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OPTIMUM DESIGN OF FLEXTENSIONAL PIEZOELECTRIC

ACTUATORS∗

R. AMIGO† , S.M. GIUSTI‡ , A.A. NOVOTNY§ , E.C.N. SILVA¶, AND J. SOKO LOWSKI‖

Abstract. In control of distributed parameter systems the piezoelectric actuators are of com-
mon use. The topology optimization of a multiphysic model in piezoelectricity is considered. The
topological derivative of a tracking-type shape functional is derived in its closed form for the pur-
pose of shape optimization of piezoelectric actuators. The optimum design procedure is applied to
a micromechanism which transforms the electrical energy supplemented via its piezoceramic part
into elastic energy of an actuator. The domain decomposition technique and the Steklov-Poincaré
pseudo-differential boundary operator are employed in the asymptotic analysis of the shape func-
tional defined on a part of the boundary of the elastic body under consideration. The proposed
method of sensitivity analysis is general and can be used for the purpose of the shape-topological
optimization for a broad class of multiphysics models. The numerical results confirm the efficiency
of proposed approach to optimum design in multiphysics.

Key words. Asymptotic analysis; Steklov-Poincaré operator; Dirichlet-to-Neumann map; Do-
main decomposition; Topological derivative; Piezoelectric actuator; Topology design

AMS subject classifications. 35J30;49Q10;49Q12;74K20;74P15

1. Introduction . In this paper we are interested in the optimal design of piezo-
electric actuators, which consist of multi-flexible structures actuated by piezoceramic
devices that generate an output displacement in a specified direction on the boundary
of the actuated part [5, 27]. The multi-flexible structure transforms the piezoceramic
output displacement by amplifying and changing its direction. This kind of mecha-
nism can be manufactured at a very small scale. Therefore, the spectrum of appli-
cations of such microtools becomes broader in recent years including microsurgery,
nanotechnology processing, cell manipulation, among others. Yet, the development
of microtools requires the design of actuated multi-flexible structures which are able
to produce complex movements originated from simple expansion/contraction of the
piezoceramic actuator. The performance of microtools can be strongly enhanced by
optimizing the actuated multi-flexible structures with respect to their shape and their
topology [6, 7, 8]. The shape sensitivity analysis of such coupled models has been fully
developed in [19] and [18] for quasi-electrostatic layered piezoelectric devices and for
non-stationary elastic, piezoelectric and acoustic coupled system, respectively. For
the mathematical theory concerning coupled PDEs systems the reader may refer to
e.g., [17, 20, 21].

However, a more general approach to deal with shape and topology optimization
design is based on the topological derivative. In fact, this relatively new concept rep-
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075 Petrópolis - RJ, Brazil. (novotny@lncc.br).
¶Department of Mechanical Engineering of Escola Politecnica, University of Sao Paulo, Av. Prof.

Mello Moraes, 2231 - 05508-030, Sao Paulo, Brazil. (ecnsilva@usp.br).
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resents the first term of the asymptotic expansion of a given shape functional with
respect to the small parameter which measures the size of singular domain perturba-
tions, such as holes, inclusions, source-terms and cracks. The topological asymptotic
analysis was introduced in the fundamental paper [28] and has been successfully ap-
plied in the treatment of problems such as topology optimization [4], inverse analysis
[15], image processing [14], multi-scale constitutive modeling [3], fracture mechanics
sensitivity analysis [12] and damage evolution modeling [1]. For an account of new
developments in this branch of shape optimization we refer to [24].

In particular, the topological derivative is here applied in the context of topol-
ogy optimization of piezoelectric actuated multi-flexible structures. The basic idea
consists in maximizing the performance of the microtool by introducing small inclu-
sions in the multi-flexible elastic part. Since this problem is modeled by a coupled
electro-mechanical system, the domain decomposition technique combined with the
Steklov-Poincaré pseudo-differential boundary operator is used to derive the first or-
der term of the asymptotic expansion of the shape functional with respect to the
small parameter measuring the size of the inclusions. Thus, a new method of topo-
logical sensitivity analysis is proposed for the coupled models. In our framework the
topological derivatives for the tracking-type functionals are obtained in their closed
forms, which can be used e.g., as a steepest descent direction in the microtools design
by topology optimization method. However, in shape optimization with the PDEs
constraints there are three main issues, which are:

• Existence of optimal shapes;
• Necessary optimality conditions;
• Numerical methods.

The existence of optimal shapes can be assured by regularity conditions imposed
on the boundaries of admissible domains. Without such restrictive constraints on ad-
missible shapes, the existence issue cannot be solved in general. The special structure
of the shape optimization problem can be used for the direct proof of the existence,
e.g., by the application of Mosco convergence to the elliptic problems. Unfortunately,
even in such situation, the obtained results are not in general constructive.

Necessary optimality conditions are obtained by the shape sensitivity analysis.
Recently, the asymptotic analysis is employed in the context of singular boundary
perturbations in order to obtain the topological derivatives of shape functionals for
elliptic boundary value problems. The results are also obtained for our problem. The
knowledge of the shape gradients and the topological derivatives for a specific shape
functional is required in order to formulate the necessary optimality conditions as
well as to devise numerical methods of shape optimization. There is also the specific
structure of shape derivatives [31] obtained for shape differentiable functionals in the
form of distributions supported on the moving boundaries. The structure should be
taken into account when using the discretization of continuous gradient combined with
the standard methods of nonlinear optimization like gradient or Newton methods in
the numerical methods.

In order to fix these ideas, let us consider a geometrical domain Ω and its singularly
perturbed counterpart Ωε = Ω \ Bε obtained by the nucleation of a small ball Bε =
{|x − x̂| < ε} with center at an arbitrary point x̂ of Ω. There are two different
expansions of

(1.1) ε 7→ j(ε) := J(Ωε)

namely the first expansion obtained by the classical shape sensitivity analysis for
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ε > 0,

(1.2) j(ε+ δ) = j(ε) + δj′(ε) + o(ε; δ),

and the second expansion obtained by the asymptotic analysis in singularly perturbed
domains for ε = 0+

(1.3) j(ε) = j(0) + f(ε)T (x̂) + o(f(ε)).

The topological derivative x̂ 7→ T (x̂) can be used at the preliminary step of opti-
mization procedure to detect the location and the number of small inclusions inserted
into Ω in order to improve the value of the shape functional. Therefore, the robust
formula for the topological derivative is required for the precise performance of this
step of the procedure. This goal is achieved in this paper for the piezo model under
consideration by the appropriate adjoint state equation.

It turns out that the nature of Taylor expansion of the shape functional ε 7→ J(Ωε)
with respect to ε ∈ [0, δ), δ > 0, evaluated in the singularly perturbed domain Ωε de-
pends on the boundary conditions of the state equation prescribed on the boundaries
∂Bε = {|x − x̂| = ε}. The direct derivation of the one term asymptotic expansion
for (1.1) at ε = 0+ leads to the selfadjoint-extensions of elliptic operators [23]. The
appropriate adjoint state combined with the polarization tensor is introduced in order
to obtain the appropriate representation of the topological derivative for numerical
methods of shape optimization. The latter step in this procedure is complicated for
the coupled models. Therefore, in the paper, a general method is proposed in order
to overcome this difficulty. It consists in decomposing the topologically perturbed
geometrical domain into subdomains with different physical properties. The mutual
influence of the subdomains is affected by the transmission conditions on the inter-
faces. In other words, the fields of mechanical and electric natures are coupled by the
transmission conditions, as well as, by the mathematical models in the interior of each
subdomain. This means that in the elastic material of the body the fictitious ring
domain C(R, ε) := {ε < |x− x̂| < R} is introduced for the purpose of the asymptotic
analysis with respect to ε → 0, and the result of the analysis is expressed on the
boundary of the ball BR = {|x− x̂| < R}. From the asymptotic expansions of elastic
energy in the interior of BR or of C(R, ε) the expansion of the Dirichlet-to-Neumann
map associated with the ball or with the ring is obtained. Once having the asymp-
totic expansion in hand, the Dirichlet-to-Neumann operator in BR is employed as
the Steklov-Poincaré boundary pseudodifferential operator in the truncated domain
ΩR := Ω \ BR. In this way, the influence of singularities associated with the limit
passage ε→ 0 is modeled in the truncated domain via nonlocal boundary conditions,
and the subdomain BR is eliminated from the analysis. Otherwise, the asymptotic
analysis of the coupled model in singularly perturbed geometrical domain should be
performed, which would not be the best idea because of the complexity of such an
approach. Finally, the domain decomposition method combined with the asymptotic
expansions in the ring associated with the small parameter ε→ 0 allows us to find the
topological derivative of the shape functional defined in the truncated domain Ω \BR

for all R > ε→ 0. This approach simplifies the topological asymptotic analysis of the
shape functional under consideration. See sketch in Fig. 1.

Remark 1.1. There is a double notation for the same boundary pseudodifferential
operator on ∂BR depending on the fact whether ∂BR is considered as the exterior
boundary of the fictitious subdomain BR or the interior boundary of truncated domain
ΩR. More precisely, the nonlocal boundary operator stands for the Steklov-Poincaré
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Fig. 1. Truncated domain.

operator when acting on the interior boundary ∂BR of the truncated domain ΩR :=
Ω \ BR. Thus, the elasticity boundary value problem in BR is called the interior
problem of fictitious domain decomposition, and the coupled model in ΩR is called
the exterior problem of fictitious domain decomposition in the notation employed
in the paper. The boundary ∂BR is used as an interface of the fictitious domain
decomposition introduced exclusively for the purpose of asymptotic analysis in the
singularly perturbed domain. Furthermore, in the ball BR the contrast parameter
0 < γ <∞ is considered for inclusions while the hole is obtained by the limit passage
γ → 0.

The paper is organized as follows. In Section 2 the Steklov-Poincaré pseudo-
differential boundary operator is introduced. The electro-mechanical coupled system
modeling the piezoelectric actuators as well as the adopted shape functional are pre-
sented in Section 3. The associated topological asymptotic expansion is rigorously
derived in Section 4. In particular, the topological derivatives in their closed forms
associated with inclusions and holes are obtained for two and three spatial dimensions
[24]. In Section 6 some numerical experiments of topology optimization of piezoelec-
tric actuators are presented. Finally, the concluding remarks and perspectives are
given in Section 7.

2. The Steklov-Poincaré and Dirichlet-to-Neumann Boundary Oper-

ators . In order to perform the shape-topological sensitivity analysis of a coupled
model defined in Ω, in the presence of singular domain perturbations resulting from
the insertion of cavities, holes or inclusions in the elastic subdomain, the fictitious
domain decomposition Ω := ΩR ∪BR is introduced into the model. The small region
BR which includes the singular domain perturbation Bε is selected for the asymp-
totic analysis performed e.g., by the method of compound asymptotic expansions for
the singularity depending on the small parameter ε → 0. In this way the asymp-
totic analysis is performed in a simple geometry with radial symmetry of the ball
BR, and it is separated from the shape-topological sensitivity analysis of the func-
tional which is performed in ΩR with the nonlocal boundary conditions defined by
the Steklov-Poincaré operator on ΓR, and in the absence of the singularity Bε inside
of the domain.

The asymptotic expansion of Dirichlet-to-Neumann boundary operators with re-
spect to ε→ 0 is performed for the nonhomogeneous Dirichlet boundary value prob-
lem of linear elasticity defined in the ring C(R, ε). The case of an inclusion Bε in BR

can be considered as a regular perturbation of the bilinear form associated with the
boundary value problem in ΩR, depending on the contrast parameter 0 < γ < ∞.
The limit case obtained for γ → 0 with the inclusion which is replaced by a hole or
a cavity of the radius ε → 0 is considered in C(R, ε) as the singular perturbation of
BR.
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Thus we present the detailed asymptotic analysis following [30] of the representa-
tive singular domain perturbation by the insertion of a hole in two spatial dimensions.
The case of an inclusion can be analysed in the same manner by using the Kolosov
complex potentials in two spatial dimensions. The asymptotic analysis in three spatial
dimensions can be performed by an application of the method of compound asymp-
totic expansions. In particular, we introduce the Steklov-Poincaré pseudo-differential
boundary operator obtained explicitly from the closed solutions of the linear elasticity
boundary value problems into two spatial dimensions.

2.1. Dirichlet-to-Neumann map on ΓR. We use the standard notation for
the Sobolev spaces and the linear elasticity boundary value problems [10, 32]. Let us
consider an open bounded domain Ω ⊂ Rd, d = 2, 3 and let ΩR = Ω \ BR represent
an elastic body, where BR = {|x − x̂| < R} is a ball of radius R > 0 and center at
the point x̂ ∈ Ω such that BR ⊂ Ω. The Sobolev spaces associated with the weak
variational formulation of the linear elasticity boundary value problems are denoted
by H1(BR) := H1(BR;R

d) and H1
0 (BR) := H1

0 (BR;R
d) for simplicity. The stress

tensor is written in the Voigt notation σ(u) = C∇su, with C the Hooke’s tensor of
elastic constants, and the bilinear form of linear elasticity is defined on H1

0 (BR),

(2.1) a(u, v) =

∫

BR

σ(u) · ∇sv ∀u, v ∈ H1(BR) .

Now we are in position to define the Dirichlet-to-Neumann map in BR given by
the solution of an auxiliary, nonhomogeneous Dirichlet boundary value problem in
the ball BR. Such a map is considered as a pseudodifferential operator on ΓR := ∂BR

and it is called the Steklov-Poincaré operator when it is applied to the boundary-value
problem in the truncated domain for which ΓR constitutes a part of the boundary. The
truncated domain is used in the framework of the domain decomposition technique
for the elasticity problem under consideration. Therefore, we introduce the auxiliary,
nonhomogeneous Dirichlet boundary value problem of linear elasticity defined in BR,
namely

(2.2) u = ϕ on ΓR := ∂BR, u ∈ H1(BR) : a(u, v) = 0 ∀v ∈ H1
0 (BR) ,

where ϕ ∈ H1/2(ΓR) := H1/2(ΓR;R
d) is given. With the solution u ∈ H1(BR) of the

nonhomogeneous Dirichlet boundary value problem (2.2) is associated its Neumann
trace T (u) ∈ H−1/2(ΓR) := H−1/2(ΓR;R

d) such that the Green’s formula is valid

(2.3) a(u, v) + (T (u), v)ΓR = 0 u, v ∈ H1(BR) ,

since there is no source in BR. By taking into account the nonhomogeneous Dirichlet
condition, the Green’s formula for the solution of (2.2) becomes

(2.4) a(u, v) = −(T (ϕ), v)ΓR ∀v ∈ H1(BR) .

The Dirichlet-to-Neumann map A : H1/2(ΓR) 7→ H−1/2(ΓR) is well defined,

(2.5) (A(ϕ), ϕ)ΓR := −(T (ϕ), ϕ)ΓR ≡ a(u, u) .

Thus the Steklov-Poincaré operator is defined on ΓR by the relation,

(2.6) (A(ϕ), ϕ)ΓR := a(u, u) ,

where ϕ 7→ (A(ϕ), ϕ)ΓR is a symmetric and coercive bilinear form on the space of
traces H1/2(ΓR).
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2.2. Dirichlet-to-Neumann map on ΓR in the perturbed domain BR..

Now, the domain BR is perturbed by an elastic inclusion ωε. It means that the elastic
constants are different in two subdomains ωε and BR \ ωε of BR. There are three
possibilities for ωε in the framework of linear elasticity, i.e., ωε can be considered as
an elastic inclusion, however there are also a cavity or a rigid inclusion, which can
be considered as the limit cases for the elastic moduli with respect to the so-called
contrast parameter, see the monograph [24] for details. We are interested in the
asymptotics of the solution of elasticity problem in the perturbed domain denoted
by BR, with respect to the small parameter ε → 0. Namely, we want to determine
the asymptotics of the energy functional for the auxiliary nonhomogeneous Dirichlet
boundary value problem in the domain with a small inclusion. The expansions of the
energy furnish the asymptotics of the Steklov-Poincaré pseudodifferential operator.

Let ε → 0 be a small parameter and assume that ωε, with the characteristic
function x 7→ χε(x) ∈ {0, 1}, is a small inclusion of radius ε and centre at x̂ ∈ Ω.
For the sake of simplicity, we assume that ωε := Bε. Let us consider the perturbed
domain, denoted by the same symbol BR, with the variable Hooke’s tensor of elastic
constants

(2.7) x 7→ Cε(x) = (1− χε(x))C + γχε(x)C

and with the contrast parameter γ. In such a setting, the constitutive relation of
linear elasticity σε(u) = Cε∇

su is now dependent on the small parameter ε. The
auxiliary, nonhomogeneous Dirichlet boundary value problem of linear elasticity in
BR becomes:

(2.8) uε = ϕ on ΓR := ∂BR, uε ∈ H1(BR) : aε(uε, v) = 0 ∀v ∈ H1
0 (BR) ,

where

(2.9) aε(uε, v) =

∫

BR

σε(uε) · ∇
sv ∀v ∈ H1(BR) .

With the solution uε of the nonhomogeneous Dirichlet boundary value problem is
associated its Neumann trace Tε(uε) such that the Green’s formula is valid

(2.10) aε(uε, v) + (Tε(uε), v)ΓR = 0 ∀v ∈ H1
0 (BR) .

Thus, the Dirichlet-to-Neumann map depending on the small parameter ε can be
determined, in a unique way in view of the unique solvability of (2.8), from the
symmetric, positive bilinear form

(2.11) H1/2(ΓR) ∋ ϕ 7→ (Aε(ϕ), ϕ)ΓR ≡ aε(uε, uε) ∈ R ,

since there are no sources in BR. The Dirichlet-to-Neumann map defines the Steklov-
Poincaré operator for the truncated domain, exterior to BR.

Now we are going to recall some results of [30] on the asymptotic expansion of
the Steklov-Poincaré operator for the singular perturbations of a ring, i.e. in the limit
case of γ → 0 and for the interior radius of the ring which tends to zero. This means
that in such a case of singular perturbations the inclusion ωε becomes a hole. The case
of an inclusion for 0 < γ < ∞ is considered as a regular perturbation in coefficients
of the elliptic operators and it can be analysed from the point of view of asymptotic
analysis in a similar way as presented in [24].
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2.3. Singular perturbations of solutions in the ring. The Steklov-Poincaré
operator on ΓR ⊂ ∂ΩR is explicitly constructed by complex variable method which
furnishes the solution of nonhomogeneous Dirichlet problem in the ring C(R, ε). For
the topological sensitivity analysis we need to establish precise properties of solutions
parameterized by small parameter ε→ 0.

Let ε→ 0 be small parameter which governs the singular perturbation of the disk
BR by insertion of the hole Bε. The resulting domain

(2.12) ε 7→ C(R, ε) := BR \Bε = {0 ≤ ε < |x− x̂| < R}

is the ring with the fixed boundary ΓR and the moving boundary ε 7→ ∂Bε. The
Dirichlet data ϕ is given on ΓR and the homogeneous Neumann boundary condition
is assumed on ∂Bε for ε > 0. Thus, the variational formulation of the elasticity
boundary value problem in the ring

(2.13) uε ∈ V + {ϕ} : a(C(R, ε) ; uε, v) = 0 ∀v ∈ V

admits the unique weak solution, with V used to denote the space of admissible
variations defined in C(R, ε). Note that here the elliptic regularity applies for C∞

domains C(R, ε). The Green’s formula for smooth solutions reads

(2.14) a(C(R, ε) ; uε, v) :=

∫

C(R,ε)

σ(uε) · ∇
sv =

∫

ΓR

σ(uε)n · v.

If the test function is replaced by the smooth solution, we get the energy equality

(2.15) a(C(R, ε) ; uε, uε) =

∫

ΓR

σ(uε)n · ϕ.

For weak solutions uε ∈ H1(C(R, ε)) with the Dirichlet data ϕ ∈ H1/2(ΓR) the energy
equality becomes

(2.16) a(C(R, ε) ; uε, uε) = 〈σ(uε)n, ϕ〉ΓR ,

with the duality pairingH−1/2(ΓR)×H
1/2(ΓR) on the right-hand side. The associated

boundary pseudodifferential operator Aε : ϕ 7→ σ(uε)n is symmetric, positive and
self-adjoint, and it is uniquely determined from the energy equality in the ring,

(2.17) 〈Aε(ϕ), ϕ〉ΓR := a(C(R, ε) ; uε, uε).

In addition, the asymptotic properties of Dirichlet-to-Neumann map

(2.18) Aε : H1/2(ΓR) ∋ ϕ 7→ σ(uε)n ∈ H−1/2(ΓR)

can be determined by using the complex Kolosov potentials in two dimensional elas-
ticity. The same mapping is used as a nonlocal boundary Steklov-Poincaré operator
on ΓR ⊂ ∂ΩR in the truncated domain ΩR := Ω \BR.

Let us observe that in view of (2.11) the asymptotic expansion of ε 7→ Aε in
the operator norm L

(
H1/2(ΓR);H

−1/2(ΓR)
)
of the symmetric and positive Steklov-

Poincaré operator (2.18) can be directly obtained from the known asymptotics of
the elastic energy in the ring. The asymptotics of elastic energy in the ring follow
from the explicit solution to the Dirichlet problem in the ring. The solutions of
isotropic elasticity boundary value problems in the ring are obtained by complex
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variable technique [13, 30]. This important construction for asymptotic analysis is
now presented in details. Namely, the obtained estimates are now translated into the
following theorem concerning the solution of the elasticity system in the ring.

Theorem 2.1. The elastic energy admits the expansion

(2.19) a(C(R, ε) ; uε, uε) = a(C(R) ; u, u) + πε2Pσ(u(x̂)) · ∇su(x̂) +R(ε3),

where P is the Pólya-Szegö polarization tensor [24] and the remainder is uniformly
bounded by

(2.20)
∣∣R(ε3)

∣∣ ≤ C‖ϕ‖H1/2(ΓR).

Remark 2.2. If the nonhomogeneous Dirichlet boundary condition ϕ satisfies

(2.21) ‖ϕ‖H1/2(ΓR) ≤ Λ0 ,

then, in terms of the Fourier coefficients Ui of ϕ we have

(2.22)

k=+∞∑

k=−∞

√
1 + k2 |Uk|

2 ≤ Λ0 ,

Remark 2.3. The elastic energy concentrated in the ring C(R, ε) = BR\Bε splits
into the energy of the disk, the first correction term of order ε2 and the remainder,
which is uniformly of the order Λ0ε

3. The result on asymptotics of the elastic
energy is well known, we need to show the estimate for the remainder. The result
for the elastic energy implies the asymptotic expansion of the Dirichlet-to-Neumann
operators.

Corollary 2.4. In the case of the regular perturbations of the disk by an elastic
inclusion ωε of the size ε → 0, and with the contrast parameter 0 < γ < ∞, the
elastic energy splits into the energy of the unperturbed disk, the first correction term
of order ε2 and the remainder, which is uniformly of the order Λ0ε

3. This means that
the associated Steklov-Poincaré operator admits the asymptotic expansion

(2.23) Aε = A+ ε2B + o(ε2)

in the operator norm L(H1/2(ΓR);H
−1/2(ΓR)), where ΓR ≡ ∂BR.

2.4. Proof of Theorem 2.1. Let us consider the plane elasticity boundary
value problem in a ring C(R, ε) := BR \Bε = {ε < |x− x̂| < R}. In order to establish
the exact formula for the Steklov-Poincaré operator on ΓR we use the analytic form of
the solution for the elasticity system in the ring, with the nonhomegeneous Dirichlet
displacement condition on the outer boundary ΓR and the traction free inner boundary
∂Bε, parameterized by the (small) inner radius ε.

Let us assume for simplicity that the center of the ring is located at origin of
the coordinate system, and take polar coordinates (r, θ) with er pointing outwards
and eθ perpendicularly in the counter-clockwise direction. Then the displacement
u = urer + uθeθ on the outer boundary r = R is given in the form of Fourier series

(2.24) 2µ(ur + iuθ) =
k=+∞∑

k=−∞

Uke
ikθ .
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The boudedness of the boundary data in H1/2(ΓR) translates, see Remark 2.2, into
inequality (2.22) for the Fourier coefficients Uk.

The solution in C(R, ε) must be compared with the solution in C(R), so we use
the complex variable method, described in [22] to construct the solutions.

Proposition 2.5. For plane domains with a hole, the solutions of the elasticity
boundary value problems take the form

σrr − iσrθ = 2ℜφ′ − e2iθ(z̄φ′′ + ψ′) ,

σrr + iσθθ = 4ℜφ′ ,

2µ(ur + iuθ) = e−iθ(κφ− zφ̄′ − ψ̄) ,

(2.25)

where φ, ψ are given by complex series

φ = A log(z) +

k=+∞∑

k=−∞

akz
k ,

ψ = −κĀ log(z) +
k=+∞∑

k=−∞

bkz
k .

(2.26)

Here µ is the Lame constant, ν the Poisson ratio, κ = 3− 4ν in the plane strain case,
and κ = (3 − ν)/(1 + ν) for plane stress. In addition, ℜϕ is used to denote the real
part of a complex function ϕ, while ℑϕ is going to be used to denote its imaginary
counterpart.

Now, the displacement boundary condition for r = R is substituted into the last
line of (2.25), taking into account (2.26),

2µ(ur + iuθ) = 2κAr log(r)
1

z
− Ā

1

r
z+

+

p=+∞∑

p=−∞

[κrap+1 − (1− p)ā1−pr
−2p+1 − b̄−(p+1)r

−2p−1]zp

we obtain the infinite system of linear equations

p = −1: 2κAr log(r) + (κa0 − b̄0)− 2ā2r
2 = U−1 ,

p = 1: − Ā+ κr2a2 − b̄−2
1

r2
= U1 ,

p /∈ {−1, 1}: κrp+1ap+1 − (1− p)ā1−pr
−p+1 − b̄−(p+1)r

−(p+1) = Up .

(2.27)

The traction-free condition

σer = [σrr, σrθ]
⊤

on a circle means σrr = σrθ = 0. Hence, for r := ε, we have another infinite system
of linear equations,

p = −1: 2A+ 2ā2r
2 + 2

1

r2
b−2 = 0 ,

p = 1: (κ+ 1)
1

r2
Ā = 0 ,

p /∈ {−1, 1}: (1 + p)ap+1 + ā1−pr
−2p +

1

r2
bp−1 = 0 .

(2.28)



10 Amigo, Giusti, Novotny, Silva, Soko lowski

Denote d0 = κa0 − b̄0 since a0, b0 appear only in this combination. Using (2.27) we
may recover the solution for the full circle. Because in this case the singularities must
vanish, we have b−k = a−k = A = 0 for k = 1, 2, . . . and after comparing the same
powers of r:

d00 = U−1 +
2

κ
Ū1, ℜa01 =

1

(κ− 1)R
ℜU0, ℑa01 =

1

(κ+ 1)R
ℑU0,

a0k =
1

κRk
Uk−1, b0k = −

1

Rk
[(k + 2)

1

κ
Uk+1 + Ū−(k+1)], k > 1.

(2.29)

We use the same argument for the ring. Here the singularities may be present, because
the origin is not in the ring. Hence, from (2.27) with r = R and (2.28) with r = ε it
follows A = 0 and the formulas

d0 = A−1 +
2R4

κR4 + ε4
Ū1, a2 =

R2

κR4 + ε4
U1,

ℜa1 =
R

(κ− 1)R2 + 2ε2
ℜU0, ℑa1 =

1

κ+ 1
ℑA0,

b−1 = −
2ε2R

(κ− 1)R2 + 2ε2
ℜU0, b−2 = −

ε4R2

κR4 + ε4
Ū1.

The remaining part of coefficients is computed later. However, we may at this stage
compare the results with known solutions for the uniformly stretched circle or ring
obtained in another way. In such a case U0 = 2µur(R) does not vanish and, for the
full circle, ψ = 0, φ = a01z with

a01 =
2µ

(κ− 1)R
ur(R).

For the ring we have φ = a1z, ψ = b−1
1
z where

a1 =
1

(κ− 1) + 2ε2
2µuR(1), b−1 = −

2ε2

(κ− 1) + 2ε2
2µuR(1).

After substitutions we obtain, in both cases, the same results as given in [16]. Similarly
the comparison with the solution for the ring with displacement conditions on both
boundaries, obtained in [13] also using complex method, confirms the correctness of
our formulas.

There remains to compute the remaining part of coefficients ak, bk for the ring.
Taking p = −k, k = 2, 3, . . ., the conditions on ΓR and ∂Bε leads to

κa−(k−1)R
−(k−1) − (k + 1)āk+1R

k+1 − b̄k−1R
k−1 = U−k,

−(k − 1)a−(k−1)ε
2 + āk+1ε

2(k+1) + b−(k+1) = 0,
(2.30)

while p = +k, k = 2, 3, . . . results in

κak+1R
k+1 + (k − 1)ā−(k−1)R

−(k−1) − b̄−(k+1)R
−(k+1) = Uk,

(k + 1)ak+1ε
2(k+1) + ā−(k−1)ε

2 + bk−1ε
2k = 0.

(2.31)

These systems may be represented in a recursive form, convenient for numerical com-
putations and further analysis. Namely,

(2.32)

[
Sk(ε)11 , Sk(ε)12
Sk(ε)21 , Sk(ε)22

] [
ak+1

bk−1

]
=

[
Uk

Ū−k

]
,
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where the entries Sk(ε)ij are given by

Sk(ε)11 = κRk+1 − (k2 − 1)R1−kε2k + k2R−(k+1)ε2(k+1),

Sk(ε)12 = −(k − 1)(R1−kε2(k−1) −R−(k+1)ε2k),

Sk(ε)21 = −(k + 1)(Rk+1 + κR1−kε2k),

Sk(ε)22 = −Rk−1 − κR1−kε2(k−1),

as well as by

(2.33)

[
a−(k−1)

b−(k+1)

]
=

[
−(k + 1)ε2k , −ε2(k−1)

−k2ε2(k+1) , −(k − 1)ε2k

] [
āk+1

b̄k−1

]
.

In fact the formulas (2.33), (2.32) are correct also for k = 0, 1 and in the limit ε→ 0+,
but the derivation must separate these cases. Thus for, given k > 1 and using some
initial ak, bk obtained earlier, we may first compute ak+1, bk−1 using (2.32) and then
a−(k−1), b−(k+1) from (2.33).

We may now use the above results for the asymptotic analysis of the solution.
To simplify the formulas, we assume R = 1, which means only re-scaling and does
not diminish generality (in general case ε would be replaced by ε/R). Then by direct
computation we get the following bounds for the differences between the coefficients
on the full circle and the ring. For the initial values of k they read

d0 − d00 = −ε4
2

κ(κR4 + ε4)
Ū1,

a1 − a01 = −ε2
2

(κ− 1)R((κ− 1)R2 + 2ε2)
ℜU0,

a2 − a02 = −ε4
1

κR2(κR4 + ε4)
U1,

(2.34)

and for higher values

(2.35) |a3 − a03| ≤ Λ
(
|U2|ε

4 + |U−2|ε
2
)
,

and for k = 4, 5, . . .

(2.36) |ak − a0k| ≤ Λ
(
|Uk−1|ε

3(k−1)/2 + |U1−k|ε
3(k−2)/2

)
,

where the exponent k/2 has been used to counteract the growth of k2 in terms like
k2εk/2. Similarly

(2.37) |b1 − b01| ≤ Λ
(
|U2|ε

4 + |U−2|ε
2
)
,

and for k = 2, 3, . . .

(2.38) |bk − b0k| ≤ Λ
(
|Uk+1|ε

3(k+1)/2 + |U−(k+1)|ε
3k/2

)
.

From relation (2.33) we get another estimates

|a−k| ≤ Λε2k
(
|Uk+1|+ |U−(k+1)|

)
, k = 1, 2, . . .

|b−k| ≤ Λε2(k−1) (|Uk−1|+ |U1−k|) , k = 3, 4, . . .
(2.39)

Here Λ is a constant independent of ε and Ui. Observe that the corrections propor-
tional to ε2 are present only in a1, b1, a3, b−1, a−1. The rest is of the order at least
O(ε3) (in fact O(ε4)).
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3. Problem Formulation . Now, we assume that Ω = ΩM ∪Γ∪ΩP , where the
mutually disjoints open domains ΩP and ΩM have the common interface Γ, as shown
in Fig. 2. In our notation, ΩM and ΩP represent the regions where mechanical and
piezoelectric devices are located, respectively. We consider the coupled model defined
in the subdomains ΩM and ΩP with different material properties. The models are
coupled by the transmission conditions imposed on the interface Γ := ∂ΩM ∩ ∂ΩP .
We are looking for a topology of the mechanical part ΩM that minimizes a given
shape functional defined on Γ⋆ ⊂ ∂ΩM , by keeping the piezoelectric device ΩP fixed.

In order to define the possible directions of shape-topological modifications in
the subdomain ΩM a small inclusion is introduced. It means that we have at our
disposal two materials and try to improve the design by an optimal distribution of
more expensive material in the mechanical subdomain. The variation of the shape
functional associated with the inclusion Bε is called the topological derivative [24, 28].
In order to evaluate the topological derivative we need to recover the asymptotics
of solutions to the coupled model, find the asymptotics of the shape functional, and
introduce the adjoint state in such a way that the result of asymptotic analysis can be
used in numerical methods. This approach is used in [23] for the purpose of asymptotic
analysis of the elasticity boundary value problems in three spatial dimensions.

In the paper we propose an alternative approach, which is much simpler compared
to the general case considered in [23]. Our goal is the identification of the topological
derivative in such a way that it can be directly used in numerical methods. Therefore,
we combine all the elements of analysis performed in [24, 30] and obtain the method
which is sufficiently simple to be used in applied shape-topological design. The method
is presented for a coupled model of elastic and piezoelectric materials, however it is
general and can be used for more complex models of multiphysics.

Fig. 2. Piezo-elastic coupled problem.

3.1. The mechanical model . We are interested in the following system

(3.1)





divσ(u) = 0 in ΩM

divS(w, q)
divφ(w, q)

=
=

0
0

}
in ΩP

where the first equation describes the linear elasticity system while the second one
is the coupled system representing the electromechanical interaction phenomenon.
The equations are coupled on the interface Γ. In particular, σ(u) is the mechanical
stress tensor, S(w, q) is the electromechanical stress tensor and φ(w, q) is the electric
displacement. The constitutive laws describing the elastic behavior and piezoelectric
effects, both in the linearized case of small mechanical deformations and electric fields,
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are

(3.2)





σ(u) = C∇su ,
S(w, q) = A∇sw + P∇q ,
φ(w, q) = PT∇sw −K∇q ,

where u and w are the mechanical and electromechanical displacements, respectively,
and q is the electric potential. In addition, C and A are the elasticity fourth-order ten-
sors respectively associated to the elastic and electromechanical parts, P the piezoelec-
tric coupling third-order tensor and K the dielectric second-order tensor. As usual C,
A andK satisfy the symmetry conditions Cijkl = Cjikl = Cklij , Aijkl = Ajikl = Aklij ,
and Kij = Kji, whereas P satisfies Pijk = Pjik . It is assumed for simplicity that all
constitutive tensors are piecewise constant, i.e., constant in each sub-domain ΩM and
ΩP . In the case of isotropic elasticity, the tensor C takes the form

(3.3) C = 2µI+ λ(I ⊗ I) ,

where µ and λ are the Lame’s coefficients, I and I are the second and fourth orders
identity tensors, respectively. We complement the system (3.1) with the following
boundary conditions

(3.4) u = 0 on ΓD , σ(u)n = ku on Γ⋆ and

{
q = 0 on Γ0

q = q on Γ
,

where Γ⋆, ΓD and Γ0 are parts of the boundary ∂Ω and n is the outward unit normal
vector pointing toward the exterior of Ω. If it is not specified, we consider homoge-
neous natural (Neumann) boundary conditions of the form σ(u)n = 0, S(w, q)n = 0
and φ(w, q) · n = 0 on a part of ∂Ω. Finally, we consider the following transmission
conditions

(3.5)

{
u = w

σ(u)n = S(w, q)n
on Γ ,

where n is the unit normal vector pointing toward the exterior of ΩM . The variational
formulation of the above coupled system reads:

Problem 3.1. Find u ∈ V and q ∈ Q such that

(3.6)





∫

ΩM

σ(u) · ∇sη −

∫

Γ⋆

ku · η +

∫

ΩP

S(w, q) · ∇sη = 0 ∀η ∈ V ,
∫

ΩP

φ(w, q) · ∇ξ = 0 ∀ξ ∈ Q0 .

where u = u in ΩM and u = w in ΩP . The space V of displacements fields is defined
as

(3.7) V =
{
v ∈ H1(Ω;Rd) : v|ΓD

= 0
}
,

while the electric potentials sets Q and Q0 are respectively defined as

(3.8) Q =
{
q ∈ H1(ΩP ) : q|Γ = q, q|Γ0

= 0
}
, Q0 =

{
q ∈ H1(ΩP ) : q|∂ΩP = 0

}
.
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3.2. The shape functional . We are interested in the topology design of piezo-
electric actuators, which consist of multi-flexible structures actuated by piezoceramic
devices that generate an output displacement in a specified direction on the boundary
of the actuated part. Therefore, let us introduce a tracking-type shape functional of
the form

(3.9) J(u) = −

∫

Γ⋆

u · e .

where e is used to denote a given direction on the boundary Γ⋆ (see Fig. 2).

3.3. The adjoint state. We are going to evaluate the shape gradient of func-
tional (3.9). For further simplifications, we introduce an adjoint system of the form

(3.10)





divσ(ua) = 0 in ΩM

divSa(wa, qa)
divφa(wa, qa)

=
=

0
0

}
in ΩP ,

where σ(ua), Sa(wa, qa) and φa(wa, qa), respectively are the adjoint mechanical stress
tensor, electromechanical stress tensor and electrical displacement, given by

(3.11)





σ(ua) = C∇sua ,
Sa(wa, qa) = A∇swa − P∇qa ,
φa(wa, qa) = −PT∇swa −K∇qa ,

where ua, wa and qa are the adjoint mechanical displacement, electromechanical dis-
placement and electric potential, respectively. The system (3.10) has the following
boundary conditions

(3.12) ua = 0 on ΓD and qa = 0 on ∂ΩP

and the transmission conditions

(3.13)

{
ua = wa

σ(ua)n = Sa(wa, qa)n
on Γ .

Finally,

(3.14) σ(ua)n = kua + e on Γ⋆ .

The variational formulation of the coupled system for adjoint state equations reads:

Problem 3.2. Find ua ∈ V and qa ∈ Q0 such that
(3.15)



∫

ΩM

σ(ua) · ∇sη −

∫

Γ⋆

kua · η +

∫

ΩP

Sa(wa, qa) · ∇sη =

∫

Γ⋆

e · η ∀η ∈ V ,
∫

ΩP

φa(wa, qa) · ∇ξ = 0 ∀ξ ∈ Q0 ,

where ua = ua in ΩM and ua = wa in ΩP .
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4. Topological Derivative . The topological derivative of functional (3.9) is
evaluated for the insertion of a small inclusion in ΩM with the material properties de-
pending on the contrast. To describe the topological perturbation of ΩM we introduce
a piecewise constant function γε of the form

(4.1) γε = γε(x) :=

{
1 if x ∈ ΩM \Bε

γ if x ∈ Bε
,

where 0 < γ <∞ is the contrast parameter on the material properties and Bε(x̂) :=
{|x − x̂| < ε} for x̂ ∈ ΩM . Note that in this case the topologies of the original
and perturbed domains are preserved. However, we are introducing a non-smooth
perturbation in the coefficients of the differential operator through the contrast γε,
by changing the material property of the background in a small region Bε ⊂ ΩM .
Therefore, the sensitivity of the shape functional with respect to the nucleation of
an inclusion can also be handle through the topological asymptotic analysis concept,
which actually is the best approach for such a problem. The variational formulation
associated with the perturbed coupled system reads:

Problem 4.1. Find uε ∈ V and qε ∈ Q such that
(4.2)




∫

ΩM

σε(uε) · ∇
sη −

∫

Γ⋆

kuε · η +

∫

ΩP

S(wε, qε) · ∇
sη = 0 ∀η ∈ V ,

∫

ΩP

φ(wε, qε) · ∇ξ = 0 ∀ξ ∈ Q0 ,

where σε(uε) = γεC∇
suε. In addition, uε = uε in ΩM and uε = wε in ΩP .

4.1. Preliminaries. In the paper a coupled model is considered in the domain
Ω := ΩM ∪ Γ ∪ ΩP , where ΩM , ΩP are the elastic and piezoelectric subdomains, and
Γ stands for an interface, as shown in Fig. 2. The coupled system is well-posed, and
can be written in the strong form as an abstract equation for the unknown functions
U := (u,w, q),

(4.3) LU = F

in the appropriate function spaces over the domain Ω. F is a vector that has the
generalized loading system for the problem and L is the matrix of the complete system
of equations. The weak form reads

(4.4) L(U,Φ) = (F,Φ) ,

with the test functions Φ. The bilinear form associated with the elastic component
of the coupled model in the subdomain ΩM is simply given by standard expression of
linear elasticity

(4.5) (u, η) 7→ a(ΩM ;u, η) :=

∫

ΩM

σ(u) · ∇sη

in the unperturbed subdomain ΩM , as well as by

(4.6) (u, η) 7→ aε(Ω
M ;u, η) :=

∫

ΩM

σε(u) · ∇
sη

in the perturbed subdomain by an inclusion. Here ε→ 0 is the parameter which gov-
erns the size of the topological perturbation. In the latter case, the weak formulation
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of the coupled model also depends on the small parameter ε, and can be rewritten as
follows

(4.7) Lε(Uε,Φ) = (F,Φ) ,

or written in the strong form LεUε = F . The perturbed system is also well-posed for
ε ∈ [0, ε0), with ε0 > 0, i.e., the inverse operator is uniformly bounded: ‖Uε‖ ≤ C‖F‖
in appropriate norms. However, in the case of a cavity the associated function spaces
are obviously dependent on the small parameter ε. The case of an inclusion is therefore
the regular perturbation of the problem in the fixed function spaces setting.

We proceed further with the domain decomposition technique in the subdomain
ΩM := BR∪ΓR∪ΩM

R , where BR is the ball of radius R which contains the topological
perturbation denoted by Bε, ΓR ≡ ∂BR stands for the boundary of BR, and the
remaining subdomain ΩM

R := ΩM \ BR is far from the singular topological domain
perturbation.

Let uε denote the solution of coupled equations in the perturbed domain Ω i.e.,
including the inclusion Bε. We are going to show, that the restriction of uε to the
truncated domain solves a boundary value problem with the nonlocal boundary con-
ditions on ΓR defined by the Steklov-Poincaré operator. Since for all ε ∈ [0, ε0),

(4.8) aε(Ω
M ;uε, η) = a(ΩM

R ;uε, η) + aε(BR;uε, η)

and the last term is equivalent to the Steklov-Poincaré component by construction

(4.9) aε(BR;uε, η) ≡ (Aε(uε), η)ΓR .

Henceforth the bilinear form in the topologically perturbed domain ΩM can be re-
placed by the bilinear form in the unperturbed domain ΩM

R , however with a nonlocal
pseudo-differential operator

(4.10) aε(Ω
M ;uε, η) = a(ΩM

R ;uε, η) + (Aε(uε), η)ΓR .

This replacement is in fact crucial for the proofs of topological differentiability for the
shape functionals defined for the coupled system. Actually, the asymptotic expansion
of the solutions to the coupled model in the truncated domain can be easily deduced
from the well-posedness of the model. It means that for the linear model, and the
regular perturbations of the differential operator, the asymptotic expansion of the
Steklov-Poincaré operator

(4.11) Aε = A+ f(ε)A′ +Rε(f(ε)),

with f(ε) ∼ |Bε|, implies the asymptotic expansion of the solutions to the coupled
model in the truncated domain ΩM

R ∪ ΓR ∪ ΩP of the same form

(4.12) Uε = U + f(ε)U ′ + Ũε ,

where Ũε is the remainder, namely ||Ũε|| = o(f(ε)) in appropriated norms.

4.2. Topological Asymptotic Expansion of the Steklov-Poincaré oper-

ator. The proposed method of asymptotic analysis is employed now to the coupled
system defined in ΩR. The dependence of the model on the small parameter ε → 0
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occurs in the nonlocal boundary conditions imposed on ΓR. The variational form of
(4.2) restricted to ΩR is obtained,

(4.13)





∫

ΩM\BR

σε(uε) · ∇
sη +

∫

∂BR

Aε(uε) · η −
∫

Γ⋆

kuε · η +

∫

ΩP

S(wε, qε) · ∇
sη = 0 ∀η ∈ V ,

∫

ΩP

φ(wε, qε) · ∇ξ = 0 ∀ξ ∈ Q0 ,

where BR = BR(x̂) is a ball of radius R and center at x̂ ∈ ΩM .
The Steklov-Poincaré operator on the interior boundary ∂BR of the truncated

domain ΩR

(4.14) Aε : ϕ ∈ H1/2(∂BR;R
d) → σε(uε)n ∈ H−1/2(∂BR;R

d) ,

by construction coincides with the Dirichlet-to-Neumann map of the linear elasticity
on the ball BR,

(4.15)





divσε(vε) = 0 in BR ,
σε(vε) = γεC∇

svε ,
vε = ϕ on ∂BR ,

JvεK
Jσε(vε)Kn

=
=

0
0

}
on ∂Bε ,

with Aε(ϕ) = σε(vε)n, which assures the identity vε = uε|BR in BR, where uε is the
solution of the perturbed problem in Ω.

Remark 4.2. If the Steklov-Poincaré operator ϕ 7→ Aε(ϕ) of problem (4.13) is
the Dirichlet-to-Neumann map defined by (4.15), then the solution to (4.13) coincides
with the restriction to ΩR of the solution to perturbed problem in Ω. The identity
for the energy functional of (4.15) holds

0 = −

∫

BR

divσε(vε) · vε =

∫

BR

σε(vε) · ∇
svε −

∫

∂BR

σε(vε)n · vε

=

∫

BR

σε(vε) · ∇
svε −

∫

∂BR

Aε(ϕ) · ϕ ,(4.16)

hence the elastic energy in BR equals to the energy of the Steklov-Poincaré operator
on the boundary. Thus we conclude that the asymptotic expansion of the Steklov-
Poincaré operator on the common boundary ∂BR equals to the asymptotic expansion
of the elastic energy in the domain BR. Namely

∫

BR

σε(vε) · ∇
svε =

∫

∂BR

Aε(ϕ) · ϕ ,(4.17)

for the mapping defined by (4.15)

(4.18) ϕ ∈ H1/2(∂BR;R
d) → σε(vε)n ∈ H−1/2(∂BR;R

d) .

Since the operator Aε is symmetric, we can also write

(4.19)

∫

BR

σε(vε) · ∇
svε = 〈Aε(ϕ), ϕ〉(H−1/2×H1/2)(∂BR;Rd) .
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It is well-know that the topological asymptotic expansion for the energy functional
takes the following form [24]:

(4.20)

∫

BR

σε(vε) · ∇
svε =

∫

BR

σ(v) · ∇sv + f(ε)Pγσ(v(x̂)) · ∇
sv(x̂) +R(f(ε)) ,

where v = u|BR is the solution to the original (unperturbed) problem (3.6) and Pγ is
the Pólya-Szegö polarization tensor. According to [29] we have the following expansion
of the Steklov-Poincaré operator

(4.21) Aε = A+ f(ε)B +Rε

in the operator norm L(H1/2(∂BR;R
d);H−1/2(∂BR;R

d)). By symmetry of the op-
erator, the expansion of the energy functional can also be written as

(4.22) 〈Aε(ϕ), ϑ〉 = 〈A(ϕ), ϑ〉 + f(ε)〈B(ϕ), ϑ〉+ 〈Rε(ϕ), ϑ〉 ,

where 〈Rε(ϕ), ϑ〉 = R(f(ε)). Then, from the asymptotic expansion of the energy
functional, we get

(4.23) 〈B(ϕ), ϑ〉 = Pγσ(ϕ(x̂)) · ∇
sϑ(x̂) ∀x̂ ∈ ΩM .

4.3. Topological Asymptotic Expansion of the Solution. We consider the
following ansätze for the solutions uε, wε, qε to the topologically perturbed coupled
system (4.2)

uε = u+ f(ε)g + ũε ,(4.24)

wε = w + f(ε)h+ w̃ε ,(4.25)

qε = q + f(ε)p+ q̃ε ,(4.26)

where u,w, q are solutions to the original (unperturbed) coupled system (3.6), g, h, p
are the first order asymptotic correction terms and ũε, w̃ε, q̃ε are the remainders.
Now, we plug these ansätze in (4.2) and collect the terms with the same powers of ε
to obtain three boundary value problems. The first problem for u, w and q

(4.27)





∫

ΩM\BR

σ(u) · ∇sη +

∫

∂BR

A(u) · η −
∫

Γ⋆

ku · η +

∫

ΩP

S(w, q) · ∇sη = 0 ∀η ∈ V ,
∫

ΩP

φ(w,q) · ∇ξ = 0 ∀ξ ∈ Q0 .

The second problem for g, h and p

(4.28)





∫

ΩM\BR

σ(g) · ∇sη +

∫

∂BR

(A(g) + B(u)) · η −
∫

Γ⋆

kg · η +

∫

ΩP

S(h, p) · ∇sη = 0 ∀η ∈ V ,
∫

ΩP

φ(h, p) · ∇ξ = 0 ∀ξ ∈ Q0 ,
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and the third problem for the remainders ũε, w̃ε and q̃ε

(4.29)





∫

ΩM\BR

σε(ũε) · ∇
sη +

∫

∂BR

Aε(ũε) · η −
∫

Γ⋆

kũε · η +

∫

ΩP

S(w̃ε, q̃ε) · ∇
sη =

∫

∂BR

Fε · η ∀η ∈ V ,
∫

ΩP

φ(w̃ε, q̃ε) · ∇ξ = 0 ∀ξ ∈ Q0 ,

where the source Fε is given by

(4.30) Fε = −(Rε(u) + f(ε)Rε(g) + f(ε)2B(g)) .

The estimations ||ũε||H1(ΩM\BR;Rd) = o(f(ε)), ||w̃ε||H1(ΩP ;Rd) = o(f(ε)) and ||q̃ε||H1(ΩP ) =

o(f(ε)) hold true for the remainders.

4.4. Topological Asymptotic Expansion of the Shape Functional. Now
we are in position to establish the asymptotic expansion of the shape functional and
obtain its topological derivative. After introducing the first ansätz in the shape func-
tional associated to the perturbed problem, we have

J(uε) = −

∫

Γ∗

(u+ f(ε)g + ũε) · e

= −

∫

Γ∗

u · e− f(ε)

∫

Γ∗

g · e−

∫

Γ∗

ũε · e

= J(u)− f(ε)

∫

Γ∗

g · e+R(f(ε)) .(4.31)

Now, let us rewrite the adjoint system (3.15) as

(4.32)





∫

ΩM\BR

σ(ua) · ∇sη +

∫

∂BR

A(ua) · η −
∫

Γ⋆

kua · η +

∫

ΩP

Sa(wa, qa) · ∇sη =

∫

Γ⋆

e · η ∀η ∈ V ,
∫

ΩP

φa(wa, qa) · ∇ξ = 0 ∀ξ ∈ Q0 .

By taking g, h and p as the test functions in (4.32) we have the following equalities
∫

ΩM\BR

σ(ua) · ∇sg +

∫

∂BR

A(ua) · g −

∫

Γ⋆

kua · g +

∫

ΩP

A∇swa · ∇sh−

∫

ΩP

P∇qa · ∇sh =

∫

Γ⋆

e · g ,(4.33)

−

∫

ΩP

P⊤∇swa · ∇p−

∫

ΩP

K∇qa · ∇p = 0 .(4.34)

On the other hand, by taking ua, wa and qa as the test functions in (4.28) we obtain
∫

ΩM\BR

σ(g) · ∇sua +

∫

∂BR

(A(g) + B(u)) · ua −

∫

Γ⋆

kg · ua +

∫

ΩP

A∇sh · ∇swa +

∫

ΩP

P∇p · ∇swa = 0 ,(4.35)

∫

ΩP

P⊤∇sh · ∇qa −

∫

ΩP

K∇p · ∇qa = 0 .(4.36)



20 Amigo, Giusti, Novotny, Silva, Soko lowski

Combining the above equalities yields the following important result
∫

Γ⋆

e · g = −

∫

∂BR

B(u) · ua

= −〈B(u), ua〉(H−1/2×H1/2)(∂BR;Rd)

= −Pγσ(u(x̂)) · ∇
sua(x̂) ,(4.37)

where we have considered the symmetry of the bilinear forms. Finally, the topological
asymptotic expansion of the shape functional leads to

J(uε) = J(u) + f(ε)Pγσ(u(x̂)) · ∇
sua(x̂) +R(f(ε)) .(4.38)

By assuming that the inclusion is far from the piezoelectric part, the topological
derivative is given by the following closed formula

(4.39) T (x̂) = Pγσ(u(x̂)) · ∇
sua(x̂) ∀x̂ ∈ ΩM .

where u and ua are solutions to the original unperturbed direct (3.6) and adjoint
(3.15) systems, respectively.

Corollary 4.3. In two spatial dimensions, the function f(ε) = ε2 and the
polarization tensor for inclusions (0 < γ <∞) reads [24] (see also [9])

(4.40) Pγ = π
1− γ

1 + γβ

(
(1 + β)I+

1

2
(α − β)

1− γ

1 + γα
I ⊗ I

)
.

with the constants α and β given by

(4.41) α =
λ+ µ

µ
and β =

λ+ 3µ

λ+ µ
.

In three spatial dimensions, the function f(ε) = ε3 and the polarization tensor for
holes (γ = 0) yields [24] (see also [11])

(4.42) P0 = 2π
1− ν

7− 5ν

(
10I−

1− 5ν

1− 2ν
I ⊗ I

)
,

where ν is the Poisson ratio.

5. Numerical Implementation . A numerical procedure has been defined to
implement the mathematical formulation described above. First, the constitutive
properties for the direct problem (3.1) (see (3.2)) are defined. Thus, the tensor C
is defined for the elastic part ΩM , and tensors A, P and K are defined for the elec-
tromechanical part ΩP . The boundary conditions for the direct problem (3.1) are
also specified (see (3.4)). Thus, the mechanical displacement u is specified on ΓD

(u = 0), σ(u)n = ku on Γ∗ (where k is the stiffness of the spring), and the electric
potential q is defined on ΓP . Next, either problem (3.1) or (3.6) is solved to obtain the
displacement field u in ΩM . Then, we move to the adjoint problem, by first defining
the constitutive properties for problem (3.10) (see (3.11)). The tensors C, A, P and
K are the same, however, in (3.11) there is a change in the sign of P . The boundary
conditions for the adjoint problem (3.10) are also defined. Thus, the mechanical dis-
placement v on ΓD has homogeneous Dirichlet boundary condition (v = 0 on ΓD, see
(3.12)) and σ(v)n = kv − e on Γ∗ (where k is the stiffness of the spring and e is the
prescribed direction (vector) for the maximization of the displacement u (see (3.9)).
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The electric potential q on ΓP has also homogeneous Dirichlet boundary condition
(q = 0 on ΓP ∪ ΓP0

, see (3.12)). Next, either problem (3.10) or (3.15) is solved to
obtain the displacement field v in ΩM .

Remark: the adjoint problem has the same structure of the direct problem (3.1),
however with a change in the sign of the tensor P , homogeneous boundary condition
in the Dirichlet part of the boundary and the Neumann boundary condition on Γ∗.

Following, the value of the contrast parameter γ is defined. With the direct and
adjoint displacements, u and v in ΩM , and the value of γ, the topological derivative
(scalar value) is calculated at each point x̂ ∈ ΩM by using (4.39):

T (x̂) =
1− γ∗

1 + γ∗β

(
(1 + β)σ(u(x̂)) · ∇sv(x̂) +

(α− β)(1 − γ∗)

2(1 + γ∗α)
trσ(u(x̂))tr(∇sv(x̂))

)

Remark 5.1. For the topological derivative, it is only needed the stress associated
to the displacement u and the strain associated to the displacement v in the mechanical
part of the domain ΩM . In addition, the Poissons ratio ν is used to calculate the
constants α and β, see (4.41).

Having made the above considerations, the topological derivative-based optimiza-
tion algorithm devised in [2] stands out as a particularly well-suited choice to solve
the optimization problem that we are dealing with. The procedure relies on a level-
set domain representation [25] and the approximation of the topological optimality
conditions by a fixed point iteration. In particular, the algorithm displays a marked
ability to produce general topological domain changes uncommon to other method-
ologies based on a level-set representation and it has been successfully applied in [2] to
topology optimization in the context of two-dimensional elasticity and flow through
porous media. For completeness, the algorithm is outlined in the following. For
further details we refer to [2].

With the adoption of a level-set domain representation, the strong material is
characterized by a function Ψ ∈ L2(ΩM ) such that

(5.1) Ωs = {x ∈ ΩM ,Ψ(x) < 0} ,

whereas the weak material domain is defined by

(5.2) Ωw = {x ∈ ΩM ,Ψ(x) > 0} .

Now, let us consider the topological derivative T (x̂) of the shape functional J(u).
According to [2], an obvious sufficient condition of local optimality of optimization
problem for the class of perturbations consisting of circular inclusions is

(5.3) T (x̂) > 0 ∀x̂ ∈ ΩM .

To devise a level-set-based algorithm whose aim is to produce a topology that
satisfies (5.3), it is convenient to define the function

(5.4) g(x̂) =

{
−T s(x̂) if x̂ ∈ Ωs

+T w(x̂) if x̂ ∈ Ωw .

where T s(x̂) and T w(x̂) are given by:

(5.5)
T s(x̂) := T (x̂) with γ∗ = γ and x̂ ∈ Ωs ,
T w(x̂) := T (x̂) with γ∗ = 1

γ and x̂ ∈ Ωw .
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With the above definitions and eqs. (5.1,5.2) it can be easily established that the
sufficient condition (5.3) is satisfied if the following equivalence relation between g
and the level-set function Ψ holds

(5.6) ∃ τ > 0 s.t g = τ Ψ ,

or, equivalently,

(5.7) θ := arccos

[
〈g,Ψ〉L2(ΩM )

‖g‖L2(ΩM ) ‖Ψ‖L2(ΩM )

]
= 0 ,

where θ is the angle between the vectors g and Ψ in L2(ΩM ).

6. Numerical Experiments . Several implementation examples are presented
in this section. In all of them, the materials considered are PZT-5A in fixed piezoelec-
tric domains and Nickel or Titanium in optimizable metallic domains, which properties
are given in Tables 1 and 2.

Table 1

PZT-5A properties.

̺ c11 c12 c13 c33 c44 e13 e15 e33 ε11 ε33

6.080 137.0 69.7 71.6 124.0 31.4 -4.0 10.4 13.8 7.9473 5.1507

g/cm3 GPa GPa GPa GPa GPa C/m2 C/m2 C/m2 nF/m nF/m

Table 2

Nickel and Titanium properties.

Nickel Titanium

̺(g/cm3) 8.908 4.507

E(GPa) 204.6763 109.4027

ν 0.2866 0.2866

6.1. Example 1: Moonie. The first implementation example is the optimiza-
tion of a moonie, which is a widespread device used to amplify the displacements
generated by piezoelectric ceramics. In particular, the design domain considered is
shown in Fig. 3, in which only one quadrant of the complete domain is represented,
based on horizontal and vertical symmetry assumptions. The objective is the max-
imization of the outward output displacement in the region Γt in response to some
electric potential imposed to the electrode Γϕ, from the fixed ceramic domain denoted
by Ωp. In the output region Γt, a spring ks ensures enough stiffness to the resulting
topology obtained within the metallic design domain Ωs.

In following results, the domain is discretized with a regular mesh of 1920 linear
triangles elements at the beginning of the optimization procedure and 491520 elements
at the end. The electric potential applied to Γϕ is −100V .

In Fig. 4, the results for two different volume constraints are shown for both Nickel
and Titanium design domains, with the spring stiffness set to 1kN/mm. The deformed
configuration of a selected result is shown in Fig. 5. Furthermore, Fig. 6 depicts the
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Fig. 3. Example 1: Design domain for piezoelectric moonie (dimensions in mm).

impact that the variation of the spring stiffness ks has on the final topology obtained,
targeting the same final volume. Also in this case, the deformed configuration of a
selected result is presented in Fig. 7. As the stiffness value is increased, the coupling
structure becomes stiffer and the hinges disappear. The output displacements of each
resulting topology presented are listed in Table 3.

(a) V F = 0.34 (b) V F = 0.34

(c) V F = 0.46 (d) V F = 0.46

Fig. 4. Example 1: Results for Nickel (left) and Titanium (right) for different volume constraints.

The method gives a quite clear topology. We notice the presence of flexible
hinges in the design which also appears for the results obtained by using topology
optimization based on the density method [26]. From the deformed configurations we
noticed that the actuator generates the desired displacement.

6.2. Example 2: Inverter. The second example considers the same domain
from previous section, however, the output displacement region Γt is changed, as
depicted in Fig. 8. This apparently simple modification in the design domain actually
implies in a completely different mechanism, since it seeks an output displacement
contrary to the natural movement of the structure, and this is the reason is called
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Fig. 5. Example 1: Deformed configuration for result from Fig. 4(a).

(a) ks = 1kN/mm (b) ks = 1kN/mm

(c) ks = 10kN/mm (d) ks = 10kN/mm

Fig. 6. Example 1. Results for Nickel (left) and Titanium (right) for VF=0.30 and different
spring stiffness.

inverter. The design domain remains being Ωs, the objective is still the maximization
of the outward output displacement in Γt and all symmetry assumptions are also
valid.

The domain is again discretized with the same mesh of the previous example, the
electric potential applied to Γϕ is −100V and the spring stiffness is set to 1kN/mm.
In Fig. 9, it is shown the results for two different volume constraints by considering
Nickel and Titanium design domains. The deformed configuration of a selected result
is shown in Fig. 10. The output displacements of each resulting topology presented
are listed in Table 4.

The presence of flexible hinges is also noticed in the results. Besides, results from
Figs. 9(a) and 9(b) show that the method is clearly able to obtain the topology and not
only the external shape of the coupling structure. From the deformed configuration
we noticed that the inverter generates a displacement opposite to its natural behavior.

6.3. Example 3: Gripper. The last implementation example investigates the
optimization of a gripper. In this case, a half part of the complete device is considered,
with horizontal symmetry, as indicated in Fig. 11. Unlike the previous examples, the
desired output displacement direction is inwards, since a normally closed gripper is
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Fig. 7. Example 1: Deformed configuration for result from Fig. 6(d).

Table 3

Example 1: Output displacements of moonie resulting topologies.

Volume Fraction Displacement (µm)

4(a) Nickel 1kN/mm 0.34 144.58

4(c) Nickel 1kN/mm 0.46 148.77

6(a) Nickel 1kN/mm 0.30 138.59

6(c) Nickel 10kN/mm 0.30 39.13

4(b) Titanium 1kN/mm 0.34 133.49

4(d) Titanium 1kN/mm 0.46 133.93

6(b) Titanium 1kN/mm 0.30 130.06

6(d) Titanium 10kN/mm 0.30 33.92

Fig. 8. Example 2: Design domain for piezoelectric inverter (dimensions in mm).

Table 4

Example 2: Output displacements of inverter resulting topologies.

Volume Fraction Displacement (µm)

9(a) Nickel 1kN/mm 0.30 71.99

9(c) Nickel 1kN/mm 0.50 70.37

9(b) Titanium 1kN/mm 0.30 104.88

9(d) Titanium 1kN/mm 0.50 112.55
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(a) V F = 0.30 (b) V F = 0.30

(c) V F = 0.50 (d) V F = 0.50

Fig. 9. Example 2: Results for Nickel (left) and Titanium (right) for different volume constraints.

Fig. 10. Example 2: Deformed configuration for result from Fig. 9(a).

being considered. Given the characteristic of the Γt region, ks is a distributed spring.
In following results, the domain is discretized with a regular mesh of 1596 linear

triangles elements at the beginning of the optimization procedure and 408576 elements
at the end. The electric potential applied to Γϕ is −100V and the spring stiffness is set
to 1kN/mm. In Fig. 12, it is shown the results for two different volume constraints
by considering Nickel and Titanium design domains. The deformed configuration of
a selected result is shown in Fig. 13. The output displacements of each resulting
topology presented are listed in Table 5.

Again, results from Fig. 12 show that the method is able to obtain a clear
topology. From the deformed configurations we noticed that the gripper generates
the desired movement.

7. Conclusions . In the paper the topological derivatives of the tracking-type
shape functional for the coupled models of elasto-piezoelectric type are derived in two
and three spatial dimensions. The associated shape optimization problems are already
analyzed from the point of view of shape optimization in the former papers. In this
paper the preceding results are completed by the topological asymptotic analysis. The
remarkable simplicity of the closed form sensitivity given by (4.39) is to be noted. In
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Fig. 11. Example 3: Design domain for piezoelectric gripper (dimensions in mm).

(a) V F = 0.40 (b) V F = 0.40

(c) V F = 0.60 (d) V F = 0.60

Fig. 12. Example 3: Results for Nickel (left) and Titanium (right) for different volume con-
straints.

Table 5

Example 3: Output displacements of gripper resulting topologies.

Volume Fraction Displacement (µm)

12(a) Nickel 1kN/mm 0.40 -17.81

12(c) Nickel 1kN/mm 0.60 -21.51

12(b) Titanium 1kN/mm 0.40 -14.76

12(d) Titanium 1kN/mm 0.60 -17.10
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Fig. 13. Example 3: Deformed configuration for result from Fig. 12(d).

fact, once the solutions u,w, q and ua, wa, qa to the original (unperturbed) direct (3.6)
and adjoint (3.15) coupled systems have been obtained, the topological derivative
T (x̂) can be evaluated for all x̂ ∈ ΩM . The information provided by T (x̂) can
be potentially used in a number of practical applications such as, for example, the
shape-topological design of microtools. In particular, some numerical experiments of
topology optimization of piezoelectric actuators have been presented.
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