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We consider the propagation of terahertz (THz) pulses resonant with the lowest rotational levels in ammonia
vapors at room temperature. We demonstrate a quasisimultonic regime of propagation for two-color THz pulses
(their lossless simultaneous propagation with equal group velocities and stable envelopes at finite distances, like
coupled solitons). The quasisimultons are formed by two pulses synchronized in time, the first one being intense
and two humped with an area multiple of 4π , while the another one is weaker, one humped, and with an area
much less than π . Two- and one-humped pulses have equal width and copropagate in ammonia vapor at the
same group velocity. Moreover, the larger the dip of the two-hump pulse is, the weaker may be the one-humped
pulse. The stability of this coupled state is provided by the fact that the two-humped pulse makes the medium
transparent for the one-humped pulse. In its turn, the latter prevents the breakup of the former into separate
pulses. It is established as well that a multihumped pulse with an odd or even number of humps and a hyperbolic
secant pulse can behave like a simulton. In this case, the area of multihumped pulse equals to 2nπ , where n is
the number of humps in the powerful pulse structure.

DOI: 10.1103/PhysRevA.90.053843 PACS number(s): 42.65.Tg, 42.65.Jx, 41.20.Jb

I. INTRODUCTION

Revolutionary changes in nonlinear physics often are
related to the introduction of the concepts of soliton and strange
attractor. Since then a number of processes occurring in nature
have become clear and predictable. The history of solitons
has always been associated with real applications. Soliton
solutions arise, for example, in hydrodynamics, solid-state
physics, biophysics, and nonlinear optics. Recently, many new
kinds of optical solitons have been revealed. Besides temporal
and spatial solitons, which have already become classical, by
now, optical bullets, Bragg and gap solitons, discrete and vor-
tex solitons, parametric and incoherent solitons, self-induced
transparency (SIT) solitons (SIT-solitons), etc., have been
investigated. A soliton (solitary wave) is a particlelike solution
of a nonlinear differential equation, describing the excitation
of finite energy having distinctive features. As a rule, a soliton
retains both its shape and its velocity during propagation and
under collision with other solitary waves. However, there are
many examples when solitons do not retain their shape while
propagating, moving at an accelerated speed, decomposing,
or forming coupled states [1]. The soliton theory is connected
with the theory of completely integrable nonlinear evolution
equations, and soliton solutions may be defined using the
inverse scattering transform method. Nevertheless, the value
of numerical experiments in soliton research is indisputable.
In reality, the governing equations are typically nonintegrable
and therefore numerical methods may be especially effective
for soliton studying in nonintegrable systems.

Soliton formation is a result of competitive process balance,
i.e., dispersion and nonlinearity or diffraction and nonlin-
earity [2]. As for SIT solitons, they are observed in resonant
two-level media when the width of an ultrashort pulse (USP) is
short compared to dissipative relaxation times. In this case, the
light-medium interaction represents stimulated absorption and
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emission of electromagnetic radiation by resonant atoms.
When both processes are perfectly balanced, the state of
the medium after USP propagates through it coincides
with its initial state, and in this sense the medium is
transparent. The group velocity of such a stationary USP,
called a 2π pulse or a SIT soliton, is smaller than the phase
velocity of light in the medium and depends on the pulse
duration: The shorter the pulse, the greater is its propagation
velocity [3–6]. The shape and group velocity of 2π pulses,
as is typical for solitons, do not change. McCall and Hahn
were the first to describe and experimentally observe the SIT
phenomenon [7]. The fundamental property of the SIT and
SIT solitons has been studied many times, both theoretically
and experimentally [3,5,6,8]. The SIT phenomenon is of
threshold character: The ensemble of two-level absorbers
becomes transparent for pulses with areas exceeding a critical
value equal to π , where the total area of the pulse is

θ = 2d

�

∫ ∞

−∞
E(z,t)dt.

Moreover, the propagating pulse area obeys the area
theorem [3]. For phase-modulated pulses the area theorem
has been presented in [9]. The SIT solitons have been
observed experimentally in doped crystals (beginning with
ruby [7]), alkali-metal vapors [8], molecular gases (SF6 [10],
NH3 [11], etc.), iodine vapors [12], semiconductors [13], and
nanostructures [14]. Self-transparency was observed in NH3 at
upper vibration-rotational transitions. Inherent for gases, the
degeneracy of resonant levels due to arbitrary orientations of
the total angular momentum can lead to unusual behavior of
solitons. So, for Q-branch transitions with j = 2 the resonant
transition (fivefold degenerate levels) steady-state pulse profile
is a double-humped one, which is a soliton solution of double
sine-Gordon equation [15]. It is worth adding that in dense
two-level media the near-dipole-dipole interaction modifies
the soliton form [16].
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The spatiotemporal dynamics of a light pulse injected into a
dense two-level medium under near-dipole-dipole interaction
conditions was analyzed in [17]. Two regimes for a soliton,
coherent and incoherent, were revealed. In the latter case, the
dephasing process is suppressed by dipole-dipole interatomic
interaction. Not only are one-soliton solutions found but also
a powerful pulse splitting into separate solitons is observed. It
has been shown that group-velocity dispersion and diffraction
of tilted pulses may make incoherent soliton formation easier.

The account of both resonant and Kerr nonlinearities is
especially important for problems of USP propagation in
doped fibers. As the authors [18] have shown, in this case
the SIT soliton should be also a nonlinear Schrödinger (NLS)
soliton of the NLS equation. In other words, such 2π -pulse
amplitude and duration should be such that the USP dispersion
broadening and its compression due to self-phase modulation
exactly compensate each other. The Hirota-type equations
were used in papers [19–21] instead of the NLS equation,
taking into account the third-order group-velocity dispersion,
self-steepening of the pulse edge, and self-induced Raman
scattering. The review of works on solitons in media with com-
bined resonant and Kerr nonlinearities can be found in [22].
Local field impact on soliton formation in doped crystals with
both types of nonlinearities has been studied in [23], where
excitation-induced shift and excitation-induced dephasing
were included in the analysis. Soliton implementation is shown
to depend on value and sign of pulse carrier frequency detuning
from resonance and also on group-velocity dispersion. Inher-
ent both to coherent and incoherent solitons, phase modulation
is a function of Kerr nonlinearity and Lorentz frequency.

Successes in the generation of extremely short pulses
(few-cycle pulses) by compression or by their direct generation
in laser systems have led to the necessity of developing new
models describing propagation of such pulses in nonlinear
media because often exploited slowly varying envelope ap-
proximation (SVEA) is unacceptable for them. A completely
integrable model of coherent propagation of such pulses
without the SVEA was proposed in [24,25]. If the pulse
duration τp and resonance transition frequency ωa obey
the condition τpωa � 1, one should use complete Maxwell
equations or— under certain conditions—the unidirectional
wave approximation [26]. In [26] it has been shown that
the propagation of polarized USP in a resonant medium
can be described by a two-component generalized modified
Korteweg–de Vries equation, which is reduced to a completely
integrable equation only in the case of fixed pulse polarization.
The authors of [27–29] have proposed another approach
to extremely short pulse dynamics analysis. The theory of
extremely short solitons in a multilevel medium taking into
account all possible transitions with a common level is
developed in [30]. It is shown that the dynamics of video
pulses is described by a double sine-Gordon equation. The
conditions of 0π -, 2π -, and 4π -video-soliton formation have
been revealed.

Effects of multifrequency pulse propagation in multilevel
media, including soliton solutions, are very diverse and
have great potential for many applications. Optical pulse
propagation in a three-level medium under two-photon or
double one-photon resonance conditions has been extensively
studied theoretically and experimentally in connection with

SIT, simultaneous different-wavelength optical solitons called
simultons [31–33], lasing without inversion [34,35], phaseo-
nium [36], and electromagnetically induced transparency
(EIT) [37,38]. As it is shown in [37] under EIT conditions
when an arbitrary shaped pulse is applied to an ensemble of
population-trapped atoms, the atoms will generate a matching
pulse shape on complementary transition. After a certain
distance this medium becomes transparent. In contrast to the
identical envelopes of EIT matched pulses, adiabatons are pre-
dicted in [39] to have the opposite character-complementary
envelopes. Adiabatons are generated from initially nonideal
pulses after a characteristic propagation distance. The assump-
tion of fully adiabatic behavior is a key condition. The model
developed is exactly integrable.

The possibility of simulton lossless propagation in the
three-level medium was first predicted in [40]. It is a striking
example of the light control by light in a nonlinear medium.
To date, there are quite a lot of works devoted to different
aspects of simulton formation [41–43]. New multisimulton
solutions in three-level systems have been found in [44].
Studies [45,46] have demonstrated that the system of equation
governing the evolution of USP in the case of V and �

configurations are completely integrable and may be solved
by use of an inverse scattering transform method. Dynamics
of simultons under multiple resonance conditions was studied
in [47–49]. According to [50,51], the simultons can be re-
garded as two-color breathers. Therefore, as in any completely
conservative system, the collision of simultons only alters
their phase. At the same time, the collision process of two
counterpropagating pulses in a degenerate three-level medium
can initiate additional simulton birth if the individual pulses
are resonant (or near resonant) with the transitions and have
orthogonal relative polarizations [52]. Rigorous SIT theory
and properties of polarized solitons in the three-level medium
under double resonance have been presented in [53] and [54],
correspondingly. In [55] the authors have found a solitonlike
pulse pair solutions for inhomogeneously broadened �- and
V -type three-level media. The propagation of simultons has
been generalized by Hioe to the propagation of (N − 1) pulses
in an absorbing N -level medium including cascade configura-
tion under certain conditions for level populations [56].

In works [51,57] more general cases of interaction of two
different frequency pulses with the three-level medium in
the presence of stationary radiation resonant to the transition
between the intermediate and upper levels are analyzed. It is
shown, for instance, that at low illumination intensity the first
pulse resonant to lower transition is a two-humped one which
consists of two pulses with areas approximately equal to 2π .
The transient problems associated with such propagations are
reviewed in [51].

Hereafter, we study the propagation of two-color ultrashort
terahertz (THz) pulses in ammonia vapors. The THz spectral
range has attracted much attention of scientists because of its
importance in many fields, such as biomedical diagnostics,
fingerprint spectroscopy, environment monitoring, security
systems, characterization of complex molecules, nanostruc-
tures, metamaterials, etc. [58–63]. Although problems in
efficient generation and detection of THz radiation still exist,
currently this spectral region is being quickly mastered due to
the appearance of new sources and detectors of THz waves.
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Among the THz sources one can mention free-electron lasers,
optical parametric oscillators, quantum-cascade lasers [64],
and dipole antennas [65], Nowadays, a lot is being done in
order to discover new mechanisms of pulsed THz radiation.
The most significant ones are optical rectification of fem-
tosecond pulses in noncentrosymmetric crystals, i.e., GaAs or
ZnTe [66], and femtosecond filamentation in gases [67]. Since
the THz frequency range corresponds to the spectral width
of femtosecond pulses, femtosecond lasers are widely used to
generate broadband single-cycle THz waves [68]. However,
many applications such as THz time-domain spectroscopy
often require predetermined THz pulse shape. The evolution of
shaping techniques is nowadays making it possible to generate
THz pulses with a given shape and width [69].

Being interested in methods of nonlinear THz spectroscopy
of molecular gases, below we analyze the interaction of two
THz pulses with the lowest vibration-rotational transitions in
ammonia vapor. We demonstrate that in this vapor one can
achieve the lossless propagation of simultaneous different-
wavelength pulses resonant with different multiplets. The
paper is arranged as follows. In Sec. II, we describe the
rotation-inversion transitions in ammonia vapors. In Sec. III,
we set the equations governing the propagation of two THz op-
tical pulses resonant with lowest rotational levels. Sections IV
and V represent Bloch-Maxwell equations in dimensionless
form for coupled three- and two-level systems, as well as
appropriate conservation laws, correspondingly. In Sec. VI,
different simultons that result from this set of equations are
given and discussed. Finally, Sec. VII is the conclusion.

II. ROTATION-INVERSION TRANSITIONS IN
AMMONIA VAPORS

In this section we briefly mention the main features of the
rotation-inversion transitions in ammonia and some results of
Ref. [66] necessary for estimating THz pulse propagation in
this medium. As known, ammonia is a symmetric top molecule
having an oblate form [70] with its moment of inertia along
the principal axis smaller than the one along the symmetry
axis (z axis). Each rotational state with angular momentum
P is uniquely determined by a pair of quantum numbers:
the rotational quantum number J and the projection quantum
number K , where K = J,J − 1, . . . , − J .

Moreover, for each (J,K) level, with K > 0, two states
of symmetry, + and −, can be distinguished, related to the
symmetry of the rotational wave functions. These states of
symmetry (inversion states) are associated with the nitrogen
atom position relative to the symmetry plane, defined by
the three hydrogen atoms. THz radiation excites the lowest
rotational transitions of the vibration ground state, obeying
the following selection rules: + ↔ −, �J = 0, ± 1, and
�K = 0, as indicated in Fig. 1 [66,70]. For values of
K �= 0, the inversion transitions + ↔ − obey the following
selection rules: �J = 0, �K = 0. For ammonia, the inversion
frequency is ω0i/2π = 23.8 GHz [70].

The authors of [63] note for ammonia molecules a slight
anharmonicity in the line spacing of the rotational lines and the
removal of the K degeneracy. In addition, the inversion lines
are also nondegenerate, but spread over a spectral interval of
about 10 GHz.

FIG. 1. Level scheme of ammonia indicating the inversion and
rotation transitions, taken from Ref. [66].

For J > 0, one can distinguish two components for a
rotational line, with frequencies

ω±
r̄ (J )

2π
= 2J̄ (Bv − DJKK̄2) − 4DJ J̄ 3 ± ωi

2π
. (1)

Here J̄ = J + 1, Bv is the rotational constant of the
vibrational ground state; DJ and DJK are the respective
centrifugal stretching constants [71]. K is an average value
of the quantum number K accounting for all K transitions
with the same quantum number J . As shown in [66], at
low pressures the ammonia spectrum comprises individual K

transitions belonging to the same quantum number J > 0 and
reveals dependence of their widths on the quantum numbers
J and K . At pressures of 1000 hPa and higher, absorption
bands of ammonia consist of individual well-resolved lines,
which depend only on J . These lines are an average over all
K transitions. For example, for 2000 hPa the lowest rotational
lines, respectively, lie in the region 0.6, 1.2, 1.7 THz [66],
etc. (Fig. 2). As the pressure builds up, absorption lines are
broadened, but their intensity does not increase.

Hereafter, we consider the nonlinear interaction of THz
pulses with ammonia vapor. The results of this process

FIG. 2. Absorption spectrum of ammonia for (a) 200 hPa and (b)
2950 hPa, taken from Ref. [66]; αL/2 is the dimensionless absorption.
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essentially depend on gas cell length, vapor pressure, and
temperature, as well as on the resonance conditions, intensity,
and spectral width of the input pulse. For instance, the result of
the pulse propagation in ammonia vapor will strongly depend
on the THz pulse duration. The propagation of a one-cycle
THz pulse whose spectral width overlaps many transitions of
ammonia is largely different from the propagation of a long
enough pulse that is resonant to a single transition.

It is important to notice that the traditionally used SVEA
is not valid for extremely short (one-cycle) THz pulses.
Hereafter, we present and discuss the simultaneous prop-
agation of two long-enough THz pulses in an extended
ammonia cell. We consider that the pulses are resonant with
lowest rotational transitions of ammonia. More precisely, the
transitions considered are the following: for K = 0, − ↔
+, J = 0 ↔ 1 and + ↔ −, J = 1 ↔ 2 and for K = ±1,
J = 1 ↔ 2, + ↔ − and − ↔ +. One of the THz pulses is
resonant with the lowest transition of the three-level system,
and the other one is resonant with both the upper transition
of the three-level system and four two-level systems. Under
these approximations, the problem reduces to the investigation
of two shaped THz pulses that propagate in a medium with two
different multiplets: three- and two-level subsystems.

III. NONREDUCED BLOCH-MAXWELL EQUATIONS FOR
COUPLED THREE- AND TWO-LEVEL SYSTEMS

Let us now consider the interaction of the two
copropagating and nondegenerate-in-frequency THz pulses
E1(t) and E2(t) that propagate in a molecular medium
consisting of three- and two-level subsystems. These pulses
are assumed to have a duration long enough to ensure that
the concept of a carrier frequency is valid. As we already
mentioned, the first THz pulse at the carrier frequency
ω1 ≈ 0.6 THz is resonant with the transition K = 0, − ↔ +,
J = 0 ↔ 1, while the second one with the frequency
ω2 ≈ 1.2 THz is in resonance with both the upper transition
of the three-level (K = 0, + ↔ −, J = 1 ↔ 2) and the
two-level systems (K = ±1, + ↔ −, J = 1 ↔ 2) (see
Fig. 1). We focus on the coherent regime of interaction of
both pulses with the medium assuming that their durations
are less than the phase and population relaxation times. Then
the associated Maxwell-Bloch equations are the following:

dρ10

dt
= −iω10ρ10 + i

�
d10E1n10 + i

�
d21E

∗
2ρ20, (2)

dρ21

dt
= −iω21ρ21 + i

�
d21E2n21 − i

�
d10E

∗
1ρ20, (3)

dρ20

dt
= −iω20ρ20 + i

�
d21E2ρ10 − i

�
d10E1ρ21, (4)

dn10

dt
= −2i

�
d10(E1ρ01 − E∗

1ρ10)

− i

�
d21(E∗

2ρ21 − E2ρ12), (5)

dn21

dt
= −2i

�
d21(E2ρ12 − E∗

2ρ21)

− i

�
d10(E∗

1ρ10 − E1ρ01), (6)

dρl
21

dt
= −iωl

21ρ
l
21 + i

�
dl

21E2n
l
21, (7)

dnl
21

dt
= −2i

�
dl

21

(
E2ρ

l
21 − E∗

2ρl
12

)
, (8)

�Ei − μ0
∂2Di

∂t2
= 0. (9)

Here Eqs. (2)–(6) and (7) and (8) are the Bloch equations
set for three-level and two-level systems, respectively; ρij is
the ijth density matrix element of the three-level system and
ρl

ij is the ijth density matrix element of the lth two-level
system, l = 1–4; nij = ρii − ρjj and nl

ij = ρl
ii − ρl

jj , �ωl
ij

and �ωij , and dij and dl
ij are, respectively, the population

differences, energy, and dipole moments of actual transitions.
The nonlinear evolution of both pulses is described by the
wave equation (9), which is presented in SI units, where μ0 is
the magnetic constant, Ei and Di are the THz field amplitude
and the electric displacement, respectively, at frequency ωi .
Here ω1 ≈ ω10 and ω2 ≈ ω21. The electric displacement in
the dielectric medium is linked to the external field E and the
induced polarization P by the relation D = ε0E + P , where
ε0 is the electric constant and the polarization P includes
linear Plin(ωi) = ε0χ (ωi)Ei and nonlinear Pnl components;
χ (ωi) is the electric susceptibility. At resonance, the nonlinear
macroscopic polarization induced by the two THz pulses
equals the sum of P1 = N{ρ01d10 + ρ10d01} at frequency
ω1 and P2 = N{ρ12d21 + ρ21d12 + ∑4

l=1 (ρl
12d

l
21 + ρl

21d
l
12)} at

frequency ω2. Substituting these expressions into the Eq. (9),
one obtains the wave equation

�Ei − n2
i

c2

∂2Ei

∂t2
= μ0

∂2Pi

∂t2
, (10)

where c2/n2
i = [(1 + χ )ε0μ0]−1, ni being the refractive index

of the medium and c/ni the phase velocity of the THz pulse
at frequency ωi . Equations (2)–(10) govern the copropagation
of two-color THz pulses at their coherent interaction with
the medium as well as pulse widths being short relative to
molecular relaxation times. This set of equations is unlikely to
be integrated. If only one resonant THz pulse passes through
the medium, our task is reduced to a two-level model, and the
Maxwell-Bloch equations are integrable in both reduced and
nonreduced form [72]. In the latter case, the only approxima-
tion used is the approximation of unidirectional waves [26,73].
The reduced Maxwell-Bloch equation set in the two-level
limit can describe a SIT phenomenon originating from a
balance of the absorption and re-emission of electromagnetic
radiation by resonant atoms of the medium in such a manner
that a steady-state optical pulse propagates. In this meaning
the medium is transparent. The group velocity of such a
steady-state pulse, called 2π pulse or SIT soliton, is less than
the phase speed of light in the medium. The group velocity
depends on the 2π -pulse duration: The shorter the duration,
the higher is its speed [3,5]. The solitons keep their shape
and velocity under propagation and after collisions. From a
mathematical point of view, this property is a consequence
of the complete integrability of the reduced Maxwell-Bloch
equations [22,74]. The very 2π pulse is the single-soliton
solution of these equations. In general, all other parameters
of solitons may alter. Fundamental properties of the SIT
solitons have been studied many times, both theoretically and
experimentally [3–10].
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In the absence of two-level subsystems the equation system
presented above is reduced to a model of copropagation of
two USPs in a three-level medium with cascade transitions.
While this problem is not integrable, it makes it possible to
obtain analytic solutions at appropriate relations between the
pulse amplitudes, frequencies, and the dipole moments of cor-
responding transitions and it is feasible to trap two pulses by a
simulton [31,47].

IV. DIMENSIONLESS BLOCH-MAXWELL EQUATIONS
FOR COUPLED THREE- AND TWO-LEVEL SYSTEMS

Now let us focus on the propagation of two shaped
pulses containing a sufficiently large number of cycles in
the above molecular medium. Strictly speaking, the four
two-level systems for K = ±1 are not independent, since they
are coupled via inverse transitions, which lie in gigahertz
range of the spectrum [see Fig. 1 and Eq. (1)]. Note that
the pulse durations available in the future experiment should
fit with the SVEA. Such pulses will not have gigahertz
spectral components in their spectra to excite the inverse
transitions. Therefore, we will suppose that all two-level
subsystems interact with the second THz pulse independently
from each other. In addition, the second pulse is assumed
to be in resonance with the upper transition of the three-
level subsystem and with all two-level subsystems. Let us
introduce new variables ρ01 = ρ̄01e

iω1t , ρ12 = ρ̄12e
iω2t , ρ02 =

ρ̄02e
i(ω1+ω2)t , ρij = ρ∗

ji . Supposing that both THz pulses are
quasimonochromatic plane waves copropagating along the z

axis, i.e., �Ei(z,t) = �eEi(z,t)ei(ωi t−kiz) + c.c., i = 1,2, within
the scope of the SVEA the Maxwell-Bloch equations are
transformed into the reduced form:

dρ̄01

dt
= iδ01ρ̄01 − i

�
(d01E1n01 + d21E∗

2 ρ̄02), (11)

dρ̄12

dt
= iδ12ρ̄12 − i

�
(d12E2n12 − d10E∗

1 ρ̄02), (12)

dρ̄02

dt
= i(δ01 + δ12)ρ̄02 + i

�
(d01E1ρ̄12 − d12E2ρ̄01), (13)

dρ00

dt
= i

�
(d01E1ρ̄10 − d10E∗

1 ρ̄01), (14)

dρ11

dt
= i

�
(d10E∗

1 ρ̄01 − d01E1ρ̄10)

+ i

�
(d12E2ρ̄21 − d12E∗

2 ρ̄12), (15)

dρ22

dt
= i

�
(d21E∗

1 ρ̄12 − d12E2ρ̄21), (16)

dρ̄ ′
12

dt
= iδ′

12ρ̄
′
12 − i

�
d ′

12E2n
′, (17)

dn′

dt
= 2i

�
(d ′

12E2ρ̄ ′
21 − d ′

21E∗
2 ρ̄ ′

12), (18)

∂E1

∂z
+ n1

c

∂E1

∂t
= −i

μ0ω1cNd01

2n1
ρ̄01, (19)

∂E2

∂z
+ n2

c

∂E2

∂t
= −i

μ0ω2cN

2n2
(d21ρ̄12 + 4d ′

21ρ̄
′
12). (20)

Here δ01 = ω10 − ω1, δ12 = ω21 − ω2, δij = −δji , δ01(δ12)
is the first (second) pulse frequency detuning from the lower
(upper) transition frequency and δ′

12 is the frequency detuning
of the last pulse from resonance with the two-level system. One
can see that, for both THz fields, the two cascade transitions in
the three-level subsystem and the four two-level subsystems
are not independent. First, the transitions 0 ↔ 1 and 1 ↔ 2
compete for the population of level 1 through their interaction
with the THz pulses. Second, the superposition of the states
|0〉 and |2〉 occurs owing to simultaneous action of both THz
pulses. Finally, the three-level subsystem and four two-level
subsystems are coupled via the pulse E2. Since all two-level
systems differ little from each other in frequencies and in
transition dipole moments, they are supposed to be identical.
Therefore, instead of matrix elements ρl

21(12) and nl
21 we have

introduced in Eqs. (17) and (18) ρ ′
21(12) and n′ in order to

describe two-level systems.
In new variables, the equation set (11)–(20) can be written

in a dimensionless form,

dρ̄01

dτ
= iδ1ρ̄01 − iE1n01 − iE∗

2 ρ̄02, (21)

dρ̄12

dτ
= iδ2ρ̄12 − iE2n12 + iE∗

1 ρ̄02, (22)

dρ̄02

dτ
= i (δ1 + δ2) ρ̄02 + i (E1ρ̄12 − E2ρ̄01) , (23)

dρ00

dτ
= i(E1ρ̄10 − E∗

1 ρ̄01), (24)

dρ11

dτ
= i[(E∗

1 ρ̄01 − E1ρ̄10) + (E2ρ̄21 − E∗
2 ρ̄12)], (25)

dρ22

dτ
= i(E∗

2 ρ̄12 − E2ρ̄21), (26)

dρ̄ ′
12

dτ
= iδρ̄ ′

12 − iσE2n̄
′
12, (27)

dn′

dτ
= 2i(E2ρ̄

′
21 − E∗

2 ρ̄
′
12), (28)

�
dE1

dτ
= iρ̄01, (29)

�
dE2

dτ
= iλ2(ρ̄12 + 4σ ρ̄ ′

12), (30)

where Ei = di1Ei/�ωp; δi = δi−1,i/ωp; δ = δ′
12/ωp; τ =

ωp(t − z/v); ξ = z · ωpn/c; ω2
p = μ0ω1c

2Nd2
i1/(2�n2

0); λ2 =
(d2

12/d
2
01)(ω2/ω1); � = [c/(nν) − 1]; σ = d ′

12/d12, where ν is
the group velocity. We have introduced the automodel variable
τ being interested in steady-state solutions for both THz
pulses.

V. CONSERVATION LAWS

As mentioned above, the problem under investigation is
unlikely to be integrable, but we may find a solution by use
of appropriate conservation laws for the set of Eqs. (21)–(30).
Multiplying Eq. (29) by E∗

1 and the corresponding complex
conjugate equation by E1 and then summing them, we obtain,
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taking into account (24), the first conservation law,

� |E1|2 = (
ρ0

00 − ρ00
)
, (31)

where ρ0
00 is the initial population of the lower level of the

three-level system. As follows from this law, the first pulse
intensity is associated with a change of the population of the
lower level of the three-level system.

In a similar way we can deduce a second conservation law
using Eq. (30) and its conjugate. This law binds the second
pulse intensity with changes of the upper level population of
the three-level system and the population difference of the
two-level ones:

� |E2|2 = (
ρ22 − ρ0

22

) + 2(n′
0 − n′). (32)

Three additional conservation laws can be derived from the
properties of the actual resonant systems,

ρ00 + ρ11 + ρ22 = const, (33)

v2
01 + v2

12 + u2
02 + 2

(
ρ2

00 + ρ2
11 + ρ2

22

) = const, (34)

for the three-level system [31], where

uij = (1/2)(ρ̄ij + ρ̄j i),vij = (1/2)(ρ̄ij − ρ̄j i)

and

4ρ̄ ′
12ρ̄

′
21 + (n′)2 = const (35)

for the two-level one. The expression (33) is the total
probability conservation law. As for Eqs. (34) and (35), they
express the conservation of the length of the Bloch vector
in the three- and two-level subsystems. With conservation
laws (31)–(33) we can obtain a relation between population
variation of the intermediate level, intensities of the two
propagating pulses, and population differences of all excited
two-level subsystems:

� |E1|2 − � |E2|2 /λ2 = 2(n′
0 − n′) + (

ρ11 − ρ0
11

)
. (36)

One can see that its variation depends on energy exchange
between both pulses and the two-level subsystems. When such
energy exchange is balanced, ρ11 remains constant during
pulse propagation.

It is worth noting that the search for solutions does not
become an easy problem even with the conservation laws
derived above, because all components of the THz fields,
polarizations, and level populations are interconnected. As
can be seen from Eq. (25), level 1 is involved in energy
exchange between the both THz pulses and the three-level
system. In its turn, the second pulse intensity depends on
energy exchange with the two-level subsystems. Polarizations
for the two adjacent transitions, as evident from Eqs. (21)
and (22), are related to each other through a superposition state
of lower and upper levels. Therefore, it is difficult to advance
in this way without additional conditions or hypotheses.
Such conditions as coherent population trapping or adiabatic
population transfer [75], supposing that the intermediate level
population keeps its initial value ρ11 = ρ0

11 and does not vary
under traveling of the THz pulses through the medium, make
it possible to simplify the problem under study substantially.
This approximation is justified for balanced energy exchange
between pulses and two-level subsystems. In this case, one

more conservation law relating both THz fields to each other
and to population difference of the four two-level subsystems
is satisfied:

� |E1|2 = � |E2|2
λ2

+ 2(n′
0 − n′). (37)

The set of Eqs. (21)–(30) in combination with the conser-
vation laws (31)–(35) allows us to derive equations for E1 and
E2. Differentiating Eq. (29) with respect to τ and substituting
into Eq. (21) we arrive at

−�Ë1 = δ1ρ̄01 − E1 (ρ00 − ρ11) − E∗
2 ρ̄02. (38)

Before we get the equations for the field envelopes, let us
find out the relation between their phases. To this end, we
transform (38), inserting within it the value ρ02 defined via
Eq. (22). Using (29)–(32) and also (36) we obtain

�Ë1E
∗
1 + �Ë2E

∗
2

λ2

= i

(
δ1Ė1E

∗
1 + �δ2Ė2E

∗
2

λ2
+ 4σE∗

2
˙̄ρ ′
12

)

+ |E1|2
(

ρ0
00−ρ0

11−2n′
0−2� |E1|2 +� |E2|2

λ2
+ 2n′

)

+ |E2|2
(

ρ0
11 − ρ0

22+4n′
0+

� |E1|2 −2� |E2|2
λ2

− 4n′
)

+ 4σδ2E
∗
2 ρ̄ ′

12.

Assuming that
Ei (τ ) = Ai (τ ) exp {iϕi (τ )} , (39)

with i = 1,2, one can get the equation for the phases of both
fields from the imaginary part of the last equation:

�A1(2Ȧ1ϕ̇1 + A1ϕ̈1) + �A2(2Ȧ2ϕ̇2 + A2ϕ̈2)/λ2

= �δ1Ȧ1A1 + �δ2Ȧ2A2/λ
2 − 2σ (δ2 − δ)n′

0A2 sin θ2.

(40)

Here θ2 (τ ) = 2σ
∫ τ

−∞ A2dt is the second pulse area.
Equation (40) may be integrated from t = ∞ to t = τ in order
to yield

�A2
1ϕ̇1 − �δ1A

2
1/2 = −�A2

2ϕ̇2/λ
2 + �A2

2/(2λ2)

+ (δ2 − δ) n′
0 (cos θ2 − 1) . (41)

It is evident that the three- and two-level systems contribute
to the phase modulation of the second pulse. However, when
its carrier frequency is detuned from resonance in such a way
that δ2 = δ, the influence of two-level subsystems disappears
and both pulses obey the modulation law inherent to SIT [5].
It is easy to show that, in the stationary case [76], the phase
modulation rate varies in accordance with

ϕ̇i = ci/A
2
i . (42)

The phase modulation constant Ci may be nonzero only
for periodic pulse trains. For a solitary wave Ci = 0, in other
words, the pulse solutions are not phase modulated.

Below we show that two THz pulses of appropriate initial
forms and intensities may be trapped in a coupled state like
simulton and propagate in ammonia vapor basically with no
distortions.
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VI. COUPLED STATES OF TERAHERTZ
SOLITARY WAVES

Let us focus on searching for possible scenarios of distor-
tionless propagation in ammonia vapors of two THz pulses
trapped by a simulton. As it is known, the simulton concept
was introduced [31] for a pair of two unidirectional short pulses
propagating in a three-level medium with cascade transitions,
which form a steady coupled state. It was shown [46,47] that
two solitons in a medium with equal oscillator strengths of the
adjacent transitions can be trapped into a simulton provided
that the level populations are preliminarily prepared. The
problem of a THz simulton formation in ammonia vapors is
different. On one hand, all relevant levels are populated at room
temperature and the necessary conditions of level population
pretreatment are removed. On the other hand, the presence
of two-level subsystems certainly influences the problem of
trapping the terahertz pulses in a simulton state.

So, searching for stationary solutions, we suppose that both
pulses are not phase modulated, viz., ϕ1 = ϕ2 = const, and
the exact resonance conditions are provided. Then the Bloch-
Maxwell equations (21)–(30) are reduced to

v̇01 = 2A1(ρ00 − ρ11) + A2u02, (43)

v̇12 = 2A2(ρ11 − ρ22) − A1u02, (44)

u̇02 = A1v12 − A2v01, (45)

ρ̇00 = −A1v01, (46)

ρ̇11 = A1v01 − A2v12, (47)

ρ̇22 = A2v12, (48)

v̇′ = 2σA2n
′, (49)

ṅ′ = −2σA2v
′, (50)

2�Ȧ1 = v01, (51)

2�Ȧ2/λ
2 = v12 + 4σv′, (52)

where vij = 1
2i

(ρij − ρji), uij = 1
2 (ρij + ρji), i,j = 0,1,2.

Differentiating Eq. (51) with respect to τ and substituting
Eq. (43) lead to

−�Ä1 = −A1 (ρ00 − ρ11) − A2u02. (53)

Dividing this equation by A1 and differentiating it again with
respect to τ gives

−�(
...
A1A2 − Ä1Ȧ2)/A2

2 = (Ȧ1A2 − A1Ȧ2) (ρ00 − ρ11) /A2
2

+A1 (ρ̇00 − ρ̇11) /A2 + u̇02.

Further substituting (45)–(47), (31), and (36) into this last
equation and using Eqs. (51) and (52) we obtain

�

...
A1A2 − Ä1Ȧ2

A2
2

= Ȧ1A2−A1Ȧ2

A2
2

(
ρ0

00−ρ0
11−2�A2

1−2n′
0+�A2

2/λ
2 + 2n′)

+ 2A1

A2
(−2�Ȧ1A1 + ṅ′) + �Ȧ2A1/λ

2 − �Ȧ1A2

− 4σA1v̇.′ (54)

According to Eq. (54), the two-level systems affect the
first pulse despite the fact that it is not resonant with them.

Their contribution can be easily obtained from the solutions of
Eqs. (49) and (50): n′ = n′

0 cos θ2, v′ = n′
0sinθ2. Then Eq. (54)

reduces to

�(
...
A1A2 − Ä1Ȧ2) − (Ȧ1A2 − A1Ȧ2)

×(
ρ0

00 − ρ0
11 − 2n′

0 − 2�A2
1 + �/λ2A2

2 + 2n′
0 cos θ2

)
−2A1A2(−2�Ȧ1A1 + �/λ2Ȧ2A2 − 2n′

0 sin θ2)

−�/λ2A1A
2
2Ȧ2 + �Ȧ1A

3
2 + 4n′

0A1A
3
2 cos θ2 = 0, (55)

where σ = 1.
To determine the equation for the second field, we differ-

entiate Eq. (52) and substitute (44) and (49) multiplied by 4,
which results in

�Ä2/λ
2 = υ̇12 + 4υ̇ ′ = 2A2 (ρ11 − ρ22) + A1u02 + 8A2n

′.
(56)

Repeating a similar procedure as for Eq. (53), Eq. (56) leads
to

�(
...
A2A1 − Ä2Ȧ1)/λ2 − (Ȧ2A1 − A2Ȧ1)

× (
ρ0

11 − ρ0
22 + 4n′

0 + �A2
1 − 2�A2

2/λ
2
)

− 2�A1A2(Ȧ1A1 − Ȧ2A2/λ
2)

+ �Ȧ2A
3
1/λ

2 − �A2Ȧ1A
2
1 − 4n′

0A
3
1A2 cos θ2 = 0. (57)

Since the integro-differential equation system (55) and (57)
can hardly be solved analytically, let us simplify our task and
consider the behavior scenarios for the first and the second
pulses, propagating independently. Indeed, the first THz pulse
resonant with the transition K = 0, − ↔ +, J = 0 ↔ 1 or
the second pulse, that is in resonance with five nondegenerate
transitions (K = 0, + ↔ −, J = 1 ↔ 2, and K = ±1, + ↔
−, J = 1 ↔ 2), may propagate as SIT solitons in a two-level
system [5] with the hyperbolic secant shape and duration
τp1 =

√
�/(ρ0

00 − ρ0
11) or τp2 =

√
�/[5(ρ0

11 − ρ0
22)]/λ, corre-

spondingly. Obviously, the soliton durations depend on initial
populations of resonant levels. We emphasize that, at room
temperature, all resonant levels are populated in accordance
with the Boltzmann distribution because the photon energy
in the THz range is comparable to the thermal energy kT .
Compared to the first pulse, the duration of the second soliton
is less by a factor λ

√
5. The value of the parameter λ may

be estimated from the absorption of the medium at 0.6 and
1.2 THz. According to the absorption spectrum, presented in
Fig. 2 [66], λ ≈ 2. Both solitons are one humped.

Now we consider solutions for a balanced energy exchange
between pulses assuming that ρ11 = const during the passage
of both THz pulses through the medium. The validity of
the conservation law (37) in this case allows us to simplify
essentially Eqs. (55) and (57) reducing them to the form

κ[2A1A2Ä1 + Ȧ1(A2Ȧ1 − A1Ȧ2)]

= A3
2

(
n0

12 − κA2
1

) + A2A
2
1

(
n0

01 − κA2
1

)
, (58)

κ

(
1

λ2
A2Ä2 + A1Ä1

)

= A2
2

[
n0

12 + 2n′
0 − κ

(
2

λ2
A2

2 − A2
1

)]
+ A2

1

(
n0

01 − κA2
1

)
,

(59)
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FIG. 3. Coupled wave trains A1 (solid curve) and A2 (dashed
curve) in dependence on initial conditions: (a) ρ0

00 = 0.0390, ρ0
11 =

0.0379, ρ0
22 = 0.0371; (b) ρ0

00 = 0.039, ρ0
11 = 0.038, ρ0

22 = 0.037.

where n0
12 = ρ11 − ρ0

22 and n0
01 = ρ0

00 − ρ11. By the way,
the first results on simultons have been obtained for the
three-level medium with the cascade level configuration [31]
under the condition ρ11 = const. However, unlike them, the
level configuration in ammonia vapor is more complicated
and the oscillator strength of the upper transition in the
three-level subsystem and of two-level ones is twice the
value of the lower transition oscillator strength. It makes
THz simulton observation in molecular vapors a more difficult
problem.

Let us consider some results obtained by a numerical
analysis of Eqs. (58) and (59). For nonzero initial values of
the amplitude and its first-order derivative for each field, these
equations demonstrate a bound state of two periodic waves:
an intensive one having a double-humped profile and a weaker
wave possessing a one-humped shape [see Fig. 3(a)]. The latter
is in resonance with the 0 ↔ 1 transition of the three-level
subsystem, whereas the more powerful one interacts with
the upper transition of the three-level subsystem and the
four two-level subsystems. Notice that the more powerful
the second wave and the greater the distance between the
humps, the weaker is the first one [Fig. 3(b)]. Such a periodic
solution can be considered as an infinite sequence of short
pulses spreading in a resonant medium free of any dissipation.
Since Eqs. (56) and (57) are valid when the wave-packet
durations are much smaller than the relaxation times of
the molecular medium, they are only mathematical objects.
However, in our opinion, it is worth discussing this novel
class of stationary solutions as an illustration of the properties
of the models under consideration. The same periodic solu-
tions are obtained for the more general case where ρ11 �=

const by solving the Bloch-Maxwell equations (43)–(52)
numerically.

The solutions presented in Figs. 3(a) and 3(b) are certainly
steady bound states of two waves. First, their periods are the
same, and second, in the absence of a weak A1 wave, A2

becomes a one-hump wave with a shorter period. Moreover,
this bound state strongly depends on the initial conditions for
both waves. Multihump stationary waves and their structures
have been identified earlier and their stability regions have been
examined numerically for a Korteweg–de Vries equation with
nonlocal perturbation [77] and for a dissipative Benjamin-Ono
equation [78]. The relation between the irregular behavior of
the initial value problem and the multiplicity of stationary
waves has also been revealed. The interaction of two intensive
shallow water waves with different wave and phase speeds
leads also to double-hump cnoidal waves, which behave as
coupled solitary waves [79].

As known, the Bloch-Maxwell equation set for the SIT [72]
has not only the solitary wave as a solution, but also an
infinite periodic train. This solution describes cnoidal waves,
which is especially inherent to waves with amplitude and
phase modulation [72,80]. The electric field strength of
cnoidal waves does not vanish anywhere, and their period is
determined by the period of the Jacobi elliptic function, which
is expressed in terms of the complete elliptic integral of the
first kind. As its amplitude does not vanish, there is a nonzero
polarization in a medium where this kind of wave propagates.
This period becomes infinite and the cnoidal wave transforms
into a solitary wave in the form of hyperbolic secant when
the argument of complete elliptic integral becomes unity. The
above-mentioned periodic solutions appear to be expressed in
terms of elliptic functions as well; however, these our findings
are only suggestive.

The question is whether it is possible to reduce the found
periodic solutions to two solitary waves which may behave like
a simulton copropagating, free of distortions, in the medium.
To answer this question, we approximated one period of the
found solutions by hyperbolic functions. The two-hump pulse
may be approximated by a sum of two hyperbolic secant pulses
with the same width and a sufficiently large time delay between
them. The shape of A1 may also be presented as a hyperbolic
secant. Taking the ansatz

A1 = 2a1

τ1
sech

(
τ

τ1

)
, (60)

A2 = 2a2

τ2

[
sech

(
τ − μ

τ2

)
+ sech

(
τ + μ

τ2

)]
, (61)

and making use of the conservation laws (33)–(35), we can
reduce the Eq. set (43)–(52) to equations for the parameters
of the trial functions A1 and A2: a1,a2,τ1,τ2, μ. Here a1 and
a2 are the amplitudes of the first and second pulses, τ1 and τ2

are their durations, and μ is a time delay between the pulses
constituting the two-hump one. To fit the one- and two-humped
pulses in widths, we assume that τ1 = mτ2 and μ = (m − 1)τ2,
where m is an integer: m = 2, 3, 4. As earlier, for the sake of
simplicity, we suppose that ρ11 = const. Then, for τ = 0, we
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arrive at the following set of algebraic equations:

4a2
2m

2sech2 (m − 1) = λ2a2
1, (62)

�

{
a2

1 − 4a2
2m

4

λ2
sech4 (m − 1) [1 − sinh (m − 1)]

}

= 16a2
2n

′
0τ

2
2 m4sech2 (m − 1) , (63)

4a2
2m

2sech2(m − 1)
[
4�a2

1 − (
ρ11 − ρ0

22

)
m2τ 2

2

]
= a2

1

[(
ρ0

00 − ρ11
)
m2τ 2

2 − 4�a2
1

] + 2�a2
1 . (64)

This set of equations is solved for the unknown variables a1,
a2, and τ2, depending on the parameters m and κ . Note that, to
find the possible pulsed pairs, according to [5], for sufficiently
long THz pulses the parameter κ = 0.5αrcτp, where αr is a
resonant absorption coefficient and τp is the pulse duration. In
the THz spectral range the resonant absorption coefficient of
the ammonia vapor varies with respect to the pressure from
0.1 cm−1 at 200 hPa up to 5 cm−1 for 104 hPa. Consequently,
for picosecond THz pulses, the parameter κ changes with
increasing pressure from 0.035 to 0.7. In the next step we
substitute the obtained solutions for A1 and A2 at τ = 0
into the Maxwell-Bloch equations as the initial and boundary
conditions and check their stability under the propagation in
the molecular gas. Figure 4 shows the most stable couple of
single- and double-hump pulses. In general, the pulse shapes
are consistent with those found by numerical integration and
shown in Fig. 3. The ratio of the wave amplitudes in Fig. 4
and Fig. 3 are in reasonable agreement in the central parts, but
their behavior in the wings is slightly different. The asymptotic
behavior of the two-hump pulse in Fig. 4 is not consistent with
the conservation law (37). Therefore, the pair is not stable
when it propagates. While a weaker pulse is more stable during
propagation, the envelope of the two-humped pulse rapidly
suffers from distortions. Figure 5 shows the latter at several
distances in the vapor: at z = 0, 1, 2, 3 cm.

Perturbations of the two-humped pulse envelope become
clearly visible for z = 3 cm, whereas for the first pulse they
appear at much longer distances. Nevertheless, the bound state
of this pulse pair is retained certainly. The mere fact that a
two-humped pulse is robust to breakup originates from its
interaction with the weaker beam. Figure 6 demonstrates an
unstable scenario of nonlinear evolution of almost uncoupled
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FIG. 4. Pulse pair as a result of an analytical approximation of
the periodic solutions: A2 (solid curve) and A1 (dashed curve).
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FIG. 5. Field propagation through the sample for pulse areas θ1 =
1.61π and θ2 = 9.92π (A2 corresponds to the dashed curve and A1

to the solid one).

pulses. Further analysis shows that a pair of three-humped and
one-humped pulses is even more unstable under propagation.
Interestingly, even a small dissipation makes the powerful
pulse a little more stable to perturbations.

Numerical approximation of periodic pulse trains via
hyperbolic secants allows us to get more stable solutions.
So, Fig. 7 demonstrates a more stable propagation scenario
for pulses with areas equal to 4π and 0.4π , respectively. At
this, the powerful two-hump pulse is close to the sum of two
hyperbolic secant pulses but differs a little. Both these pulses
of equal width copropagate in ammonia vapors with the same
group velocity in steady state for large-enough distances. One
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FIG. 6. Pulse pair propagation scenario for pulses A2 (dashed
curve) and A1 (solid curve), with areas of θ1 = 2.65π and θ2 = 9.9π .

can see that the two-humped pulse distortions begin when
z = 4 cm, while the weak pulse retains its shape even at larger
distances.

All of this speaks in favor of the formation of, at least, a
quasisimulton. Moreover, the larger the dip of the two-hump
pulse, the weaker is the pulse A1. In this propagation regime,
the weak pulse is stable and is sustained by the more powerful
pulse, thanks to the energy exchange between both pulses and
the medium. More precisely, the leading edge of the weak
pulse A1 is absorbed by the transition 0 ↔ 1, while the first
hump of A2 first inverts the transition 1 ↔ 2 together with all
two-level systems and then induces a re-emission at frequency
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FIG. 7. Nonlinear evolution of the pulse pair: A1(t) (solid curve)
and A2(t) (dashed curve), with θ1 = 0.4π and θ2 = 4π .

ω2 by stimulated emission. The latter leads to an inversion of
the 0 ↔ 1 transition and induces the emission of a radiation at
frequency ω1, although the first pulse area is too weak to invert
the 0 ↔ 1 transition. These absorption and re-emission stages
at frequency ω2 are revived by the action of the second hump
of the powerful pulse. After excitation, the molecules return to
the ground state according to a Boltzmann distribution of the
level populations.

Surprisingly, our results differ from data obtained in
works [51,57] for the propagation of two optical pulses in a
three-level medium with cascade transitions under stationary
excitation of the upper transition. As mentioned above, at
low excitation level the first pulse resonant with the lower
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transition is two-humped and consists of two subpulses
with areas approximately equal to 2π , whereas the second
pulse is one humped. In our case, the situation is reversed.
Indeed, the first pulse is weak and one humped, while the
second one is much more powerful and two humped. We
believe that the features of THz quasisimulton are due to
the following factors: (i) rotational level configuration in
ammonia, (ii) large-enough value of the oscillator strength
of the upper transition in relation to the lower one (λ = 2).
In Ref. [51], a two-humped solution has been obtained
for λ � 2. Furthermore, all resonant levels in our case are
populated initially. The stability of a pulse pair in ammonia
is ensured by the fact that, although the powerful pulse does
not make the medium transparent for the weak pulse by
equalizing the populations of the resonance levels, it manages
the energy exchange between the pulse A1 and the medium at
frequency ω1 and hinders its dissipation. In other words, the
powerful pulse adjusts the stage of absorption and emission of
the weak wave. In this sense, we can say that the second pulse
makes the medium transparent for the first one. In turn, the
latter prevents the breakup of the former into separate pulses.

Figure 8 presents the scenario of the copropagation of two
pulses that do not behave like a simulton. One can see that
the pulse pair with the areas θ1 = 1.6π and θ2 = 4π is less
stable during propagation in comparison to the quasisimulton
presented in Fig. 7. Their group velocities are also inconsistent
and the pulses separate gradually from each other.

Now, we consider the case corresponding to the first THz
pulse too weak to affect the lowest transition noticeably. Then
the second pulse may be one humped with an area of the
order of 2π . Moreover, such a pair can be much steadier along
the propagation axis (see Fig. 9) than the above-described
pulse pairs. Specifically, two pulses with the areas θ2 = 1.6π

and θ1 = 0.14π can propagate over very large distances, being
little distorted. The weak pulse is free of distortion at distances
up to 7.5 cm, while there are noticeable alterations for the more
powerful pulse at this distance, as its area approaches 2π . Since
the group velocities of the two pulses coincide, they travel
together. However, the reason for the stability of this pulse pair
is a little bit different. Here the second pulse forms a waveguide
for the first one which is too weak to affect the population of
the medium levels. A comprehensive analysis reveals other
coupled states of two THz pulses under the conditions like
an adiabatic population transfer in a three-level system, viz.
ρ11 = const.

Differentiating Eq. (52) with respect to τ and substituting
Eqs. (44) and (49), we obtain
�

λ2
A2Ȧ2 + �A1Ä1 = A2

1

(
ρ0

00 − ρ11 − �A2
1

)
+A2

2

(
ρ11 − ρ0

22 + 2n′
0

) + 2n′
0A

2
2cosθ2,

(65)

in which we also employ expressions (31) and (32) and the
solution of the equations governing the two-level subsystems.
Collecting the terms with A2 on the left side of this equation
and the terms with A1 on the right side and then dividing the
resulting expression by the product A1A2, it is easy to obtain

F (A1)

A2
= −G (A2)

A1
= C, (66)
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FIG. 8. Propagation dynamics of pulses that do not behave like
a quasisimulton: A1(t) (solid curve) and A2(t) (dashed curve), with
θ1 = 1.6π and θ2 = 4π .

where C = const, F (A1) = �Ä1 − A1(ρ0
00 − ρ11) + �A3

1,
and

G (A2) = �

λ2
Ä2 − A2

(
ρ11 − ρ0

22 + 2n′
0

)

+ �

λ2
A3

2 − 2n′
0A2 cos θ2.

Depending on C, a whole class of solutions for the fields can
be deduced. However, the only valid solutions for fields will
be those obeying the conservation law (37). Let us consider
the possible solutions corresponding to C = 0. As a result, we
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FIG. 9. Propagation of the pair consisting in two one-humped
pulses: A1(t) (solid curve) and A2(t) (dashed curve), with θ1 = 0.14π

and θ2 = 1.6π .

get the following equation set:
�

λ2
Ä2 − A2

(
ρ11 − ρ0

22 + 2n′
0

)

+ �

λ2
A3

2 − 2n′
0A2 cos θ2 = 0, (67)

�Ä1 − A1
(
ρ0

00 − ρ11
) + �A3

1 = 0. (68)

As follows from Eq. (68), the solitary wave solution
for the first pulse is a hyperbolic secant with a 2π pulse
area. Equation (67) corresponds to a generalized nonlinear
Klein-Gordon equation, whose analytical solution is problem-
atic. However, the second pulse profile may be estimated by
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FIG. 10. Nonlinear evolution of the quasisimulton consisting of
seven-humped and one-humped pulses: A1(t) (solid curve) and A2(t)
(dashed curve); θ1 = 1.7π and θ2 = 14π .

using the expression (37) which, for the sake of clarity, can be
written as

A2
2 = λ2A2

1 + 2n′
0λ

2

�
(1 − cos θ2) . (69)

It is evident that the second pulse area must be a multiple
of 2π . At τ → ±∞ the amplitudes A1 → 0 and A2 → 0
obey the relation A2 ∼ 2A1. According to our estimations,
a multihumped pulse meets these requirements. We show in
Fig. 10 a seven-humped pulse A1 with an area of 14π and the
corresponding single-humped pulse A1 of hyperbolic secant
shape. Surely, these pulses form a coupled pair. They have the
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FIG. 11. Evolution of A1(t) (solid curve) and A2(t) (dashed
curve) for the pulse pair not trapped by quasisimulton θ1 = 3.4π

and θ2 = 14π .

same width and propagate with equal group velocities over
long-enough distances. At finite distances, these THz pulses
are quite stable against distortions which allows us to think of
this pulse pair as a quasisimulton.

The powerful pulse may contain not only odd, but also an
even number of humps, depending on the first pulse intensity.
While the solution has been obtained within the approximation
ρ11 = const, the numerical integration of Eq. set (11)–(20)
demonstrates a stable copropagation of these two pulses
in a general case. Figure 10 proves the stability of the
quasisimulton consisting of a seven-humped pulse with an
initial area of 14π and a single-humped pulse with an area of

1.7π up to a distance of 3 cm. At larger distances, the more
powerful pulse begins to distort a little bit, while the weaker
one remains stable. Both pulses keep the same group velocities
at distances up to 10 cm. When input pulse pair does not satisfy
simulton solution, such pair is unstable under propagation.
Figure 11 shows the evolution of THz pulses in molecular
vapor not trapped by a quasisimulton. The distortions of
powerful pulse are visible even at the distance of 1 cm. The
first pulse is a little bit more stable.

The number of humps in the powerful pulse depends on the
initial intensity of the weak pulse. The less intense the weak
pulse, the more humped is the powerful pulse.

Let us now analyze how the first pulse impacts on the
solution for A2. Substituting into Eq. (65) the field A1

expressed in terms of A2 by means of (37), and simplifying
a cumbersome expression by keeping only the terms linear in
the small parameter n′

0, we get

2�

λ2
Ä2 + 2n′ Ȧ2

A2
sin θ2

−A2

[
ρ0

00

λ2
+ ρ11

(
1 − 1

λ2

)
− ρ0

22 + 4n′
0

]

+ �

λ2

(
1 + 1

λ2

)
A3

2 − 4n′
0A2 cos θ2 = 0. (70)

Taking the ansatz

θ2 = 4 arctan(eνt−δ) + 4 arctan(eνt+δ) (71)

traditionally used for solving the double-sine-Gordon equa-
tion, we get

A2 = ν {sech (νt − δ) + sech (νt + δ)} . (72)

After substitution of A2 and its derivatives into Eq. (70),
we obtain an algebraic equation for the parameters ν, δ, and
κ , which can be estimated numerically making use of the
minimization methods varying the parameters over reasonable
ranges. A typical solution consisting of two double-hump
pulses with areas θ1 = 2π and θ2 = 4π for δ = 3.82, ν =
1.04, κ = 0.36 is presented in Fig. 12. Obviously, the second
pulse, with an envelope presented in Figs. 3(a) and 3(b), is
close to the 4π kink with an area of 4π [81]. However, in
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FIG. 12. Double-humped pulse pair as a solution of Eq. (70),
A1(t) (lower curve) and A2(t) (upper curve): θ1 = 2π , θ2 = 4π , δ =
3.82, ν = 1.04, κ = 0.36.
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FIG. 13. Scenario of the behavior of the fields A1(t) (lower curve)
and A2(t) (upper curve) for θ1 = 2/3π and θ2 = 4π , whereas δ = 1.0,
ν = 3.60, κ = 0.017 at the distances (a) z = 0, (b) z = 1 cm, (c) z = 2
cm, (d) z = 3 cm.

contrast to the solution of double sine-Gordon equation, the
value of dip δ in its profile is substantially larger.

The envelope of the first pulse has been obtained by use of
conservation law (69). One can see that the weaker pulse as a
whole replicates the shape of A2(τ ), which is also two humped.
In other words, the last method gives us for A1(τ ) solutions
significantly different from others obtained earlier. It is worth
noting that the pairs consisting of two double-humped pulses
are less stable compared to other pairs. Furthermore, the lower
the amplitude of A1(τ ), the more stable is the pair of such
pulses and the larger is the distance it can pass. Figures 13(a)–
13(d) demonstrate nonlinear evolution of the most stable pair
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FIG. 14. Nonlinear evolution of the solutions (A1 corresponds to
the solid curve and A2 to the dashed curve) presented in Fig. 12 for
pulse areas θ1 = 2π , θ2 = 4π ; the propagation lengths are (a) z = 0,
(b) z = 1 cm, (c) z = 2 cm, (d) z = 3 cm.

with the input pulse areas θ1 = 0.75π and θ2 = 4π . Whereas
the stronger pulse is free of distortions at a distance of 3 cm,
the weaker pulse is unstable even at 1 cm. Its humps become
asymmetric and its distortion increases with distance. Besides,
because of the inconsistency of group velocities the second
pulse is moving faster than the first one.

Figures 14(a)–14(d) show the unstable behavior scenario
of the pulse pair with the following input data θ1 = 2π and
θ2 = 4π . One can see that both pulses are unsteady in the
medium. Pulse asymmetry, manifested even at the distance of
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1 cm, enlarges along the propagation axis. The group velocities
are even more mismatched than in the previous case.

According to our preliminary estimations, the breather
solutions for the pair of THz copropagating pulses are also
available. Numerical analysis shows that such pairs may be
stable at larger distances up to 10 cm. The corresponding
results will be published in a forthcoming article.

As for copropagation of two few-cycle pulses, this case
can be analyzed under quasiresonant conditions using a vector
model for a three-level subsystem. The results obtained will
be presented elsewhere.

VII. CONCLUSION

In conclusion, in this work we have studied the bound state
of two terahertz solitary pulses copropagating in ammonia
vapors and being in resonance with the lowest rotational
transitions. More precisely, the transitions considered were
the following: K = 0, J = 0 ↔ 1,− ↔ + with the transition
frequency ω01 = 0.6 THz; K = 0, J = 1 ↔ 2, + ↔ −, and
K = ±1, J = 1 ↔ 2, + ↔ −, and − ↔ + with the transition
frequency ω12 = 1.2 THz.

One of the THz pulses is resonant with the lowest transition
of three-level system and another is in resonance with both
the upper transition of three-level system and the other four
two-level systems. The pulse envelopes are supposed to be
shaped satisfy the SVEA. Thus, the problem is reduced to
investigating two shaped THz pulses that propagate in a
medium with two different multiplets that consist of three-
and two-level subsystems, respectively. The coherent regime
of interaction of both pulses with a medium is under study
assuming their durations are less than the phase and population
relaxation times.

We focused our attention on the conditions of trapping
two THz pulses by simulton. Importantly, this problem is
nonintegrable and it is significantly different from the task of
propagating two light pulses in a three-level system with the
cascade configuration of the levels [31,51,57]. On one hand,
all relevant levels lying in the terahertz spectral range are
populated at room temperature, which removes the conditions
of population level pretreatment necessary to involve the upper
transition in an interaction process in the optical region [31,51].
On the other hand, the presence of two-level subsystems
certainly influences the scenario of trapping THz pulses by
simulton. Besides, the fact that the oscillator strength of the
lower transition is twice smaller than the others certainly
complicates the trapping problem.

Using the Bloch equations for two- and three-level subsys-
tems together with Maxwell equations, the conservation laws
have been deduced. They describe the link between both fields
and the medium and make easier the search for the coupled
states of THz pulses. As follows from one of the conservation
laws, the transitions between the lowest rotational states of the
three-level multiplet are initiated by the weakest THz pulse.
Another law binds the second pulse intensity with changes of
the upper level population in the three-level system and with
the population difference in the two-level systems. According
to the third conservation law, the intermediate level is involved
in a process of an energy exchange between two THz pulses
and all multiplets in the ammonia vapor.

By use of conservation laws, the set of corresponding
evolution equations for THz pulses has been obtained and
an initial value problem (Cauchy problem) for obtained
differential equations has been analyzed. The solutions in
the form of solitary and periodic waves have been found.
In the general case, the evolution equations are third-order
differential equations which yield the periodic wave solutions.

It has been established that the powerful wave A2 with a
double-humped profile and the weak one-humped wave A1

give rise to coupled state having the same periods and veloc-
ities. Moreover, in the absence of A1, A2 has a one-humped
profile with a shorter period. Though the Bloch-Maxwell equa-
tions allow soliton-type pulse propagation for each THz pulse
separately, searching for solitary wave solutions for two co-
propagating pulses is a very difficult task without an additional
hypothesis on the behavior of the intermediate level population
ρ11 or superposition state of upper and lowest levels ρ02.

In order to find a pair of solitary waves satisfying the
Maxwell-Bloch equations, the periodic solutions have been
approximated analytically and numerically. For analytical
approximation the trial functions have been taken in
hyperbolic secant forms. The two-humped pulse assumed
to be a superposition of two hyperbolic secants shifted to
each other in time. In this case, the second pulse area is
multiple to 4π . As for the weak pulse A1, it is supposed to
be hyperbolic secant. The widths of both pulses are supposed
equal. Although such pulse pair certainly forms a coupled
state, it is stable only at small distances. The pulse pair
obtained via numerical approximation of periodic waves turns
out to be a significantly more stable solution.

Two- and one-humped pulses have equal width and
copropagate in ammonia vapor at the same group velocity.
Moreover, the larger the dip value in the two-hump pulse is,
the weaker may be the one-humped pulse. The two-humped
pulse begins to distort at a substantially larger distance
than 4 cm. At this, the weak pulse retains its shape even at
larger distances. Their group velocities also keep the same
magnitudes at distances up to 10 cm. All of this speaks in
favor of, at least, a quasisimulton formation. The stability of
the pulse pair in ammonia is originated from the control of
absorption and emission of the weak wave in the medium by
the powerful pulse. Thus, the second pulse makes the medium
transparent for the first one. In its turn, the latter prevents the
breakup of the former into separate pulses.

If the first THz pulse is too weak to affect the lower
transition noticeably, then the second pulse may be one
humped with the area close to 2π . Such a pair of two one-
humped pulses is steadier in the medium than those mentioned
above. When the first pulse is hyperbolic secant with area
2π , the second pulse may be multihumped with an odd or
even number of humps. Such pulse pairs also demonstrate
steady copropagation at finite distances and are quasisimultons
in actual practice. Note that the evolution equations for
THz pulses look like generalized nonlinear Klein-Gordon
equations. Efforts were made to solve the evolution equation
for the second pulse analytically, taking an ansatz used for
solution of the double-sine-Gordon equation. In this case the
second pulse is close to the 4π kink but with a large-enough
dip. The weaker pulse replicates the shape of the more powerful
pulse. However, such pairs of two double-humped pulses are
shown to be unstable under propagation.
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