 2 dx ≤ f 2 (u, x)dx 1/2 du 2 .
Looking at the first term (41), and applying twice the above inequality implies for f ∈ N (β, R):

R 2 B 2 1 (x)dx ≤ R 2 |K 1 (v 1 )K 2 (v 2 )| h 2 |v 2 | l2 (l 2 -1)! 1 0 (1 -t) l2-1 R 2 ∂ l2 ∂x l2 2 f (x 1 -v 1 h 1 , x 2 -v 2 h 2 + t h 2 v 2 ) - ∂ l2 ∂x l2 2 f (x 1 -v 1 h 1 , x 2 -v 2 h 2 ) 2 dx 1 dx 2   1/2 dt dv 1 dv 2    2 ≤ R 2 |K 1 (v 1 )K 2 (v 2 )|h 2 β2 |v 2 | β2 l 2 ! R dv 1 dv 2
8.6. Details on examples. We refer to [START_REF] Genon-Catalot | Stochastic volatility models as hidden markov models and statistical applications[END_REF] and Genon-Catalot and Larédo (2014) for details and properties on the generator infinitesimal. Nevertheless we recall one of them. For f ∈ C 2 ((l, r)),

L ϕ f (x) = 1 2 σ 2 (x)f (x) + ( t b(x)ϕ)f (x) = 1 2m ϕ (x) f s ϕ (x). (42) 
Thus for g ∈ L 2 πϕ when we are looking for the associated F g ϕ such that L ϕ F g ϕ = -(g -π ϕ (g)) we can use the relation (F g ϕ ) (x) = -2s ϕ (x)

x l (g(u) -π ϕ (g))m ϕ (u)du.

For the O-U model.

We want to explicit

H φ = F b b t /σ 2 φ
. Let us denote: g = b b t /σ 2 = (g i,k ) 1≤i,k≤2 . First: g 1,1 (x) -π ϕ g 1,1 = 0 = -L ϕ F g 1,1

ϕ (x). For example F g 1,1

ϕ (x) = 1 is suitable. Then, g 1,2 (x) -π ϕ g 1,2 = -1 σ 2 x -ϕ 1 ϕ 2 . We look for F g 1,2 ϕ (x) = -a σ 2 x -ϕ 1 ϕ 2 and we obtain

F g 1,2 ϕ (x) = - 1 ϕ 2 σ 2 x - ϕ 1 ϕ 2 . Finally g 2,2 (x) -π ϕ g 2,2 = x 2 σ 2 - 1 2ϕ 2 + ϕ 2 1 σ 2 ϕ 2 2 = 1 σ 2 x - ϕ 1 ϕ 2 2 + 2 ϕ 1 ϕ 2 x - ϕ 1 ϕ 2 - 1 2ϕ 2 .
We look for F g 2,2 ϕ with the same functional form and we obtain

F g 2,2 ϕ (x) = 2ϕ 1 σ 2 ϕ 2 2 x - ϕ 1 ϕ 2 + 1 2σ 2 ϕ 2 x - ϕ 1 ϕ 2 2 - σ 2 2ϕ 2 .
For the C-I-R model.

We want to explicit H φ = F b b t /σ 2 φ

. First: g 1,1 (x) -π ϕ g 1,1 = 1/(σ 2 x) -2ϕ 2 /((2ϕ 1 -σ 2 )σ 2 ). Here we use formula (42). We have

(F g 1,1 ϕ ) (x) = -2s ϕ (x) x 0 1 σ 2 u - 2ϕ 2 σ 2 (2ϕ 1 -σ 2 )
m ϕ (u)du with s ϕ (x) = e 2ϕ 2 x/σ 2 x -2ϕ 1 /σ 2 . This is equivalent to

(F g 1,1
ϕ ) (x) = -2 σ 4 e 2ϕ 2 x/σ 2 x -2ϕ 1 /σ 2

x 0 e -2ϕ 2 u/σ 2 u 2ϕ 1 /σ 2 -2 du -x 0 2ϕ 2 2ϕ 1 -σ 2 e -2ϕ 2 u/σ 2 u 2ϕ 1 /σ 2 -1 du and an integration by part in the first integral gives

(F g 1,1 ϕ ) (x) = - 2 σ 4 e 2ϕ 2 x/σ 2 x -2ϕ 1 /σ 2 - e -2ϕ 2 x/σ 2 x 2ϕ 1 /σ 2 -1 2ϕ 1 /σ 2 -1 = 2 σ 2 (2ϕ 1 -σ 2 )x .
We finally set

F g 1,1 ϕ (x) = 2 σ 2 (2φ 1 -σ 2 ) log(x).
Furthermore g 1,2 (x) -π ϕ g 1,2 = 0 = -L ϕ F g 1,2

ϕ (x), and then for example F g 1,2

ϕ (x) = 1. At last g 2,2 (x) -π ϕ g 2,2 = 1 σ 2 (x -ϕ 1 ϕ 2 ) and we obtain

F g 2,2 ϕ (x) = 1 ϕ 2 σ 2 x - ϕ 1 ϕ 2 .

  and x → σ(x) are continuous on R and b 1 , b 2 Lipschitz and σ Hölder with exponent belonging to [1/2, 1].

Figure 1 .

 1 Figure 1. O-U example. Top left: A j,1 (T )'s as a function of φ j,1 , top right: A j,2 (T )'s as a function of φ j,2 . Bottom left: A j,1 (T )'s as a function of φ j,1 , bottom right: A j,2 (T )'s as a function of φ j,2 . With φ 1 ∼ N (1, 0.5), φ 2 ∼ Γ(10.1, 0.25), T = 10, N = 200, σ = 0.1

Figure 3 .

 3 Figure 3. O-U example. Top left: true density f , top right: estimator f . Bottom: sections. Bottom left: dark line for x 1 → f (x 1 , x 2 ) versus the estimator x 1 → f (x 1 , x 2 ) light line (red) for x 2 fixed. Bottom right: dark line for x 2 → f (x 1 , x 2 ) versus the estimator x 2 → f (x 1 , x 2 ) light line (red), for x 1 fixed. Simulation with φ 1 ∼ N (1, 0.5), φ 2 ∼ Γ(10.1, 0.25), T = 100, N = 200, σ = 0.1.

Figure 4 .

 4 Figure 4. C-I-R example. Top left: A j,1 (T )'s as a function of φ j,1 , top right A j,2 (T )'s as a function of φ j,2 . Bottom left: A j,1 (T )'s as a function of φ j,1 , top right: A j,2 (T )'s as a function of φ j,2 . With φ 1 ∼ 2σ 2 + Γ(5, 0.5), φ 2 ∼ 1 + Γ(1.8, 0.8), T = 10, N = 200, σ = 0.1.

Figure 5 .

 5 Figure5. C-I-R example. On the left: dark bold line f 1 , 3 estimators f 1 (x 1 ) in dotted grey (green) and f 1 (x 1 ) in grey (red), on the right: dark bold line f 2 , 3 estimators f 2 (x 2 ) in dotted grey (green) and f 2 (x 2 ) in grey (red). Simulation with φ 1 ∼ 2σ 2 + Γ(5, 0.5), φ 2 ∼ Γ(1.8, 0.8), T = 100, N = 200, σ = 0.1.

Figure 6 .

 6 Figure 6. C-I-R example. Top left: true density f , top right: estimator f . Bottom: sections. Bottom left: dark line for x 1 → f (x 1 , x 2 ) versus the estimator x 1 → f (x 1 , x 2 ) light line (red) for x 2 fixed. Bottom right: dark line for x 2 → f (x 1 , x 2 ) versus the estimator x 2 → f (x 1 , x 2 ) light line (red), for x 1 fixed. Simulation with φ 1 ∼ 2σ 2 + Γ(5, 0.5), φ 2 ∼ 1/Γ(8.1, 0.05), T = 100, N = 200, σ = 0.1.

  CIR example. MISE computed from 100 simulations, with N = 20 on the left and N = 200 on the right, σ = 0.1, Gamma distributions for the random effects.

Table 1 .

 1 O-U example. MISE computed from 100 simulations

	Case	σ	T	N	f	f	f 1	f 2
	φ 1 ∼ N , φ 2 ∼ Γ 0.1 10 20 0.064 0.064 0.067 0.073
				200 0.039 0.038 0.038 0.047
			100 20 0.046 0.046 0.047 0.030
				200 0.010 0.010 0.009 0.006
		1 100 20 0.046 0.046 0.044 0.033
				200 0.012 0.012 0.011 0.007
	φ 1 ∼ N , φ 2 ∼ 1/Γ 0.1 10 20 0.077 0.075 0.113 0.081
				200 0.050 0.051 0.008 0.060
			100 20 0.068 0.068 0.083 0.040
				200 0.021 0.027 0.035 0.010
		1 100 20 0.061 0.061 0.061 0.044
				200 0.021 0.021 0.035 0.011
	φ 1 ∼ Γ, φ 2 ∼ Γ 0.1 10 20 0.028 0.024 0.056 0.047
				200 0.015 0.013 0.030 0.028
			100 20 0.025 0.025 0.029 0.027
				200 0.009 0.009 0.007 0.011
		1 100 20 0.022 0.022 0.025 0.025
				200 0.008 0.008 0.007 0.010
	φ 1 ∼ Γ, φ 2 ∼ 1/Γ 0.1 10 20 0.045 0.042 0.061 0.074
				200 0.031 0.030 0.030 0.076
			100 20 0.030 0.030 0.028 0.035
				200 0.008 0.008 0.007 0.009
		1 100 20 0.029 0.029 0.027 0.034
				200 0.008 0.008 0.007 0.008

the cut-off seems to have the adequate effect: it sets to zero the values which are too far from the diagonal.

Table 2 .

 2 C-I-R example. MISE computed from 100 simulations Case

Appendix 8.5. Useful results of algebra.