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ELLIPTICAL MONOGENIC REPRESENTATION OF COLOR IMAGES
AND LOCAL FREQUENCY ANALYSIS

Raphaél Soulard and Philippe Carré

XLIM-SIC Department UMR CNRS 7252, University of Poitiers, France.

ABSTRACT

We define a new color extension for the monogenic representation
of images by using an elliptical tri-valued oscillation model jointly
with the vector structure tensor formalism. The proposed method
provides a rich local colorimetric and geometric analysis, in particu-
lar a color phase concept, which can be computed by a numerically
stable algorithm. This representation is finally used to estimate the
local frequency of color images.

Index Terms— wavelet transform, color, analytic signal, mono-
genic signal, monogenic wavelets, local frequency

1. THE MONOGENIC REPRESENTATION

As a 2D extension of the analytic signal, the monogenic signal [1]
provides a 2D AM/FM representation of gray-scale images. Thanks
to its rotation invariance property and its underlying signal shape
analysis; the monogenic representation has been used for numerous
image applications, including analysis of textures [2], contours [1],
motion or stereo disparity [3, 4]; segmentation [5, 6] efc.

Given a 2D real signal s(x), the associated monogenic signal
su () is the following 3-vector valued signal:

s(x) A(x) cos p(x)
smu(x)=| R{Rs(x)} | = | A(z)sinp(x)cosb(xz) | (1)
S{Rs(x)} A(z) sin p(x) sin (x)
where Rs is the complex-valued Riesz transform of s:
+J —jwr
{Rs}(x) = p.v./ ;—;H’iﬁi s(x—T)dr PN % 5(w)
@)

(see also [7, 8]). The monogenic features are given by the spherical
coordinates of sps:

Amplitude: $2+|Rs|?
Orientation: 0 = arg{Rs} € [—m; 7] 3)
ID Phase: ¢ = arg{s + j|Rs|} € [0;7]

This representation is equivalent to the pointwise estimation of the
underlying plane wave that locally resembles the signal. The sig-
nal is modeled by an “A-strong” plane wave with orientation 6,
and phase-shifted according to ¢ - which explicitely indicates if the
structure is rather a line or an edge.

The goal of this paper is to study the generalization of this tool
for color images. Analyzing color data is essential for a lot of ap-
plications. However, due to a lack of definition in multidimensional
signal processing, color images are most often handled by a subop-
timal use of scalar tools, either by only considering luminance, or
by working separately on every color channel (“marginal” scheme
[9]). Note that a color monogenic signal is defined in [10] by gen-
eralizing the Cauchy-Riemann equations within Geometric algebra.

However, we showed in [11] that this definition does not provide sat-
isfactory physical interpretation of the obtained features. To go one
step further, this paper handles the issue from the physical point of
view.

We first define the 1D color elliptical model in section 2 in or-
der to well understand what a “color oscillation” is. Then we extend
it to our 2D color monogenic representation using the structure ten-
sor formalism in section 3; and finally exploit it to estimate local
frequency of color images in section 4.

2. THE COLOR 1D OSCILLATION

This section aims at redefining the classical amplitude and phase
concepts for color signals. Our starting point is the sinusoidal signal
model, building block of the Fourier analysis. It is well known that
a Fourier coefficient is made of an amplitude and a phase value, di-
rectly giving the two parameters of a sinusoidal oscillation. We must
then define what a color oscillation is.

Regarding the numerous generalized Fourier transforms in the
mathematical literature e.g. [12, 13]; it seems reasonable to us to
consider independent Fourier analyzes at each color channel in the
first place. Therefore, our proposition is to define the color oscilla-
tion by:

a®(t) AR cos(wt + %)
a(t)=| a®(t) | = | A®cos(wt+ ¢°) 4)
a®(t) AP cos(wt + ©°)

Parameters of a are directly obtained from separated Fourier ana-
lyzes to form the complex valued 3-vector

. . . T
a= | AR AcHC ABeJ“"B] (5)

The problem is that those parameters do not allow any intuitive inter-
pretation of how the oscillation is modulated by them. This is why a
non-marginal construction must be carried out by some proper con-
version of the 3 amplitudes and 3 phases into clearly identified ge-
ometric and colorimetric features. In particular, we may prefer to
have an unique amplitude, and a physical color phase concept.

To this end, we must view a(t) like a point-trajectory (a “color
path”) within the 3D color space. Figures la and 1b show an ex-
ample of color sinusoid, and its representation in the color space as
a point-trajectory. We also plot the corresponding 2D wave in the
image world (Fig. 1d) which will be treated later.

What follows is based on the work in [14] that analyzes trajec-
tories of particles in the field of seismology, which is perfectly anal-
ogous to our point. We here use it while adding the “color” concept.

It can be verified [14] that a(t) draws an ellipse within the color
space - as illustrated on figures la and 1b with arbitrary values of
amplitudes and phases. The amplitude concept can intuitively be
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(a) 1D color sinusoid a(t)

(b) Trajectory of a(t) in RGB space

4

(c) Ellipse a(t) in the -y plane (d) 2D atom

Fig. 1. Color sinusoidal oscillation. Bitmap graphics are generated by centering around mid gray and normalizing.

extended in the color case to the ellipse’s size. The phase concept
can also be handled, by defining it as the time-relative position of the
oscillation’s maximum. In the general case, the ellipse’s apogees can
be viewed like the sinusoid’s maxima. So the phase ¢ can be defined
by the time-relative position of the ellipse’s apogee, as illustrated in
figure 1c. The remaining ellipse parameters are expected to convey
colorimetric information.

Let us now give the formulas to calculate the whole elliptical
model, from the 6 original parameters A%, A®, A%, R, ©¢ and ©°.

First, a(t) admits the following normal vector:

sin o1 Sin s
— cos a1 sin ap (6)
COS (2

A AP sin(p® — ©®)
n= | A°A%sin(¢® — ¢°)
ARAC sin(¢® — ¢°)

= [n]

This color plane (dotted lines in figure 1b) is parametrized by the
two angles a1 and aa.

Let us now consider ellipse’s size. The largest and smallest radii
(a.k.a semi-major and semi-minor axes) r+ and r_ are illustrated on
figure 1c. They can be considered through two equivalent quantities,
amplitude A and linearity \:

A = (AR)24 (A2 + (AB)2 = /r2 +72 (D)
o] _ 7% —r2
= /14 =+

A Al 342 ®

The ellipse’s position needs one more angle to be fully described:
the angle a3 (see fig. 1c). Its calculus is joint to this of the phase ¢:

a3z = (arg(&l +J&2) — arg(&l —j(lg)) /2 )
p = (arg(&l +J6~l2) + arg(dl —jaQ)) /2 (10)

and is based on the following rotation:

: R
~ . R_J
ai COS (v1 sin o1 0 Atel?
~ . . : G
a2 | = | —cos ag sin o COS (x2 COS (V1 sin v ACel®
0 sinopsinaz  —cosaisinae  cosaz || 484"

an
The phase ¢ is such that a(—¢) coincides with the ellipse’s apogee:
la(—p)|| = rs.

We refer the reader to [14] for a detailed explanation, as well as
for the reverse calculus to retrieve the 3 independent Fourier coeffi-
cients.

Eventually, we have converted 3 independent Fourier analyzes
into intuitive amplitude and phase data completed by 4 colorimetric
features A\, a1, a2 and az. Let us now put this into the 2D mono-
genic framework.

3. ELLIPTICAL MONOGENIC REPRESENTATION

According to the monogenic formalism, the signal to analyze must
be combined with its Riesz transform (“RT”). In order to better han-
dle the link from 1D to 2D, we propose to rewrite the monogenic
formalism in terms of directional RT, defined for any scalar 2D sig-
nal s(x) by:
Ros(x) = cos(O)R{Rs(x)} + sin(0)S{Rs(x)} (12)
|Rs(x)|cos( 0 — arg(Rs(x)) ) (13)

Here the RT is used like a pair of steerable filters, of which a linear
combination can provide any rotation of them. The amplitude and
phase turn out to be rewritable as:

A(x)e*®) = 5(x) + jRo() s(x) (14)

where 0(x) = arg(Rs(x)) corresponds to the analysis of the local
main direction. We already know how to deal with amplitudes and
phases in the color case thanks to the elliptical model, so the last key
is the color orientation analysis. The problem is that, at local posi-
tion «1, three channels may have three different main orientations
arg(Rs®(x1)), arg(Rs®(x1)) and arg(Rs®(x1)).

This issue happens to be well known in differential geometry,
through the structure tensor concept, in particular with Di Zenzo’s
color gradient [15, 16]. This method locally finds the orientation
along which the vector signal has the maximum variation in terms of
Euclidean distances. We have proposed in [17] a Riesz counterpart
of it, so that we locally extract a single main orientation maximizing
the signal’s color variation.

Based on the fact that the RT is equal to a gradient operator
combined with an isotropic low-pass filter [18, 19], a simple “re-
placement” by the RT provides the same quality of analysis, while
bringing the connexion with the monogenic framework.

The Riesz based structure tensor is the 2 by 2 matrix defined by:

R{Rs}2
T=hx 3, { %{RS{C}Q{}RSC}

Ce{R,G,B}

R{RsIS{Rs}
I{Rs)?
(15)
where h is a smoothing filter applied on the four elements of 7. The

local orientation is obtained from the eigenvector tied to the largest
eigenvalue of 7"

9+ = arg(T11 — T22 + 2jT12)/2 (16)

We here benefit from the proper analysis of color discontinuities
thanks to a differential geometry approach.

Now that the local color orientation is given, we can define the
color monogenic analysis. We propose to locally steer the color
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Fig. 2. Elliptical color monogenic analysis.

Riesz transform towards the same main direction 6 for each color
channel, so that the vector amplitude-phase estimation is done co-
herently.

The 6 amplitude-phase parameters of eq. 5 can be defined by

SR(J:) +jR9+ SR({D) ARe.iAPR
a=| %) +jRo, %) | = | ASH a7
s®(x) + jRo, s°(x) ABeie®

and converted into ellipse parameters with formulas given in section
2, to form the elliptical monogenic signal:

su = [A() p(x) AM(z) a1 (z) az() as(z)] (18)

The previous definition that we gave in [17] had the same calculus
of orientation but the phase-shifted signal was limited to the Eu-
clidean norm of the whole vector RT, instead of the more complete
color directional RT proposed here. As a result, the extraction of the
phase data fully benefits from the efficient ellipse parameter estima-
tion, that properly takes into account all the rotations involved in the
multidimensional space.

The vector modeling of the color 2D signal results in the conver-
sion of the whole data into meaningful features; and makes our tool
a truly non-marginal method.

The elliptical monogenic analysis is illustrated on the figure 2,
from a synthetic test image featuring explicit color contours. The
first part of the calculus is put on the upper row. The input image s is
first isotropically filtered to provide s;. Since the result is oscillating
around (0,0, 0), the graphic has been centered-normalized around
the mid-gray [128, 128, 128]. This illustration technique is also used
for the real and imaginary parts of the Riesz transform, showed next
to it. The main local orientation 6+ obtained from the Riesz structure
tensor is the fifth illustration. In order to respect the circularity of the
data, it is displayed as the hue component in the HSV color space,
while the saturation is controlled by the amplitude A, so as to whiten
irrelevant values. Here the smoothing kernel % is a Gaussian filter
with 0 = 1. The measured orientation is clearly in accord with our
perception of contours, and equally efficient on lines and edges. This

is why the color directional Riesz transform g, also performs well
by phase-shifting the local oscillations from s; towards the proper
direction (see how the yellow line is clearly turned into a curved
blue/yellow edge, with respect to z- and y- components of the RT).

Let us now observe the elliptical features on the second row.

The amplitude reveals edges as well as lines, by showing a max-
imum on their center, contrary to what would give a simple gradient-
based contour analysis. This is due to the embedding of the type of
contour at the core of the signal model.

As a complement, the phase ¢ provides the contour type infor-
mation. It is here wrapped in one quadrant of the trigonometric cir-
cle, according to the symmetry of the related information [20]. We
actually find O & 7 (red) and 47 /2 (blue) at the centers of line- and
edge- like structures respectively. This experimental result is clearly
improved with respect to our previous work, in which the phase gen-
erally suffers from numerical unstability - due to the circular nature
of the data being less well handled by the previous signal model.

The linearity of local color ellipse A is near 1 almost everywhere,
excepted around unsignificant low-amplitude areas. This means that
the chosen test image contains ‘simple’ oscillations involving two
main colors. For example, the yellow line in test image is encoded
by a variation between blue and yellow, drawing a very thin ellipse.

At this stage of the work, the interpretation of the expected col-
orimetric information from ellipse’s position angles a1, a2, a3 is an
open issue. Yet these angles are necessary to handle well the mul-
tidimensionality of color oscillations i.e. they are the counterpart of
the good quality of the amplitude-phase analysis. This method even-
tually provides numerically efficient phase data, which we can now
exploit to achieve local frequency analysis from a color image.

4. LOCAL COLOR FREQUENCY

The local frequency v is basically obtained by differentiating the lo-
cal phase . In 2D, we have to differentiate along the main direction
of the signal, toward which the phase makes sense. This direction is
explicitely given by color monogenic feature 6. .

We apply the central finite difference on ¢(x). In order to steer
it properly, our continuous orientation data 6 must be quantized
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Fig. 3. Estimation of the local frequency v in radians/pixel. Right: Natural test image.

so as to select the neighbor “left” ¢; and “right” ¢, samples to be
compared to the local value ¢ (). We propose the following quan-
tization formula

04 = (m/4) round (64 /(m/4)) (19)

giving 4 possible directions: horizontal (0), vertical (/2 and —m /2
are merged) and the two diagonals (7 /4).

For example, if 6 lies in [—%; £]; then the wavefront is ap-
proximately parallel to the y-axis, and the phase evolves mainly
along the x-axis. So ¢(z1,z2) has to be differentiated with ¢; =
o(z1 — 1,22) and @, = o(x1 + 1, z2).

The circularity of angle data can be handled with complex expo-
nentials, and the local frequency defined by:

v = |arg ((exp(er)/ exple)) )| /cos(0 — 0,)  (20)

The left side term compensates the bias due to orientation quantiza-
tion, according to a local linear model of ¢. Note that for diagonal
cases (0; = +m/4), v must also be divided by \/2. There is not
enough space here to give all details, this is why the source code has
been made publicly available [21].

The performance of this method is illustrated on figure 3. This
first test is done on a synthetic image, featuring explicit local fre-
quencies for various examples of colorimetric and geometric param-
eters. We expect our method to measure constant values of v within
every spatial sub-square, as shown on the third graphic. The measure
is strikingly close to theoretical values, with some expectable and not
damaging instability around borders. The estimation method is sat-
isfactory for low frequencies down to v = 0.35 (period of about 18
pixels, lower-left wave) and up to v = 2.5 (= 2.5 pixels, upper-
right wave). Efficiency is regardless of orientation and color fea-
tures, which experimentally confirms the soundness of the method.

We finally test it on a natural image - fourth graphic of fig. 3.
This image features a perceptually constant unique frequency, oscil-
lating horizontally. The difficulty is that colorimetric properties are
various - blue, green and yellow. We also expect measurements not
to be as regular as in the synthetic case, in particular due to richer
frequency content, and randomness of real data. This is why a prior
frequency band selection has been done with an isotropic filter, and
the estimated v () has been regularized by a 11 x 11 median filter-
ing (see [21] for more details).

The figure 4 below shows the estimated frequency as a 3D mesh,
together with a histogram of the measured v (). Apart from a mild
random variation due to the original image itself, we can see that
v still lies within a small interval around v = 0.6 rad./pixel. This

value corresponds to a period of around 10 pixels, which is well in
accord with the visible pattern in this image, actually of this kind
of periodicity. To our knowledge, no existing work deals with local

1 rad./px

0 T T T T T 1
0.2 0.4 0.6 0.8 1 1.2 14 16

300>,

Fig. 4. Mesh and histogram of estimated local frequency from the
natural image shown in figure 3.

frequency of color images. This experiment shows that our elliptical
monogenic representation actually provides sound data, according
to an oscillatory model in the spirit of the classical Fourier analysis,
with a intuitive extension of the amplitude and phase concepts.

We are currently working on integrating this tool into a re-
versible filterbank algorithm, so as to carry out new color wavelet
transforms and apply them to image enhancement and compression.

5. CONCLUSION

We have defined a new color monogenic representation providing
amplitude, phase, orientation and colorimetric local features. The
building blocks are the elliptical model, the directional Riesz trans-
form and the structure tensor. The construction is driven by the phys-
ical meaning of the data, ending up with an easily usable local phase,
thanks to a truly non-marginal definition. This phase is numerically
differentiated to carry out the local frequency: a new concept for
color images. The algorithm proves to be efficient on both synthetic
and natural images. We have seen that the different pieces of infor-
mation are well separated and independent from each other. This
could be the basis for a new generation of SIFT-like detectors. Our
current work investigates the wavelet counterpart of this framework.
R. Soulard is partially supported by Crescen2o.
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