
HAL Id: hal-01103303
https://hal.science/hal-01103303v2

Submitted on 22 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bidimensional Random Effect Estimation in Mixed
Stochastic Differential Model
Charlotte Dion, Valentine Genon-Catalot

To cite this version:
Charlotte Dion, Valentine Genon-Catalot. Bidimensional Random Effect Estimation in Mixed
Stochastic Differential Model. Statistical Inference for Stochastic Processes, 2016, 19 (2), pp.131-
158. �10.1007/s11203-015-9122-0�. �hal-01103303v2�

https://hal.science/hal-01103303v2
https://hal.archives-ouvertes.fr


BIDIMENSIONAL RANDOM EFFECT ESTIMATION
IN MIXED STOCHASTIC DIFFERENTIAL MODEL

C. DION 1,2 AND V. GENON-CATALOT 2

(1)LJK, UMR CNRS 5224, Université Joseph Fourier,
51 rue des Mathématiques, 38041 Grenoble

(2)MAP5, UMR CNRS 8145, Université Paris Descartes, Sorbonne Paris Cité,
45 rue des Saints Pères, 75006 Paris

Abstract

In this work, a mixed stochastic differential model is studied with two random effects in the drift.
We assume that N trajectories are continuously observed throughout a large time interval [0, T ]. Two
directions are investigated. First we estimate the random effects from one trajectory and give a bound
of the L2-risk of the estimators. Secondly, we build a nonparametric estimator of the common bivari-
ate density of the random effects. The mean integrated squared error is studied. The performances of
the density estimator are illustrated on simulations.

AMS Subject Classification 62M05, 62G07, 60J60
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1. Introduction

Mixed-effects models are used to analyse repeated measurements with similar functional form but
with some variability between experiments (see e.g. Davidian and Giltinan, 1995; Pinheiro and Bates,
2000; Diggle et al., 2002). The advantage is that a single estimation procedure is used to fit the
overall data simultaneously. In the present work the model of interest is a mixed-effects stochastic
differential equation (SDE). Each equation represents the behaviour of one subject and corresponds
to one realization of the random effects. Hence the random effects represent the particularity of each
process. Mixed-effects SDEs have various applications such as neuronal or pharmacokinetic modelling
(see e.g. Picchini et al., 2008; Donnet and Samson, 2013).
Estimation methods in SDEs with random effects have been proposed in literature. The main purposes
are the estimation of the common distribution of the random effects in a parametric or nonparamet-
ric way. The estimation of the common density of the random effects is mainly parametric. Most
methods assume normality of the random effects and estimate the population parameters (see e.g.
Picchini et al., 2008; Delattre et al., 2013; Delattre and Lavielle, 2013). However, one can ask if this
assumption is reasonable in some application contexts. Nonparametric estimation can allow us to get
around this problem. To the best of our knowledge, the first reference in this context is Comte et al.
(2013) who propose different nonparametric estimators and then Dion (2014) who develops two adap-
tive nonparametric estimators for the Orsntein-Uhlenbeck model with an application to a neuronal
database. But these two references focus on a one-dimensional random effect.
In the present work we study the case of two random effects or, in other words, of one bidimensional
random effect. We want to deal with two points: the estimation of the random effects and the
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2 BIDIMENSIONAL RANDOM EFFECT ESTIMATION

nonparametric estimation of their common density. This bivariate context makes the study more
complex. In fact the estimation of the random effects is done using matrix norm and operator, and
anisotropy appears in the density estimation part. We consider N trajectories, observed on the interval
[0, T ] where T is given. For j = 1, ..., N the dynamics of each process is described by the stochastic
differential equation {

dXj(t) = bt(Xj(t))φjdt+ σ(Xj(t))dWj(t)

Xj(0) = γj
(1)

where φj = (φj,1, φj,2)t ∈ R2 is the bidimensional random effect, b(.) = (b1(.), b2(.))t, σ(.) are
known functions defined on R, (Wj)1≤j≤N are N independent Wiener processes and γj is a real
valued random variable. The random variables ((φ1, γ1), . . . , (φN , γN )) are i.i.d. and the sequences
((φ1, γ1), . . . , (φN , γN )) and (W1, . . . ,WN ) are independent. The two random effects are not assumed
independent. This model is more general than the ones investigated in Comte et al. (2013) where the
drift has the form b(.)φ or b(.) + φ with φ a real valued random effect. Notice that the N trajectories
(Xj(t), 0 ≤ t ≤ T )1≤j≤N are i.i.d..
We assume that the φj = (φj,1, φj,2)t’s have a common bivariate density f . Our goal is twofold: first es-
timate the random effects φj ’s and then their density f , from the observations (Xj(t), 0 ≤ t ≤ T )1≤j≤N ,
with large T and N .
The estimation of the random variables φj ’s follows the steps of Genon-Catalot and Larédo (2014)
where only one multiplicative random effect in the drift is considered. We build an estimator Âj(T )
of φj based on the trajectory (Xj(t), 0 ≤ t ≤ T ) and study its L2-risk. This leads to a bound of order
1/T . Then we propose a kernel estimator of the density f which uses the sample (Âj(T ))j . When
f is in a Nikol’ski space a bound of the mean integrated squared error is established and the rate of
convergence is evaluated. Finally a data-driven choice of the bandwidth based on a Goldenshluger
and Lepski’s criterion for anisotropic multi-index is proposed (see e.g. Kerkyacharian et al., 2007;
Goldenshluger and Lepski, 2011) and leads to an adaptive estimator.
Section 2 is dedicated to assumptions and definitions of some useful quantities for the estimation of
φj . In Section 3 the estimator of the random effects is built and its L2-risk is bounded. In particular
we deal with two main examples: the Ornstein-Uhlenbeck model and the Cox-Ingersoll-Ross model.
In Section 4 the estimator of the density f is studied. Finally, Section 6 is devoted to numerical
simulations to illustrate estimators. Proofs are relegated in Section 8.

2. Notation and assumptions

2.1. General assumptions on the model. Consider real valued processes (Xj(t))j=1,...,N given by
(1). We assume that (Wj)j=1...,N and (φj , γj)j=1,...,N are defined on a common probability space
(Ω,F ,P). Consider the following assumptions (see e.g. Kutoyants, 2004; Kessler et al., 2012, for de-
tails).

(A1) The real valued functions x 7→ b1(x), x 7→ b2(x) and x 7→ σ(x) are continuous on R and b1, b2
Lipschitz and σ Hölder with exponent belonging to [1/2, 1].

(A2) There exists an open set Φ of R2 and an interval (l, r) ⊂ R such that σ2(x) > 0 for x ∈ (l, r),
and for all ϕ ∈ Φ the function sϕ : x 7→ exp(−2

∫ x
x0

bt(u)ϕ
σ2(u)

du), x0 ∈ (l, r) satisfies∫
l
sϕ(y)dy = +∞,

∫ r

sϕ(y)dy = +∞.

The function mϕ : x 7→ 1/(σ2(x)sϕ(x)) satisfies M(ϕ) =
∫ r
l mϕ(x)dx < +∞. We set

πϕ(x) := 1(l,r)(x)
mϕ(x)

M(ϕ)
. (2)
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(A3) φj takes values in Φ, has distribution f(ϕ)dϕ and (φj , γj) has distribution on Φ× (l, r)

π(dϕ, dx) = f(ϕ)dϕ⊗ πϕ(x)dx.

Assumption (A1) ensures the existence and uniqueness of a strong solution Xj(.) to (1) for all ran-
dom variables (φj , γj) ∈ R3, adapted to the filtration (Ft = σ((φj , γj)j=1,...,N , Wj(s), s ≤ t, j =
1 . . . , N), t ≥ 0). Then (φj , γj) is F0-measurable and Wj is a (Ft, t ≥ 0) Brownian motion.

In the following, for ϕ = (ϕ1, ϕ2)t a fixed value in Φ we denote by Xϕ the process solution of the
stochastic differential equation with fixed ϕ:{

dXϕ
j (t) = bt(Xϕ

j (t))ϕdt+ σ(Xϕ
j (t))dWj(t)

Xϕ
j (0) ∼ πϕ, X

ϕ
j (0) independent of Wj .

(3)

Under (A1)-(A2), for ϕ ∈ Φ, the process defined by (3) is strictly stationary and ergodic with scale
density sϕ, speed density mϕ and marginal distribution πϕ(x)dx. Under (A1)-(A3), according to
Genon-Catalot and Larédo (2014), the conditional distribution of Xj given φj = ϕ is identical to the
distribution of (3), the process ((φj , Xj(t)), t ≥ 0) is strictly stationary with marginal distribution π
and P(Xj(t) ∈ (l, r),∀t > 0) = 1.
Finally under (A1)-(A3) as for j = 1, . . . , N , for all t ≥ 0, Xj(t) ∈ (l, r), ∀T > 0:∫ T

0

b21
σ2

(Xj(s))ds < +∞,
∫ T

0

b22
σ2

(Xj(s))ds < +∞, a.s.

2.2. Key examples. We investigate two classical examples: the mixed Ornstein-Uhlenbeck model
and the mixed Cox-Ingersoll-Ross model.

Example. [1] The Ornstein Uhlenbeck model (O-U) with two random effects is defined as{
dXj(t) = (φj,1 − φj,2Xj(t))dt+ σdWj(t)

Xj(0) = γj
(4)

with σ(x) = σ > 0, (l, r) = R, and b(x) = (1,−x)t. Assumption (A2) requires Φ = R× (0,+∞) and
leads to πϕ = N

(
ϕ1/ϕ2, σ

2/(2ϕ2)
)
as invariant distribution for fixed ϕ.

Example. [2] The Cox-Ingersoll-Ross model (C-I-R) with two random effects is defined as{
dXj(t) = (φj,1 − φj,2Xj(t))dt+ σ

√
Xj(t)dWj(t)

Xj(0) = γj
(5)

with σ(x) = σ
√
x with σ > 0, and b(x) = (1,−x)t. Assumption (A2) requires 2ϕ1/σ

2 ≥ 1 and 2ϕ2/σ
2 >

0 (in particular the process is always positive). This leads to consider Φ = (σ2/2,+∞)×(0,+∞). The
invariant distribution, for fixed ϕ, πϕ = Γ(2ϕ1/σ

2, σ2/(2ϕ2)) is the Gamma distribution with shape
parameter 2ϕ1/σ

2 and scale parameter σ2/(2ϕ2).

2.3. Specific assumptions and notations for estimation. Our estimation is based on the follow-
ing quantities. As in Comte et al. (2013) we define for j = 1, ..., N,

Uj(T ) :=

∫ T

0

b

σ2
(Xj(s))dXj(s), (6)

which is a column vector with size 2× 1 and the 2× 2 symmetric matrix:

Vj(T ) :=

∫ T

0

b bt

σ2
(Xj(s))ds =

( ∫ T
0

b21
σ2 (Xj(s))ds

∫ T
0

b1b2
σ2 (Xj(s))ds∫ T

0
b1b2
σ2 (Xj(s))ds

∫ T
0

b22
σ2 (Xj(s))ds

)
. (7)

Using (1), Uj(T ) can be decomposed as follows

Uj(T ) = Vj(T )φj +Mj(T ) with Mj(T ) :=

∫ T

0

b

σ
(Xj(s))dWj(s). (8)
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Note that

Vj(T ) =< Mj >T (9)

where < . > is the quadratic variation of a continuous local martingale. For all measurable function
h : (l, r)→ R πϕ-integrable for all ϕ ∈ Φ, we define the random variable πφj (h) :=

∫ r
l h(x)πφj (x)dx.

(A4) For ϕ ∈ Φ and i ∈ {1, 2}, we assume

πϕ

(
b2i
σ2

)
=

∫ r

l

b2i
σ2

(x)πϕ(x)dx < +∞.

We define the random matrix

Lj := πφj

(
b bt

σ2

)
.

(A5) For j = 1, . . . , N , P (Lj invertible) = 1.

Under (A1)-(A4), Theorem 3.1. of Genon-Catalot and Larédo (2014) gives:

< Mj >t
t

=
Vj(t)

t
→

t→+∞
Lj , a.s. (10)

One can notice that assumption (A5) implies that Vj(t) is invertible for t large enough.
In the study we denote ‖.‖ the L2(R)-norm, ‖.‖p the Lp(R)-norm when p 6= 2, ‖‖2 the euclidean norm
of R2 and ‖‖F the Frobenius norm of matrices defined for A ∈M2(R) by ‖A‖2F =

∑
i,j A

2
i,j = Tr(AtA).

We denote S2(R) the subset of symmetric matrices of M2(R).

3. Random effect estimation

We define first for each j an estimator of the random variable φj based on the trajectory Xj(t), t ∈
[0, T ]. Then these estimators are used to build an estimator of the density f .

3.1. Definition of the estimator of the random effects. Let us define N bidimensional random
variables

Aj(T ) := (Aj,1(T ), Aj,2(T ))t = Vj(T )−1Uj(T ), (11)

which corresponds to the maximum likelihood estimator of φj when φj = ϕ is deterministic. Note
that

Aj(T ) = φj + Vj(T )−1Mj(T ). (12)

Thus Aj(T ) is a consistent estimator of φj as T tends to infinity according to convergence (10).
Because of the presence of the inverse matrix Vj(T )−1 in formulae (11)-(12), it is difficult to prove
that Aj(T ) has finite moments and to compute any of them. To overcome this theoretical difficulty,
we consider a truncated estimator of φj . Let

Âj(T ) := Aj(T )1Bj(T ), Bj(T ) := {Vj(T ) ≥ κ
√
TI2} = {min(λ1,j(T ), λ2,j(T )) ≥ κ

√
T} (13)

where λi,j(T ), i = 1, 2 are the eigenvalues of Vj(T ) and I2 is the identity matrix of M2(R). The
inequality in the definition of Bj(T ) has a matrix sense: for two matrices (A,B) ∈ S2(R), A ≤ B if
and only if B −A is a non negative matrix (see Appendix 8.5).

Relations (7) and (9) show that Vj(T ) is a non negative symmetric matrix, thus its eigenvalues are
non negative. We are able to bound the L2-risk of the estimator Âj(T ) of φj . This bound is needed
to evaluate the mean integrated squared error of the nonparametric estimator of the density f .
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3.2. Main result. We denote Lϕ the infinitesimal generator of the process (3), given for F ∈ C2((l, r)),
by LϕF (x) := (σ2(x)/2)F ′′(x) + ( bt(x)ϕ)F ′(x). Its domain is included in L2

πϕ which is the space of
functions f such that

∫ r
l f

2dπϕ < ∞ (for details see e.g. Genon-Catalot et al. (2000)). When F is a
matrix, the notation LϕF indicates that we apply the operator on each coefficient of the matrix. We
also define analogously F ′ as the matrix of derivatives. For all g = (gi,k)1≤i,k≤2 ∈ M2(R) such that
πϕ(g2

i,k) < +∞ for all ϕ ∈ Φ, we associate the matrix

F gϕ =

(
F
g1,1
ϕ F

g1,2
ϕ

F
g2,1
ϕ F

g2,2
ϕ

)
satisfying −LϕF gϕ = g − πϕg for all ϕ ∈ Φ . We denote for simplicity

Hφj := F
b bt/σ2

φj
. (14)

Examples below show how Hφj can be constructed. We are now able to announce the main result on
the estimator on the random effects.

Proposition 1. Consider the processes (Xj(t), j = 1, . . . , N) given by (1) under (A1)-(A5). Assume
that for j = 1, . . . , N ,

E
[
‖Lj‖2F

[det(Lj)]2
Tr (Lj)

]
<∞, E

[
‖Lj‖4F

[det(Lj)]4
Tr

(
πφj

((
b bt

σ2

)2
))]

<∞,

E

[
‖φj‖22

(
1

L2
j,1,1

+
1

L2
j,2,2

)
πφj (‖Hφj‖

2
F )

]
+ E

[
‖φj‖22

(
1

L2
j,1,1

+
1

L2
j,2,2

)
πφj (‖H

′
φj
‖2Fσ2)

]
<∞

and
E
[
πφj (‖Hφj‖

4
F )
]

+ E
[
πφj (‖H

′
φj
‖4Fσ4)

]
<∞.

Then, there exists a constant C > 0 such that

E
[
‖Âj(T )− φj‖22

]
≤ C

T
. (15)

The two last assumptions of Proposition 1 correspond to the application of Proposition 7 given in
Section 8.1 with g = b bt/σ2, p = 1 and p = 2. This proposition is the key of the nonparametric
estimation procedure set up in Section 4.

3.3. Key examples continued. Let us investigate the two examples given in Section 2.2.

Example. [1](continued) In this case

b bt

σ2
(x) =

1

σ2

(
1 −x
−x x2

)
, Vj(T ) =

1

σ2

(
T −

∫ T
0 Xj(s)ds

−
∫ T

0 Xj(s)ds
∫ T

0 Xj(s)
2ds

)
.

For simplicity we set here φj = φ = (φ1, φ2)t. The limit matrix L of V (T )/T is given by

L = πφ

(
b bt

σ2

)
=

1

σ2

(
1 −φ1

φ2

−φ1

φ2

σ2

2φ2
+

φ2
1

φ2
2

)
, det(L) =

σ2

2φ2
> 0.

We can check that

Hφ(x) =

 1 − 1
φ2σ2 (x− φ1

φ2
)

− 1
φ2σ2 (x− φ1

φ2
) 2φ1

σ2φ2
2

(
x− φ1

φ2

)
+ 1

2σ2φ2

[(
x− φ1

φ2

)2
− σ2

2φ2

] .

Details are in Appendix. The assumptions of Proposition 1 are fulfilled if E[φ6
1 + φ−10

2 ] <∞.
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Example. [2](continued) In this case,

b bt

σ2
(x) =

1

σ2

(
1
x −1
−1 x

)
, Vj(T ) =

1

σ2

(∫ T
0

1
Xj(s)

ds −T
−T

∫ T
0 Xj(s)ds

)
.

For Φ = (σ2,+∞)× (0,+∞), πϕ(x 7→ 1/x2) <∞ for all ϕ ∈ Φ and the limit matrix L is given by:

L = πφ

(
b bt

σ2

)
=

1

σ2

(
2φ2

2φ1−σ2 −1

−1 φ1

φ2
.

)
, det(L) =

σ2

2φ1 − σ2
> 0.

One can verify (see Appendix) that

Hφ(x) =

( 2
σ2(2φ1−σ2)

log(x) 1

1 1
φ2σ2

(
x− φ1

φ2

)) .
The details are relegated in Appendix. For the assumptions of Proposition 1 we must have πφ(x 7→
| log(x)|), πφ(x 7→ 1/x2) and πφ(x 7→ 1/x4) finite. The last condition imposes a reduction of Φ to
Φ = (2σ2,+∞)×(0,+∞). Moreover the other assumptions are fulfilled if E[log2(φ2)+φ5

1 +φ8
2 +φ−4

2 +
ψ2(2φ1/σ

2 − 1)] <∞, where ψ(x) := Γ′(x)/Γ(x) is the digamma function.

4. Nonparametric estimation

In this section we assume that f ∈ L2(R2) and set up a nonparametric estimation procedure based
on a kernel estimator. We study the obtained estimator and determinate its rate of convergence.

4.1. Nonparametric estimator of the density of the random effects. By Proposition 1, Âj(T )
is a consistent estimator of φj when T tends to infinity. It is therefore natural to define a kernel
estimator based on the Âj(T )’s. Let us denote byK a kernel in C1(R2) such that the partial derivatives
∂K
∂u and ∂K

∂v are in ∈ L2(R2), K is integrable,
∫∫

K(u, v)dudv = 1 and ‖K‖2 =
∫∫

K2(u, v)dudv < +∞.
For all h = (h1, h2), h1 > 0, h2 > 0, for all (u, v) ∈ R2, we denote

Kh(u, v) =
1

h1h2
K

(
u

h1
,
v

h2

)
.

For example one can consider the Gaussian kernelK(u, v) = K1(u)×K1(v), withK1(u) = (1/
√

2π) exp(−u2/2).
We define the estimator of the density f for x = (x1, x2) ∈ R2 by

f̂h(x) =
1

N

N∑
j=1

Kh(x− Âj(T )). (16)

Denoting fh(x) := Kh ? f(x) =
∫∫

f(y1, y2)Kh(x1 − y1, x2 − y2)dy1dy2, the following result holds.

Proposition 2. Under (A1)-(A5) and under the assumptions of Proposition 1,

E[‖f̂h − f‖2] ≤ 2‖f − fh‖2 + 2 max

(
1

h3
1h2

,
1

h1h3
2

)(∥∥∥∥∂K∂u
∥∥∥∥2

+

∥∥∥∥∂K∂v
∥∥∥∥2
)
C

T
+
‖K‖2

Nh1h2
(17)

with C the constant which appears in Proposition 1.

This bound comes from the bias-variance decomposition:

E[‖f̂h − f‖2] ≤ 2‖f − fh‖2 + 2‖E[f̂h]− fh‖2 + E[‖f̂h − E[f̂h]‖2].

The first term is a bias term due to the approximation of f by fh, it decreases when h1, h2 decrease.
The third term is a variance term which increases when h1, h2 decrease. Finally, the middle term
is an error term due to the approximation of the φj ’s by the Âj(T )’s also increasing when h1, h2

decrease. Note that the orders are consistent with the result of Comte et al. (2013), Proposition 1 for



BIDIMENSIONAL RANDOM EFFECT ESTIMATION 7

the multiplicative model. In fact in the case of a single random effect, multiplicative in the drift, the
second term has the order 1/(Th3) and the third term: 1/(Nh).

To choose the best h, a compromise must be done between between the bias term and the variance
and middle terms.

4.2. Rates of convergence. We consider anisotropic Nikol’ski classes of functions which are well
fitted to evaluate the order of the bias term (see Goldenshluger and Lepski (2011) and Comte and
Lacour (2013) for example).

Definition 3. A function f is in the Nikol’ski class N (β,R) if f : R2 → R admits partial derivatives
of order bβic, i ∈ {1, 2} such that, with y1 = (y, 0), y2 = (0, y), for all y ∈ R, for i ∈ {1, 2}∫ ∣∣∣∣∣ ∂bβicf(∂xi)bβic

((x1, x2) + yi)−
∂bβicf

(∂xi)bβic
(x1, x2)

∣∣∣∣∣
2

dx

1/2

≤ R|y|βi−bβic,

∥∥∥∥∥ ∂bβicf

(∂xi)bβic

∥∥∥∥∥ ≤ R
(with bβc denotes the largest integer strictly less than β).

Recall that kernel K : R → R is of order l ∈ N∗ if for j = 1, . . . , l,
∫
|x|j |K(x)|dx < +∞ and∫

xjK(x)dx = 0 (see Tsybakov (2009)). In this context we are now able to bound the bias term
‖f − fh‖2.

Proposition 4. If f ∈ N (β,R) and K(x) = K(x1, x2) = K1(x1)K2(x2) where K1 is a kernel of order
l1 := bβ1c, K2 a kernel of order l2 := bβ2c,

∫
|K1(u)uβ1 |du <∞ and

∫
|K2(u)uβ2 |du <∞, then there

exist two constants c1, c2 > 0 such that

‖f − fh‖2 ≤ c1h
2β1
1 + c2h

2β2
2 . (18)

In order to minimize the MISE, if we only consider the first and the last term of the right hand side
of (17), we have to minimize the following function of two variables:

(h1, h2) 7→ ξ(h1, h2) =
1

Nh1h2
+ h2β1

1 + h2β2
2 .

With 1/β̄ = 1/(2β1) + 1/(2β2), we get the minimizing values

h∗1 = O

(
N
− 1

2β1

β̄
β̄+1

)
, h∗2 = O

(
N
− 1

2β2

β̄
β̄+1

)
(19)

and this implies

ξ(h∗1, h
∗
2) = O

(
N
− 4β1β2

(2β1+1)(2β2+1)−1

)
= O

(
N
− 2β̄

2+2β̄

)
.

Therefore, we require (see (17))

1

T
max

(
1

h∗31 h
∗
2

,
1

h∗1h
∗3
2

)
≤ 1

Th∗1h
∗
2

(
1

h∗21

+
1

h∗22

)
≤ N−

4β1β2
(2β1+1)(2β2+1)−1 .

This holds under the following condition

T ≥ N1+
4β1

(2β1+1)(2β2+1)−1 +N
1+

4β2
(2β1+1)(2β2+1)−1 . (20)

This condition is implied by T ≥ N3, and if βi > 1/2 by T ≥ N2. We are now able to state the order
of the risk, for large N and T .
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Corollary 5. Under (A1)-(A5), under the assumptions of Proposition 4, under conditions (19) and
(20), we have

E[‖f̂h∗ − f‖2] = O

(
N
− 2β̄

2β̄+2

)
with 1/β̄ = 1/(2β1) + 1/(2β2).

Notice that if β1 = β2 = β, thus β = β and N−2β/(2β+2) = N−2β/(2β+2). The classical rate of
convergence for a kernel density estimator, with one bandwidth, is N−2β/(2β+1). We observe here a 2
on the denominator which comes from the number of bandwidths.

In practice the regularity parameters β and R are unknown. Thus we propose a data-driven way
of choosing h based on the (Goldenshluger and Lepski, 2011) method.

4.3. Data-driven bandwidth and adaptation. The idea is to replace the unknown term ‖fh−f‖2
by an estimator. For this we introduce the iterated auxiliary kernel estimators

f̂h,h′(x) := Kh′ ? f̂h(x) =
1

N

N∑
j=1

Kh′ ? Kh(x− Âj(T )).

Let HN,T be a finite set of bandwidths h = (h1, h2). Following Goldenshluger and Lepski’s approach,
we define the estimator of the bias term by

B(h) = sup
h′∈HN,T

(
‖f̂h,h′ − f̂h′‖2 − v(h′)

)
+

(21)

where

v(h) := κ1
‖K‖2‖K‖21
Nh1h2

+ κ2‖K‖21
(

1

h3
1h2

+
1

h1h3
2

)(∥∥∥∥∂K∂u
∥∥∥∥2

+

∥∥∥∥∂K∂v
∥∥∥∥2
)
C

T
, (22)

is a term which has the same order as the variance terms in (17), C is the constant from Proposition
1 and κ1, κ2 are numerical constants. The bandwidth is finally selected as follows

ĥ = argmin
h∈HN,T

(B(h) + v(h)). (23)

Then we obtain the following Theorem.

Theorem 6. We assume that the elements of HN,T satisfy 0 < hi < 1, i = 1, 2, 1/(Nh1h2) ≤
1, 1/(h3

1h2) ≤ T, 1/(h1h
3
2) ≤ T, and that

∀c > 0, ∃Σ(c) <∞,
∑

h∈HN,T

(h1h2)−1/2e−c/
√
h1h2 ≤ Σ(c).

Under (A1)-(A5), under the assumptions of Proposition 1 and if ‖K‖4/3 < +∞, there exist numerical
constants κ1, κ2 such that

E[‖f̂
ĥ
− f‖2] ≤ C1 inf

h∈HN,T
{‖f − fh‖2 + v(h)}+

C2

N
(24)

with C1 a positive constant depending on ‖K‖1, C2 is a positive constant depending on ‖f‖,
∥∥∂K
∂u

∥∥2
+∥∥∂K

∂v

∥∥2, ‖K‖1, ‖K‖4/3 and C (the constant from Proposition 1).

This is a non-asymptotic result proving that the bias variance compromise is automatically realized
by the final estimator f̂

ĥ
which is therefore adaptive. Theorem 6 is proved in Dion (2014) for a single

random effect. As the proof is analogous we do not repeat it here. The key is to prove that E[B(h)] ≤
‖f − fh‖2 + c/N . The theoretical study gives κ1 ≥ max(40/‖K‖21, 40) and κ2 ≥ max(10/‖K‖21, 10).
Nevertheless, the constants κ1, κ2 obtained in the proof are not optimal and thus it is standard to
calibrate them from a simulation study.
The conditions of Theorem 6 are fulfilled for example with the set HN,T = {(1/k1

2, 1/k2
4), k1 =

1 . . . , N1/4, k2 = 1 . . . , N1/8, N2 ≤ T}.
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In practice, note that in v(h), the constant C is unknown, and must be replaced by a rough estimator.
From the proofs of Propositions 1 and 7 it appears that C = E[C(φj)] for an explicit function C(φj),
thus C can be estimated by (1/N)

∑N
j=1C(Âj(T )).

5. Discrete data.

In practice, only discrete observations are available. The estimation method must take into account
this fact. Let us assume that we observe synchronously (Xj(t)), j = 1, . . . , N at times tk = k∆, k =
1, . . . , n and set T = n∆. As it is classically done, we replace the stochastic and ordinary integrals by
their discretized versions. The estimator of φj is thus defined by

Âj,n := Aj,n1Bj,n , with Aj,n = V −1
j,n Uj,n, (25)

and

Uj,n :=
n−1∑
k=0

b

σ2
(Xj(k∆))(Xj((k + 1)∆)−Xj(k∆)), Vj,n :=

n−1∑
k=0

∆
b bt

σ2
(Xj(k∆)),

Bj,n := {Vj,n ≥ κ
√
n∆I2}.

To extend the present work to discrete data, it is enough to find conditions ensuring that

E[‖Âj,n − φj‖22] ≤ C

n∆
. The proof follows the steps of Proposition 1, with the discretized integrals

instead of the continuous ones. We must study

E

[∥∥∥∥ 1

n∆
(Uj,n − Uj(T ))

∥∥∥∥2p

2

]
, E

[∥∥∥∥ 1

n∆
(Vj,n − Vj(T ))

∥∥∥∥2p

F

]
for p = 1, 2 and extend Proposition 7 (see Section 7) to the discretized version of (1/T )

∫ T
0 g(Xj(s))ds.

This is relatively standard as we assume that the processes (φj , Xj(t))t≥0 are in stationary regime.
The discretizations induce a new bias term which of order O(∆). To make this bias negligible, a
classical condition on the sampling interval is : ∆ . 1/(n∆), i.e. n∆2 . 1 (see Comte et al. (2007);
Kessler et al. (2012) for example). Note that other approximation of stochastic or ordinary integrals
based on discrete data are available and can improve the constraint n∆2 . 1 (see e.g. Kloeden and
Platen (1992) Iacus (2008)).

Moreover, due to the presence of random effects, additional moment conditions on the distribution
of the initial condition (φj , γj) are required. To avoid technical developments, we do not give more
details.

6. Simulation study

In this section, we illustrate on simulated data the performances of our nonparametric estimation
procedure on the two examples of Sections 2.2 and 3.3. For simplicity we denote f̂ := f̂

ĥ
and

f̂1(x1) =

∫
f̂(x1, x2)dx2, f̂2(x2) =

∫
f̂(x1, x2)dx1. (26)

For the two examples, we simulate N independent discretized sample paths (Xj(k∆), k = 1, . . . , n, j =
1, . . . , N). This is done by simulating independently for each j first the random variable φj , then,
given φj = ϕ, the initial variable γj which is simulated according to the invariant distribution πϕ
corresponding to each model. Lastly, the discretized sample path is simulated. For the OU model,
we use exact simulations of the discretized path. For the CIR model, we use a discretization scheme
given in Alfonsi (2005).
For simplicity we simulate independent components for φj = (φj,1, φj,2), thus the density f has the
form f(x1, x2) = f1(x1)× f2(x2).
The computation of the estimators Âj(T ) given by (13) requires to choose a value for the cut-off
parameter κ. To choose κ, different functions f have been investigated with different values of ∆ and
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a large number of repetitions. We compared the MISEs of estimators as functions of the constant κ
and selected the value κ = 0.125 as satisfactory. For comparison, we also computed the estimators for
κ = 0 (no cut-off). For κ = 0 the estimator is denoted f̃ and its marginals f̃1 and f̃2.
There remains the choice of the adaptive bandwidth. In Dion (2014) the kernel estimator with data-
driven bandwidth selected by the Goldenshluger and Lepski criterion is implemented for one random
effect. It is also implemented using the R-function density choosing the bandwidth by cross-validation
or with the rule of thumb. The Goldenshluger and Lepski method performs better for mixture densities.
Here we have chosen to use the R-function kde2d for the choice of the bandwidths with a standard
bivariate Gaussian kernel.

Example. [1] The simulation scheme of each sample path given ϕ is as follows: Xϕ(0) = γ ∼
N
(
ϕ1

ϕ2
, σ

2

2ϕ2

)
and G1, . . . , Gn i.i.d. N (0, 1) independent of Xϕ(0),

Xϕ((k + 1)∆) = Xϕ(k∆)e−∆ϕ2 +
ϕ1

ϕ2
(1− e−∆ϕ2) +

√
σ2

2ϕ2
(1− exp(−2∆ϕ2))Gk+1. (27)

The following distributions are chosen for the components of the random effects. We drop the index j:
• φ1 ∼ N (1, 0.5), φ2 ∼ Γ(10.1, 0.25),
• φ1 ∼ N (1, 0.5), φ2 ∼ 1/Γ(3, 0.25)
• φ1 ∼ Γ(1.8, 0.8), φ2 ∼ Γ(2, 1)
• φ1 ∼ Γ(1.8, 0.8), φ2 ∼ 1/Γ(3, 0.25)

Note that, for the third case, the distribution of φ does not satisfy all assumptions as E[φ−10
2 ] does

not exist. However the simulations show that the estimation procedure works even when theoretical
assumptions do not hold.

Example. [2] The simulation scheme of each sample path given ϕ is the one given in Alfonsi (2005)
which is based on the following approximation for small δ:

Xϕ
(k+1)δ

∼= Xϕ
kδ + (ϕ1 − σ2/2− ϕ2X

ϕ
(k+1)δ)δ + σ

√
Xϕ

(k+1)δ(W(k+1)δ −Wkδ).

Solving for Xϕ((k + 1)δ) yields the explicit relation:

Xϕ((k + 1)δ) =

√δσGk+1 +
√
σ2δG2

k+1 + 4(δ(ϕ1 − σ2/2) +Xϕ(kδ))(1 + ϕ2δ)

2 + 2ϕ2δ

2

(28)

where Gk+1 = (W(k+1)δ−Wkδ)/
√
δ and Xϕ(0) = γ ∼ Γ(2ϕ1

σ2 ,
σ2

2ϕ2
). The values δ = T/20000, ∆ = 10×δ

and n = T/∆ = 2000 are chosen.
The two random effects must be positive random variables and the first component must satisfy φ1 >
2σ2. We have chosen to simulate:

• φ1 ∼ 2σ2 + Γ(5, 0.5), φ2 ∼ 1 + Γ(1.8, 0.8)
• φ1 ∼ 2σ2 + Γ(5, 0.5), φ2 ∼ 1/Γ(8.1, 0.05).

The chosen distribution for φ1 satisfies the assumption E[ψ2(2φ1/σ
2 − 1)] < ∞. Indeed, when

φ1 ∼ 2σ2 + Γ(k, θ), E[ψ2(2φ1/σ
2 − 1)] =

∫ +∞
2σ2 ψ2(2x/σ2 − 1)e−(x−2σ2)/θ(x − 2σ2)k−1dx. One can

use the asymptotic equivalent for the di-gamma function ψ(x) ∼
+∞

log(x) to see that the integral is
convergent.
Here, the first case does not satisfy E[φ−4

2 ] <∞. But the estimation results are satisfactory.

Figures 1 and 4 illustrate the influence of the cut-off κ on the estimators for the two examples.
On top, the estimators Aj(T ) (κ = 0) are plotted as function of the simulated variables φj . Top
left is for the first component, top right for the second. The bottom figures represent the estimators
Âj(T ) (κ = 0.125) as function of the simulated φj . The random variables φj are well estimated and
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Figure 1. O-U example. Top left: Aj,1(T )’s as a function of φj,1, top right: Aj,2(T )’s
as a function of φj,2. Bottom left: Âj,1(T )’s as a function of φj,1, bottom right: Âj,2(T )’s
as a function of φj,2. With φ1 ∼ N (1, 0.5), φ2 ∼ Γ(10.1, 0.25), T = 10, N = 200,
σ = 0.1

Figure 2. O-U example. On the left: dark bold bold line f1, 3 estimators f̃1(x1) in
dotted grey (blue) and f̂1(x1) in grey (red), on the right: dark bold line f2 3 estimators
f̃2(x2) in dotted grey (blue) and f̂2(x2) in grey (red). Simulation with φ1 ∼ Γ(1.8, 0.8),
φ2 ∼ Γ(2, 1), T = 10, N = 200, σ = 0.1.
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Figure 3. O-U example. Top left: true density f , top right: estimator f̂ . Bottom:
sections. Bottom left: dark line for x1 → f(x1, x2) versus the estimator x1 → f̂(x1, x2)
light line (red) for x2 fixed. Bottom right: dark line for x2 → f(x1, x2) versus the
estimator x2 → f̂(x1, x2) light line (red), for x1 fixed. Simulation with φ1 ∼ N (1, 0.5),
φ2 ∼ Γ(10.1, 0.25), T = 100, N = 200, σ = 0.1.

Figure 4. C-I-R example. Top left: Aj,1(T )’s as a function of φj,1, top right Aj,2(T )’s
as a function of φj,2. Bottom left: Âj,1(T )’s as a function of φj,1, top right: Âj,2(T )’s
as a function of φj,2. With φ1 ∼ 2σ2 +Γ(5, 0.5), φ2 ∼ 1+Γ(1.8, 0.8), T = 10, N = 200,
σ = 0.1.
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Figure 5. C-I-R example. On the left: dark bold line f1, 3 estimators f̃1(x1) in dotted
grey (green) and f̂1(x1) in grey (red), on the right: dark bold line f2, 3 estimators f̃2(x2)

in dotted grey (green) and f̂2(x2) in grey (red). Simulation with φ1 ∼ 2σ2 + Γ(5, 0.5),
φ2 ∼ Γ(1.8, 0.8), T = 100, N = 200, σ = 0.1.

Figure 6. C-I-R example. Top left: true density f , top right: estimator f̂ . Bottom:
sections. Bottom left: dark line for x1 → f(x1, x2) versus the estimator x1 → f̂(x1, x2)
light line (red) for x2 fixed. Bottom right: dark line for x2 → f(x1, x2) versus the
estimator x2 → f̂(x1, x2) light line (red), for x1 fixed. Simulation with φ1 ∼ 2σ2 +
Γ(5, 0.5), φ2 ∼ 1/Γ(8.1, 0.05), T = 100, N = 200, σ = 0.1.
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Table 1. O-U example. MISE computed from 100 simulations

Case σ T N f̃ f̂ f̂1 f̂2

φ1 ∼ N , φ2 ∼ Γ 0.1 10 20 0.064 0.064 0.067 0.073
200 0.039 0.038 0.038 0.047

100 20 0.046 0.046 0.047 0.030
200 0.010 0.010 0.009 0.006

1 100 20 0.046 0.046 0.044 0.033
200 0.012 0.012 0.011 0.007

φ1 ∼ N , φ2 ∼ 1/Γ 0.1 10 20 0.077 0.075 0.113 0.081
200 0.050 0.051 0.008 0.060

100 20 0.068 0.068 0.083 0.040
200 0.021 0.027 0.035 0.010

1 100 20 0.061 0.061 0.061 0.044
200 0.021 0.021 0.035 0.011

φ1 ∼ Γ, φ2 ∼ Γ 0.1 10 20 0.028 0.024 0.056 0.047
200 0.015 0.013 0.030 0.028

100 20 0.025 0.025 0.029 0.027
200 0.009 0.009 0.007 0.011

1 100 20 0.022 0.022 0.025 0.025
200 0.008 0.008 0.007 0.010

φ1 ∼ Γ, φ2 ∼ 1/Γ 0.1 10 20 0.045 0.042 0.061 0.074
200 0.031 0.030 0.030 0.076

100 20 0.030 0.030 0.028 0.035
200 0.008 0.008 0.007 0.009

1 100 20 0.029 0.029 0.027 0.034
200 0.008 0.008 0.007 0.008

the cut-off seems to have the adequate effect: it sets to zero the values which are too far from the
diagonal.

On Figures 2 (OU example) and 5 (CIR example), estimators of the two marginal densities, i.e.
the densities of the two components of the random effects, are shown. The true marginals are in bold
black. Three density estimators f̃1 (left) and f̃1 (right), built using the Aj(T )’s (κ = 0), are in dotted
(blue) lines. Three density estimators f̂1 (left), f̂2 (right), built using the Âj(T )’s (κ = 0.125), are in
continuous (red) lines. The cut-off for estimating the φj ’s improves the density estimators: especially,
the first marginal f̂1 fits better the true density than f̃1.

Figures 3 and 6 show the true bivariate density (top left) and the estimator f̂ (top right). The
bottom graphs correspond to sections x1 → f(x1, x2) (bold left) and x1 → f̂(x1, x2) (dotted left) for
a fixed x2, and x2 → f(x1, x2) (bold right) and x2 → f̂(x1, x2) (dotted right) for a fixed x1. The
estimators are close to the true density.

In order to evaluate with more acuracy the performances of our estimator on the two examples, we
have computed their empirical MISE from 100 simulated data sets, for different values of σ and T and
for the chosen distributions of (φ1, φ2). Results are presented in Tables 1 and 2.

On Tables 1 and 2 the influence of the cut-off is often visible when N = 20: the MISEs of f̃ are
larger than the MISEs of f̂ . It almost disappears on the Tables when N = 200. For a given value of
N , when T increases from 10 to 100 the MISE decreases (twice smaller sometimes). The best results
are obtained when T = 100 and N = 200. When φ1 is Gaussian the estimation seems more difficult
than when it is Gamma. The influence of σ may be seen when T is not very large. For example for
the OU-model, the quantity σ2/T appears is the theoretical bound of the MISE and thus it must not
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Table 2. C-I-R example. MISE computed from 100 simulations

Case σ T N f̃ f̂ f̂1 f̂2

φ1 ∼ Γ, φ2 ∼ Γ 0.1 10 20 0.031 0.030 0.049 0.080
200 0.019 0.018 0.050 0.051

100 20 0.022 0.021 0.027 0.031
200 0.005 0.004 0.006 0.006

1 100 200 0.006 0.006 0.012 0.010
φ1 ∼ Γ, φ2 ∼ 1/Γ 0.1 10 20 0.028 0.027 0.033 0.063

200 0.017 0.017 0.012 0.045
100 20 0.020 0.019 0.027 0.025

200 0.005 0.005 0.006 0.006
1 100 200 0.007 0.007 0.013 0.008

Table 3. CIR example. MISE computed from 100 simulations, with N = 20 on the
left and N = 200 on the right, σ = 0.1, Gamma distributions for the random effects.

T δ ∆ T/∆ f̃ f̂
10 0.005 0.005× 2 1000 0.038 0.037
100 0.05 0.05× 2 1000 0.021 0.025
100 0.005 0.005× 2 10000 0.019 0.020

T δ ∆ T/∆ f̃ f̂
10 0.005 0.005× 2 1000 0.029 0.025
100 0.05 0.05× 2 1000 0.006 0.007
100 0.005 0.005× 2 10000 0.006 0.007

be too large. When T is large (T = 100) there is very little difference between the MISE’s values for
σ = 0.1 and σ = 1.

Table 3 highlights the different roles of T and ∆. When T increases (from 10 to 100) with the same
∆, the MISEs are divided by 2. When both T and ∆ (from 0.005 × 2 to 0.05 × 2) increase, we still
note a slight improvement. However, T/∆ has clearly no influence and this is why in the previous
tables we fixed the number of observations per trajectory at T/∆ = 2000 (∆ = 10 × δ). The right
table highlights again the role of N . 1

7. Concluding remarks

In this work, we first provide an estimator of a bivariate random effect in the drift of a stochastic
differential equation based on the observation of one trajectory given by (1). The definition of the
estimator uses a cut-off parameter which allows us to study and bound its L2-risk. Then, using
the estimators of the random effects, we build a kernel estimator of the common bivariate density
of the random effects, from N i.i.d. observed trajectories and propose a data-driven selection of the
bandwidth. The Orsntein-Uhlenbeck and the Cox-Ingersoll-Ross models both with two random effects
can be studied with our estimation procedure. Illustrations on simulated data are done and show the
good performances of our estimator.

As these two models have many applications in finance and in neuroscience, it would be interesting
to investigate our nonparametric method on real data.

The method developed here for two random effects can be easily developped for d random effects.
The extension to more general drift forms would require further work and other tools to accommodate
the estimation procedure, especially for estimating the random effects. Models including a linear
random effect in the diffusion coefficient could be investigated, for instance using the ideas developed
in Delattre et al. (2014).

1 Program codes are available on the web page: https://owncloud.math-info.univ-paris5.fr/public.php?service=
files&t=bc269d7843f844a74b7cff211a751d26

https://owncloud.math-info.univ-paris5.fr/public.php?service=files&t=bc269d7843f844a74b7cff211a751d26
https://owncloud.math-info.univ-paris5.fr/public.php?service=files&t=bc269d7843f844a74b7cff211a751d26
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The nonparametric estimation of the drift function in SDEs with no random effect has been largely
investigated in the literature (see e.g. Kutoyants, 2004; Comte et al., 2007; Schmisser, 2013). In the
case of SDEs with random effects and a general drift b(x, ϕ1, ϕ2), the nonparametric estimation of the
function b is open and of interest.

8. Proofs

8.1. An additional result and its proof. We denote Lϕ the generator of the process given by (1)
when φj = ϕ, given for all F ∈ C2((l, r)), by LϕF (x) := (σ2(x)/2)F”(x) + ( bt(x)ϕ)F ′(x). Then when
F is a matrix, the notation LϕF only indicated that we apply the operator on each coefficient of the
matrix. We also define in this sense F ′ as the derivative matrix coefficients by coefficients.

Proposition 7. Consider the processes (Xj(t)) given by (1) under (A1)-(A4). Let g = (gi,k)1≤i,k≤2

a matrix of S2(R), such that πϕg2
i,k < +∞ for all ϕ ∈ Φ. Assume that

F gϕ =

(
F
g1,1
ϕ F

g1,2
ϕ

F
g1,2
ϕ F

g2,2
ϕ

)
satisfies −LϕF gϕ = g−πϕg for all ϕ ∈ Φ . Let J(φj) be a non negative measurable function of φj such
that for all p ≥ 1

E
[
J(φj)

(
1

T p
πφj

(
‖F gφj‖

2p
F

)
+ πφj

(
‖(F gφj )

′‖2pF σ
2p
))]

<∞.

Then for all p ≥ 1, there exists a constant Cp > 0 depending on p such that

E

[
J(φj)

∥∥∥∥√T ( 1

T

∫ T

0
g(Xj(s))ds− πφj (g)

)∥∥∥∥2p

F

]
≤ Cp

(
1

T p
E
[
J(φj)πφj

(
‖F gφj‖

2p
F

)]
+E

[
J(φj)πφj

(
‖(F gφj )

′‖2pF σ
2p
)])

.

We demonstrate the result without the function J but it can be added all along. The subscript j
is omitted for simplicity. Denote gϕ := g − πϕg. Ito’s formula applied to F gϕ term by term, and the
equality LϕF gϕ = −gϕ, lead to

F gϕ(Xϕ(T )) = F gϕ(Xϕ(0)) +

∫ T

0
LϕF gϕ(Xϕ(s))ds+

∫ T

0
(F gϕ)′(Xϕ)σ(Xϕ(s))dW (s)

= F gϕ(Xϕ(0))−
∫ T

0
gϕ(Xϕ(s))ds+

∫ T

0
(F gϕ)′(Xϕ(s))σ(Xϕ(s))dW (s).

Thus, ∫ T

0
gϕ(Xϕ(s))ds =

∫ T

0
(F gϕ)′(Xϕ(s))σ(Xϕ(s))dW (s) +

(
F gϕ(Xϕ(0))− F gϕ(Xϕ(T ))

)
.

Then with Hölder’s inequality it yields

E

[∥∥∥∥∫ T

0
gϕ(Xϕ(s))ds

∥∥∥∥2p

F

]
≤ 22p−1 (Ta + Tb)

with

Ta := E

[∥∥∥∥∫ T

0
(F gϕ)′(Xϕ(s))σ(Xϕ(s))dW (s)

∥∥∥∥2p

F

]
, Tb := E

[∥∥F gϕ(Xϕ(0))− F gϕ(Xϕ(T ))
∥∥2p

F

]
. (29)

We study first the term Ta given by (29). Again, Hölder’s inequality gives
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Ta = E

 ∑
1≤i,k≤2

(∫ T

0
(F

gi,k
ϕ )′(Xϕ(s))σ(Xϕ(s))dW (s)

)2
p

≤ 4p−1E

 ∑
1≤i,k≤2

(∫ T

0
(F

gi,k
ϕ )′(Xϕ(s))σ(Xϕ(s))dW (s)

)2p
 .

The first term of the sum can by studied with the Burkholder-Davis-Gundy (B.D.G.) inequality (see
e.g. Revuz and Yor, 1999; Le Gall, 2010). Thus there exists a constant cp > 0 such that

E

[(∫ T

0
(F

g1,1
ϕ )′(Xϕ(s))σ(Xϕ(s))dW (s)

)2p
]
≤ cpE

[(∫ T

0
((F

g1,1
ϕ )′(Xϕ(s))σ(Xϕ(s)))2ds

)p]

≤ cpT
p−1E

[∫ T

0
((F

g1,1
ϕ )′(Xϕ(s))σ(Xϕ(s)))2pds

]
= cpT

p−1Tπϕ(((F
g1,1
ϕ )′σ)2p).

Finally there is a constant Cp := 4p−1cp verifying

Ta ≤ CpT
p πϕ

 ∑
1≤i,k≤2

(
(F

gi,k
ϕ )′

)2pσ2p

 ≤ CpT p πϕ (‖(F gϕ)′‖2pF σ
2p
)
.

Furthermore, we study term Tb (29) and Cauchy-Schwarz’s inequality leads to

Tb ≤ E
[(

(‖F gϕ(Xϕ(0))‖2pF + ‖F gϕ(Xϕ(T ))‖2pF )1/(2p)21−1/(2p)
)2p
]

≤ 22p−1E
[
‖F gϕ(Xϕ(0))‖2pF + ‖F gϕ(Xϕ(T ))‖2pF

]
= 22pπϕ(‖F gϕ‖

2p
F ).

Finally, with C ′p := max(22p, Cp) it yields

E

[
1

T p

∥∥∥∥∫ T

0
gϕ(Xϕ(s))ds

∥∥∥∥2p

F

]
≤ C ′p

(
πϕ

(
‖(F gϕ)′‖2pF σ

2p
)

+
1

T p
πϕ(‖F gϕ‖

2p
F )

)
. �

8.2. Proof of Proposition 1. The subscript j is omitted for simplicity.

Proof. First note that Â− φ = (A− φ)1B(T ) − φ1B(T )c . Thus:

T‖Â− φ‖22 = T‖(A− φ)1B(T ) − φ1B(T )c‖22 ≤ 2 (T1 + T2)

with

T1 := T‖(A− φ)‖221B(T ), T2 := T‖φ‖221B(T )c . (30)

• Study of T1. We have

T1 = 1B(T )T‖V (T )−1M(T )‖22 = 1B(T )

∥∥∥∥TV (T )−1M(T )√
T

∥∥∥∥2

2

= 1B(T )

∥∥∥∥(TV (T )−1 − L−1 + L−1)
M(T )√

T

∥∥∥∥2

2

≤ 2T′1 + 2T1”
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with

T′1 := 1B(T )

∥∥∥∥(TV (T )−1 − L−1)
M(T )√

T

∥∥∥∥2

2

, T1” := 1B(T )

∥∥∥∥L−1M(T )√
T

∥∥∥∥2

2

(31)

Let us study this two terms separately. Note that

E
(
V (T )

T

∣∣∣∣φ) =
1

T

∫ T

0
E
(
b bt

σ2
(X(s))

∣∣∣∣φ) ds,
E
(
b bt

σ2
(X(s))

∣∣∣∣φ = ϕ

)
= E

(
b bt

σ2
(Xϕ(s))

)
= E

(
b bt

σ2
(Xϕ(0))

)
= πϕ

(
b bt

σ2

)
.

Thus

L := πφ

(
b bt

σ2

)
= E

(
V (T )

T

∣∣∣∣φ) .
• Study of T1”. As L is F0 measurable,

E[T1”] ≤ E

[∥∥L−1
∥∥2

F

∥∥∥∥M(T )√
T

∥∥∥∥2

2

]
= E

[
‖L−1‖2FE

[(
M2

1 (T )

T
+
M2

2 (T )

T

)∣∣∣∣F0

]]
= E

[
‖L−1‖2F

(
< M1 >T

T
+
< M2 >T

T

)]
= E

[
‖L−1‖2FTr

(
V (T )

T

)]
Thus we obtain:

E[T1”] ≤ E
[
‖L−1‖2FE

[
Tr
(
V (T )

T

)∣∣∣∣φ]] = E
[
‖L−1‖2FTr(L)

]
.

Using Property 9 (see Appendix), we must assume :

E
[
‖L‖2F

det(L)2
Tr (L)

]
<∞. (32)

• Study of T′1 given by (31). This term will use the cut-off B(T ). We have:

TV (T )−1 − L−1 = (TV (T )−1L− I)L−1

= V (T )−1(TL− V (T ))L−1. (33)

Then we obtain: (
TV (T )−1 − L−1

)M(T )√
T

= V (T )−1(TL− V (T ))L−1M(T )√
T

= TV (T )−1

(
L− V (T )

T

)
︸ ︷︷ ︸

matrix

L−1M(T )√
T︸ ︷︷ ︸

vector

and

E[T′1] ≤ E

[
‖TV −1(T )‖2F1B(T )

∥∥∥∥L− V (T )

T

∥∥∥∥2

F

∥∥∥∥L−1M(T )√
T

∥∥∥∥2

2

]
.

But ‖V (T )−1‖2F = det(V (T )−2)‖V (T )‖2F = λ1(T )−2 + λ2(T )−2. And the definition of the set B(T )
implies:

‖TV (T )−1‖2F ≤
2T

κ2
. (34)

Thus the Hölder inequality yields

E[T′1] ≤ E

[
2T

κ2

∥∥∥∥L− V (T )

T

∥∥∥∥2

F

∥∥∥∥L−1M(T )√
T

∥∥∥∥2

2

]
≤ 2

κ2
(E[Tc]E[Td])1/2

with
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Tc :=

∥∥∥∥√T (L− V (T )

T

)∥∥∥∥4

F

, Td :=

∥∥∥∥L−1M(T )√
T

∥∥∥∥4

2

. (35)

• Study of term Tc. We apply here Proposition 7 with p = 2 and g = b tb/σ2 and get

E [Tc] ≤ C
(

1

T 2
E
[
‖Hφ‖4F

]
+ E

[
‖H ′φ‖4Fσ4

])
<∞. (36)

• Study of term Td. We notice that:

E[Td] ≤ E

[
‖L−1‖4F

∥∥∥∥M(T )√
T

∥∥∥∥4

2

]
.

Proceeding as for T1” and using the B.D.G. inequality implies that for some constant c > 0,

E

[
‖L−1‖4F

∥∥∥∥M(T )√
T

∥∥∥∥4

2

]
= E

[
‖L−1‖4F

(
M2

1 (T ) +M2
2 (T )

T

)2
]

≤ c E

[
‖L−1‖4FE

[(
Tr
(
V (T )

T

))2
∣∣∣∣∣φ
]]

.

And by the Hölder inequality,

E

[(
Tr
(
V (T )

T

))2
∣∣∣∣∣φ = ϕ

]
= E

[(
1

T

∫ T

0

(
b21
σ2

(Xϕ(s)) +
b22
σ2

(Xϕ(s))

)
ds

)2
]

≤ E

[
1

T

∫ T

0

(
b21
σ2

(Xϕ(s)) +
b22
σ2

(Xϕ(s))

)2

ds

]
= Tr

(
πϕ

((
b bt

σ2

)2
))

.

Thus,

E [Td] ≤ E

[
‖L−1‖4FTr

(
πφ

((
b bt

σ2

)2
))]

.

Finally we must assume that

E

[
‖L‖4F

det(L)4
Tr

(
πφ

((
b bt

σ2

)2
))]

<∞. (37)

• Study of term T2. Term T2 is given by (30). Note that

E[T2] = TE[E[‖φ‖22 1{B(T )c}
∣∣φ]] = TE[‖φ‖22E[1{B(T )c}

∣∣φ]].

We need to compute the quantity P(B(T )c|φ = ϕ)] for all ϕ. We have:

B(T )c =

{
V (T )

T
≤ κ√

T
I2

}
=

{
L− V (T )

T
≥ L− κ√

T
I2

}
.

If we denote l := πϕ

(
b bt

σ2

)
,

l − κ√
T
I2 ≥

l

2
⇔ l − l

2
≥ κ√

T
I2 ⇔ l ≥ 2κ√

T
I2.
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Furthermore,

P
(
V (T )

T
≤ κ√

T
I2

∣∣∣∣φ = ϕ

)
≤ 1l≥ 2κ√

T
I2
P
(
V (T )

T
≤ κ√

T
I2

∣∣∣∣φ = ϕ

)
+ 1l≤ 2κ√

T
I2

≤ Tα + Tβ
with

Tα := P
(
l − V (T )

T
≥ l

2

∣∣∣∣φ = ϕ

)
, Tβ := 1l≤ 2κ√

T
I2
. (38)

We study the two terms separately. First:

Tβ = 1l≤ 2κ√
T
I2

= 1
l−1≥

√
T

2κ
I2

= 1
min{ 1

λϕ,1
, 1
λϕ,2
}≥
√
T

2κ

≤
(

4κ2

T

)
min

{
1

λϕ,1
,

1

λϕ,2

}
Secondly, for the term Tα given by formula (38), we use Property 11 (Appendix)

l − V (T )

T
≥ l

2
⇒ li,i −

Vi,i(T )

T
≥ li,i

2
, i = 1, 2

then

Tα ≤ P
(
l1,1 −

V1,1(T )

T
≥ l1,1

2

∣∣∣∣φ = ϕ

)
+ P

(
l2,2 −

V2,2(T )

T
≥ l2,2

2

∣∣∣∣φ = ϕ

)
.

For the two terms of the right hand side we are able now to use Markov inequality:

Tα ≤
(

2

l1,1

)2

E

[(
l1,1 −

V1,1(T )

T

)2
∣∣∣∣∣φ = ϕ

]
+

(
2

l2,2

)2

E

[(
l2,2 −

V2,2(T )

T

)2
∣∣∣∣∣φ = ϕ

]
.

Finally we obtain

E[T2] ≤ TE

[
‖φ‖22

((
2

L1,1

)2(
L1,1 −

V1,1(T )

T

)2

+

(
2

L2,2

)2(
L2,2 −

V2,2(T )

T

)2

(39)

+

(
4κ2

T

)
min

{
1

λ1
,

1

λ2

})]
≤ E

[
4‖φ‖22

(
1

L2
1,1

+
1

L2
2,2

)∥∥∥∥√T (L− V(T )

T

)∥∥∥∥2
]

+ E
[
4κ2‖φ‖22 min

{
1

λ1
,

1

λ2

}]
(40)

We are able to conclude this proof using the Proposition 7 with J(φ) = ‖φ‖22
(

1
L2

1,1
+ 1

L2
2,2

)
. Indeed, as

TE[‖Â − φ‖2] ≤ 4E[T′1]4E[T1”] + 2E[T2], gathering the bounds (32), (36), (37),and (39) we obtain that there
is a constant C > 0 such that E[‖Âj(T )− φj‖22] ≤ C/T .

�

8.3. Proof of proposition 2.

Proof. With the Cauchy-Schwarz inequality, we obtain the following decomposition

E[‖f̂h − f‖2] = ‖f − E[f̂h]‖2 + E[‖E[f̂h]− f̂h‖2]

≤ 2‖f − fh‖2 + 2‖fh − E[f̂h]‖2 + E[‖f̂h − E[f̂h]‖2].

Let us study the second term of the bound. For all x = (x1, x2) ∈ R2,

E[f̂h(x)] =
1

N

N∑
j=1

E[Kh(x− Âj(T ))] = E[Kh(x− Â1(T ))],
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thus fh 6= E[f̂h]. The subscript j (or 1) is omitted in the following for simplicity. Note that

fh(x) = fh(x1, x2) = f ? Kh(x1, x2) =
1

h1h2

∫
R2

f(u, v)K

(
x1 − u
h1

,
x2 − v
h2

)
dudv = E[Kh(x− φ)].

Then to study ‖fh − E[f̂h]‖2 =
∫
R2 E[Kh(x− Â(T ))−Kh(x− φ)]2dx we denote DKh = (∂Kh∂u ,

∂Kh
∂v )t,

with
∂Kh

∂u
(u, v) =

1

h2
1h2

∂K

∂u

(
u

h1
,
v

h2

)
,
∂Kh

∂v
(u, v) =

1

h1h2
2

∂K

∂v

(
u

h1
,
v

h2

)
and applying Taylor’s formula with U(x, t) := (U1(x, t), U2(x, t)) := x− φ+ t(φ− Â(T ), it yields

Kh(x− Â(T ))−Kh(x− φ) =

∫ 1

0
DKh(U(x, t)).(φ− Â(T ))dt.

Thus

‖fh − E[f̂h]‖2 ≤
∫

E
[
(Kh(x− φ)−Kh(x− Â(T )))2

]
dx = E

[∫
(Kh(x− φ)−Kh(x− Â(T )))2dx

]
≤ E

[
2

∫
R2

(∫ 1

0

2

h2
1h2

∂K

∂u

(
U1(x, t)

h1
,
U2(x, t)

h2

)
dt

)2

dx1dx2 (φ1 − Â1(T ))2

]

+E

[
2

∫
R2

(∫ 1

0

2

h1h2
2

∂K

∂v

(
U1(x, t)

h1
,
U2(x, t)

h2

)
dt

)2

dx1dx2 (φ2 − Â2(T ))2

]
.

The first term of the previous sum is bounded according to Proposition 1:

E

[∫
R2

(∫ 1

0

1

h21h2

∂K

∂u

(
U1,1

h1
,
U1,2

h2

)
dt

)2

dx1dx2 (φ1,1 − Â1,1(T ))2

]

≤ E

(
1

h41h
2
2

∫ 1

0

dt

∫
R2

(
∂K

∂u
(y1, y2)

)2

dy1dy2 h1h2 (φ1,1 − Â1,1(T ))2

)

≤ 1

h31h2

∫
R2

(
∂K

∂u
(y1, y2)

)2

dy1dy2 E[(φ1,1 − Â1,1(T ))2] ≤ C

h31h2 T

∥∥∥∥∂K∂u
∥∥∥∥2

with C the constant from Equation (15). The same arguments works for the second term and finally
it yields

‖fh − E[f̂h]‖2 ≤ C max

(
1

h3
1h2

,
1

h1h3
2

) ∥∥∂K
∂u

∥∥2
+
∥∥∂K
∂v

∥∥2

T
.

Finally, the last term is bounded by

E[‖f̂h − E[f̂h]‖2] ≤ ‖K‖
2

Nh1h2
.

�

8.4. Proof of Proposition 4. For all x = (x1, x2) ∈ R2,

fh(x)− f(x) = f ? Kh(x)− f(x) =

∫
R2

K(v)[f(x− vh)− f(x)]dv.

Then,

f(x1−v1h1, x2−v2h2)−f(x1, x2) = f(x1−v1h1, x2−v2h2)−f(x1−v1h1, x2)+f(x1−v1h1, x2)−f(x1, x2).

As in Tsybakov (2009) we apply Taylor’s formula to the two partial functions: t 7→ f(x1 − v1h1, t) at
the order l2 and t 7→ f(t, x2) at the order l1. Using the orders of the two kernels yields for the first
term,
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B1(x) :=

∫
R2

K1(v1)K2(v2)[f(x1 − v1h1, x2 − v2h2)− f(x1 − v1h1, x2)]dv1dv2 (41)

= −
∫
R2

(h2v2)l2

(l2 − 1)!

∫ 1

0

(1− t)l2−1 ∂
l2

∂xl22
f(x1 − v1h1, x2 − v2h2 + th2v2)dt K1(v1)K2(v2)dv1dv2

= −
∫
R2

(h2v2)l2

(l2 − 1)!

∫ 1

0

(1− t)l2−1
[
∂l2

∂xl22
f(x1 − v1h1, x2 − v2h2 + th2v2)

− ∂l2

∂xl22
f(x1 − v1h1, x2 − v2h2)

]
dtK1(v1)K2(v2)dv1dv2

and the analogue term B2(x). To evaluate ‖f − fh‖2 =
∫

(fh(x)− f(x))2dx we remind the generalized
Minkowski’s inequality (see Tsybakov, 2009): for any measurable function f on R2, we have∫ (∫

f(u, x)du

)2

dx ≤

[∫ (∫
f2(u, x)dx

)1/2

du

]2

.

Looking at the first term (41), and applying twice the above inequality implies for f ∈ N (β,R):

∫
R2

B2
1(x)dx ≤

(∫
R2

|K1(v1)K2(v2)| h2|v2|
l2

(l2 − 1)!

∫ 1

0

(1− t)l2−1
[∫

R2

(
∂l2

∂xl22
f(x1 − v1h1, x2 − v2h2 + t h2v2)

− ∂l2

∂xl22
f(x1 − v1h1, x2 − v2h2)

)2

dx1dx2

1/2

dt dv1dv2


2

≤

[∫
R2

|K1(v1)K2(v2)|h2β2
|v2|β2

l2!
R dv1dv2

]2
≤ C2

2h
2β2

2

with C2 := (R/l2!)
∫
|K2(v2)vβ2

2 |dv2. Finally,∫
(fh(x)− f(x))2dx ≤ 2

∫
R2

B2
1(x)dx+ 2

∫
R2

B2
2(x)dx

≤ 2C2
1h

2β1
1 + 2C2

2h
2β2
2 . �

Appendix

8.5. Useful results of algebra.

Property 8. For all A,B ∈ M2(R), ‖AB‖F ≤ ‖A‖F ‖B‖F and for all x ∈ R2, ‖Ax‖2 ≤ ‖A‖F ‖x‖2
where ‖‖2 is the euclidean norm on R2.

Property 9. If A ∈ S2(R) and (λ1, λ2) ∈ R2 are its eigenvalues, ‖A‖2F = λ2
1 + λ2

2. Furthermore if A

is invertible, (λ1, λ2) ∈ R∗2 and ‖A−1‖2F =
(

1
det(A)

)2
‖A‖2F = 1

λ2
1

+ 1
λ2

2
.

Property 10. If A ∈ S2(R) with eigenvalues λ1, λ2, then A ≥ I2 ⇔ min(λ1, λ2) ≥ 1.

Property 11. For all A ∈ S+
2 (R), ai,i ≥ 0 for i = 1, 2. Then if A,B ∈ S2(R),

A ≥ B ⇒ ai,i ≥ bi,i i = 1, 2.
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8.6. Details on examples. We refer to Genon-Catalot et al. (2000) and Genon-Catalot and Larédo
(2014) for details and properties on the generator infinitesimal. Nevertheless we recall one of them.
For f ∈ C2((l, r)),

Lϕf(x) =
1

2
σ2(x)f ′′(x) + ( tb(x)ϕ)f ′(x) =

1

2mϕ(x)

(
f ′

sϕ

)′
(x). (42)

Thus for g ∈ L2
πϕ when we are looking for the associated F gϕ such that LϕF gϕ = −(g − πϕ(g)) we can

use the relation (F gϕ)′(x) = −2sϕ(x)
∫ x
l (g(u)− πϕ(g))mϕ(u)du.

For the O-U model.
We want to explicit Hφ = F

b bt/σ2

φ . Let us denote: g = b bt/σ2 = (gi,k)1≤i,k≤2. First: g1,1(x)−πϕg1,1 =

0 = −LϕF
g1,1
ϕ (x). For example F g1,1

ϕ (x) = 1 is suitable. Then, g1,2(x)− πϕg1,2 = − 1
σ2

(
x− ϕ1

ϕ2

)
. We

look for F g1,2
ϕ (x) = − a

σ2

(
x− ϕ1

ϕ2

)
and we obtain

F
g1,2
ϕ (x) = − 1

ϕ2σ2

(
x− ϕ1

ϕ2

)
.

Finally

g2,2(x)− πϕg2,2 =
x2

σ2
− 1

2ϕ2
+

ϕ2
1

σ2ϕ2
2

=
1

σ2

[(
x− ϕ1

ϕ2

)2

+ 2
ϕ1

ϕ2

(
x− ϕ1

ϕ2

)]
− 1

2ϕ2
.

We look for F g2,2
ϕ with the same functional form and we obtain

F
g2,2
ϕ (x) =

2ϕ1

σ2ϕ2
2

(
x− ϕ1

ϕ2

)
+

1

2σ2ϕ2

[(
x− ϕ1

ϕ2

)2

− σ2

2ϕ2

]
.

For the C-I-R model.
We want to explicit Hφ = F

b bt/σ2

φ . First: g1,1(x)− πϕg1,1 = 1/(σ2x)− 2ϕ2/((2ϕ1 − σ2)σ2). Here we
use formula (42). We have

(F
g1,1
ϕ )′(x) = −2sϕ(x)

∫ x

0

(
1

σ2u
− 2ϕ2

σ2(2ϕ1 − σ2)

)
mϕ(u)du

with sϕ(x) = e2ϕ2x/σ2
x−2ϕ1/σ2 . This is equivalent to

(F
g1,1
ϕ )′(x) = − 2

σ4
e2ϕ2x/σ2

x−2ϕ1/σ2

[∫ x

0
e−2ϕ2u/σ2

u2ϕ1/σ2−2du−
∫ x

0

2ϕ2

2ϕ1 − σ2
e−2ϕ2u/σ2

u2ϕ1/σ2−1du

]
and an integration by part in the first integral gives

(F
g1,1
ϕ )′(x) = − 2

σ4
e2ϕ2x/σ2

x−2ϕ1/σ2

[
−e
−2ϕ2x/σ2

x2ϕ1/σ2−1

2ϕ1/σ2 − 1

]
=

2

σ2(2ϕ1 − σ2)x
.

We finally set

F
g1,1
ϕ (x) =

2

σ2(2φ1 − σ2)
log(x).

Furthermore g1,2(x) − πϕg1,2 = 0 = −LϕF
g1,2
ϕ (x), and then for example F g1,2

ϕ (x) = 1. At last
g2,2(x)− πϕg2,2 = 1

σ2 (x− ϕ1

ϕ2
) and we obtain

F
g2,2
ϕ (x) =

1

ϕ2σ2

(
x− ϕ1

ϕ2

)
.
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