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Abstract

In this paper, we tackle the question of discovering an effective set of spatial filters to solve hyperspectral classification problems.
Instead of fixing a priori the filters and their parameters using expert knowledge, we let the model find them within random draws
in the (possibly infinite) space of possible filters. We define an active set feature learner that includes in the model only features
that improve the classifier. To this end, we consider a fast and linear classifier, multiclass logistic classification, and show that with
a good representation (the filters discovered), such a simple classifier can reach at least state of the art performances. We apply the
proposed active set learner in four hyperspectral image classification problems, including agricultural and urban classification at
different resolutions, as well as multimodal data. We also propose a hierarchical setting, which allows to generate more complex
banks of features that can better describe the nonlinearities present in the data.

Keywords: Hyperspectral imaging, active set, feature selection, multimodal, hierarchical feature extraction, deep learning.

1. Introduction1

Hyperspectral remote sensing allows to obtain a fine de-2

scription of the materials observed by the sensor: with arrays3

of sensors focusing on 5-10 nm sections of the electromag-4

netic spectrum, hyperspectral images (HSI) return a complete5

description of the response of the surfaces, generally in the visi-6

ble and infrared range. The use of such data, generally acquired7

by sensors onboard satellites or aircrafts, allows to monitor the8

processes occurring at the surface in a non-intrusive way, both9

at the local and global scale (Lillesand et al., 2008; Richards10

and Jia, 2005). The reduced revisit time of satellites, in con-11

junction with the potential for quick deployment of aerial and12

unmanned systems, makes the usage of hyperspectral systems13

quite appealing. As a consequence, hyperspectral data is be-14

coming more and more prominent for researchers and public15

bodies.16

Even if the technology is at hand and images can be ac-17

quired by different platforms in a very efficient way, HSI alone18

are of little use for end-users and decision makers: in order to19

be usable, remote sensing pixel information must be processed20

and converted into maps representing a particular facet of the21

processes occurring at the surface. Among the different prod-22

ucts traditionally available, land cover maps issued from image23

classification are the most common (and probably also the most24

used). In this paper, we refer to land cover/use classification as25

the process of attributing a land cover (respectively land use)26

class to every pixel in the image. These maps can then be used27
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for urban planning (Taubenböck et al., 2012, 2013), agricul-28

ture surveys (Alcantara et al., 2012) or surveying of deforesta-29

tion (Asner et al., 2005; Naidoo et al., 2012; Vaglio Laurin et al.,30

2014).31

The quality of land cover maps is of prime importance.32

Therefore, a wide panel of research works consider image clas-33

sification algorithms and their impact on the final maps (Plaza34

et al., 2009; Camps-Valls et al., 2011; Mountrakis et al., 2011;35

Camps-Valls et al., 2014). Improving the quality of maps issued36

from HSI is not trivial, as hyperspectral systems are often high37

dimensional (number of spectral bands acquired), spatially and38

spectrally correlated and affected by noise (Camps-Valls et al.,39

2014).40

Among these peculiarities of remote sensing data, spatial41

relations among pixels have received particular attention (Fau-42

vel et al., 2013): the land cover maps are generally smooth, in43

the sense that neighboring pixels tend to belong to the same44

type of land cover (Schindler, 2012). On the contrary, the spec-45

tral signatures of pixels of a same type of cover tend to become46

more and more variable, especially with the increase of spa-47

tial resolution. Therefore, HSI classification systems have the48

delicate task of describing a smooth land cover using spectral49

information with a high within-class variability. Solutions to50

this problem have been proposed in the community and mostly51

recur to spatial filtering that work at the level of the input vec-52

tor (Benediktsson et al., 2005; Vaiphasa, 2006; Fauvel et al.,53

2013) or to structured models that work by optimization of a54

context-aware energy function (Tarabalka et al., 2010; Schindler,55

2012; Moser et al., 2013).56

In this paper, we start from the first family of methods,57

those based on the extraction of spatial filters prior to classi-58
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fication. Methods proposed in remote sensing image classifi-59

cation tend to pre-compute a large quantity of spatial filters re-60

lated to the user’s preference and knowledge of the problem:61

texture (Pacifici et al., 2009), Gabor (Li and Du, in press), mor-62

phological (Benediktsson et al., 2005; Dalla Mura et al., 2010)63

or bilateral filters (Schindler, 2012) are among those used in re-64

cent literature and we will use them as buiding blocks for our65

system. With this static and overcomplete set of filters (or fil-66

terbank), a classifier is generally trained.67

Even if successful, these studies still rely on the defini-68

tion a-priori of a filterbank. This filterbank depends on the69

knowledge of the analyst and on the specificities of the im-70

age at hand: a pre-defined filterbank may or may not contain71

the filters leading to the best performances. A filterbank con-72

structed a-priori is also often redundant: as shown in Fig. 1,73

the filter bank is generally applied to each band of the im-74

age, resulting into a ( f × B)-dimensional filter bank, where f75

is the number of filters and B the number of bands. Proceed-76

ing this way proved in the past to be unfeasible for high di-77

mensional datasets, such as hyperspectral data, for which the78

traditional way to deal with the problem is to perform a prin-79

cipal components analysis (PCA) and then extract the filters80

from the p << B principal components related to maximal vari-81

ance (Benediktsson et al., 2005). In that case, the final input82

space becomes ( f × p)-dimensional. A first problem is related83

during this dimension reduction phase, for which the choice of84

the feature extractor and of the number of features p remains85

arbitrary and may lead to discarding information that is dis-86

criminative, but not related to large variance. Therefore, a first87

objective of our method is to avoid this first data reduction step.88

But independently to the reduction phase, this goes against the89

desirable property of a model to be compact, i.e., to depend on90

as few input variables as possible. Therefore, in most works91

cited above an additional feature selection step is run to select92

the most effective subset for classification. This additional step93

can be a recursive selection (Tuia et al., 2009) or be based on94

kernel combination (Tuia et al., 2010), on the pruning of a neu-95

ral network (Pacifici et al., 2009) or on discriminative feature96

extraction (Benediktsson et al., 2005).97

Proceeding this way is suboptimal in two senses: first, one98

forces to restrict the number and parameters of filters to be used99

to a subset, whose appropriateness only depends on the prior100

knowledge of the user. In other words, the features that are101

relevant to solve the classification problem might not be in the102

original filterbank. Second, generating thousands of spatial fil-103

ters and use them all together in a classifier, that also might104

operate with a feature selection strategy, increases the compu-105

tational cost significantly, and might even deteriorate the classi-106

fication accuracy because of the curse of dimensionality. Note107

that, if the spatial filters considered bear continuous parameters108

(e.g. Gabor or angular features), there is theoretically an infinite109

number of feature candidates.110

This paper tackles these two problems simultaneously: in-111

stead of pre-computing a specific set of filters, we propose to112

interact with the current model and retrieve only new filters that113

will make it better. These candidate filters can be of any na-114

ture and with parameters unrestricted, thus allowing to explore115
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Figure 1: Traditional spatio-spectral classification with contextual filters: using
pre-defined filterbanks, applied on the first principal component.

the (potentially infinite) space of spatial filters. This leads to116

an integrated approach, where we incrementally build the set of117

filters from an empty subset and add only the filters improving118

class discrimination. This way of proceeding is of great inter-119

est for automatic HSI classification, since the filters are selected120

automatically among a very large set of possible ones, and are121

those that best fit the problem at hand.122

Two approaches explored similar concepts in the past: Graft-123

ing (Perkins et al., 2003) and Group Feature Learning (Rako-124

tomamonjy et al., 2013), which incrementally select the most125

promising feature among a batch of features extracted from the126

universe of all possible features admitted. Since this selection127

is based on a heuristic criterion ranking the features by their128

informativeness when added to the model, it may be seen as129

performing active learning (Crawford et al., 2013) in the space130

of possible features (in this case, the active learning oracle is re-131

placed by the optimality condition, for which only the features132

improving the current classifier are selected).133

In this paper, we propose a new Group Feature Learning134

model based on multiclass logistic regression (also known as135

multinomial regression). The use of a group-lasso regulariza-136

tion (Yuan and Lin, 2007) allows to jointly select the relevant137

features and also to derive efficient conditions for evaluating138

the discriminative power of a new feature. In Rakotomamonjy139

et al. (2013), authors propose to use group-lasso for multitask140

learning by allowing to use an additional sparse average classi-141

fier common to all tasks. Adapting their model in a multiclass142

classification setting leads to the use of the sole group-lasso143

regularization. Note that one could use a `1 support vector ma-144

chine as in Tuia et al. (2014) to select the relevant feature in a145

One-VS-All setting, but this approach is particularly computa-146

tionally intensive, as the incremental problem is solved for each147

class separately. This implies the generation of millions of fea-148

tures, that may be useful for more than one class at a time. To149

achieve an efficient multiclass strategy, we propose the follow-150

ing three original contributions:151
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Figure 2: Spatio-spectral classification with the proposed active set models. (a) With only the original HSI image as bands input (shallow model, AS-Bands); (b)
with the hierarchical feature extraction (deep model, ASH-bands).

1. We use here a multiclass logistic classifier (MLC) with152

a softmax loss. MLC allows to natively handle several153

classes without using the One-VS-All approach and has154

the advantage of providing probabilistic prediction scores155

that can more easily be used in structured models (such156

as Markov random fields).157

2. We employ a group lasso regularization, which allows158

to select features useful for many classes simultaneously,159

even if they do not show the highest score for a single160

class. This means sharing information among the classes,161

similarly to what would happen in a multitask setting (Leiva-162

Murillo et al., 2013). This model, called AS-Bands, is163

detailed in Fig. 2(a).164

3. We investigate the automatic selection of complex hi-165

erarchical spatial filters built as modifications of previ-166

ously selected filters. This leads to a tree- (or graph-)167

based feature extraction that can encode complex non-168

linear relationship for each class. Such a hierarchical169

re-processing of features has connections with deep neu-170

ral networks (LeCun et al., 1989, 1998), which have re-171

cently proven to be able to improve significantly the per-172

formance of existing classification methods in computer173

vision (Chatfield et al., 2014; Girshick et al., 2014). This174

model, called ASH-bands, is detailed in Fig. 2(b).175

We test the proposed method on two landcover classifica-176

tion tasks with hyperspectral images of agricultural areas and177

on one landuse classification example over an urban area ex-178

ploiting jointly hyperspectral and LiDAR images. In all cases,179

the proposed feature learning method solves the classification180

tasks with at least state of the art numerical performances and181

returns compact models including only features that are dis-182

criminative for more than one class. Among the two method183

proposed, the hierarchical feature learning tends to outperform184

the shallow feature extractor for traditional classification prob-185

lems. However, when confronted to shifting distributions be-186

tween train and test (i.e. a domain adaptation problem), it pro-187

vides slightly worse performances, probably due to the com-188

plexification of the selected features, that overfit the training189

examples.190

The remainder of this paper is as follows: Section 2 details191

the proposed method, as well as the multiclass feature selection192

using group-lasso. In Section 3 we present the datasets and the193

experimental setup. In Section 4 we present and discuss the194

experimental results. Section 5 concludes the paper.195

2. Multiclass active set feature discovery196

In this section, we first present the multiclass logistic clas-197

sification and then derive its optimality conditions, which are198

used in the active set algorithm1.199

2.1. Multiclass logistic classifier with group-lasso regulariza-200

tion201

Consider an image composed of pixels xi ∈ RB. A subset of202

lc pixels is labeled into one of C classes: {xi, yi}
lc
i=1, where yi are203

integer values ∈ {1, . . . ,C}. We consider a (possibly infinite)204

set of θ-parametrized functions φθ(·) mapping each pixel in the205

image into the feature space of the filter defined by θ. As in Tuia206

et al. (2014), we define as F the set of all possible finite subsets207

of features and ϕ as an element of F composed of d features208

ϕ = {φθ j }
d
j=1. We also define Φϕ(xi) as the stacked vector of209

all the values obained by applying the filters ϕ to pixel xi and210

Φϕ ∈ Rlc×d the matrix containing the d features in ϕ computed211

for all the lc labeled pixels. Note that in this work, we suppose212

that all the features have been normalized with each column in213

matrix Φϕ having a unit norm.214

In this paper we consider the classification problem as a
multiclass logistic regression problem with group-lasso regular-
ization. Learning such a classifier for a fixed amount of features

1A MATLAB toolbox can be downloaded at the address http://remi.

flamary.com/soft/soft-fl-rs-svm.html. It contains both the models
presented in this paper (AS-Bands, Section 2.2 and ASH-Bands, Section 2.3),
as well as the method of Tuia et al. (2014)
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ϕ corresponds to learning a weight matrix W ∈ Rd×C and the
bias vector b ∈ R1×C using the softmax loss. In the following,
we refer to wc as the weights corresponding to class c, which
corresponds to the c-th column of matrix W. The k-th line of
matrix W is denoted as Wk,·. The optimization problem for a
fixed feature set ϕ is defined as:

min
W,b

L(W,b) =

 1
lc

lc∑
i=1

H(yi, xi,W,b) + λΩ(W)

 (1)

where the first term corresponds to the soft-max loss with H(· · · )
defined as

H(· · · ) = log

 C∑
c=1

exp
(
(wc − wyi )

>Φϕ(xi) + (bc − byi )
)

and the second term is a group-lasso regularizer. In this paper,
we use the weighted `1`2 mixed norm :

Ω(W) =

d∑
j=1

γ j||W j,·||2 (2)

where the coefficients γ j > 0 correspond to the weights used215

for regularizing the jth feature. Typically one want all features216

to be regularized similarly by choosing γ j = 1, ∀ j. However,217

in the hierarchical feature extraction proposed in Section 2.3218

we will use different weights in order to limit over-fitting when219

using complex hierarchical features.220

This regularization term promotes group sparsity, due to its221

non differentiability at the null vector of each group. In this222

case we grouped the coefficients of W by lines, meaning that223

the regularization will promote joint feature selection for all224

classes. Note that this approach can be seen as multi-task learn-225

ing where the tasks corresponds to the classifier weights of each226

class (Obozinski et al., 2006; Rakotomamonjy et al., 2011). As227

a result, if a variable (filter) is active, it will be active for all228

classes. This is particularly interesting in in a multiclass set-229

ting, since a feature that helps in detecting a given class also230

helps in “not detecting” the others C − 1 classes: for this reason231

a selected feature should be active for all the classifiers.232

The algorithm proposed to solve both the learning problem
and feature selection is derived from the optimality conditions
of the optimization problem of Eq. (1). Since the problem
defined in Eq. (1) is non-differentiable, we compute the sub-
differential of its cost function:

∂WL(W,b) = Φ>ϕR + λ∂Ω(W) (3)

where the first term corresponds to the gradient of the softmax
data fitting and the second term is the sub-differential of the
weighted group lasso defined in Eq. (2). R is a lc × C matrix
that, for a given sample i ∈ {1, ., lc} and a class c ∈ {1, .,C},
equals:

Ri,c =
exp(Mi,c − Mi,yi ) − δ{yi−c}

∑C
k=1 exp(Mi,k − Mi,yi )

lc
∑C

k=1 exp(Mi,k − Mi,yi )
(4)

where M = ΦϕW + 1lc b and δ{yi−c} = 1 if c = yi and 0 other-
wise. In the following, we define G = Φ>ϕR as a d × C matrix

corresponding to the gradient of the data fitting term w.r.t W.
Note that this gradient can be computed efficiently with multi-
ple scalar product between the features Φϕ and the multiclass
residual R. The optimality conditions can be obtained sepa-
rately for each W j,·, i.e. for each line j of the W matrix. Ω(W)
consists in a weighted sum of non differentiable norm-based
regularization (Bach et al., 2011). The optimality condition for
the `2 norm consists in a constraint with its dual norm (namely
itself):

||G j,·||2 ≤ λγ j ∀ j ∈ ϕ (5)

which in turn breaks down to:{
||G j,·||2 = λγ j if W j,· , 0
||G j,·||2 ≤ λγ j if W j,· = 0 (6)

These optimality conditions show that the selection of one vari-233

able, i.e. one group, can be easily tested with the second con-234

dition of equation (6). This suggests the use of an active set235

algorithm. Indeed, if the norm of correlation of a feature with236

the residual matrix is below λγ j, it means that this feature is not237

useful for classification and its weight will be set to 0 for all the238

classes. On the contrary, if not, then the group can be defined239

as “active” and its weights have to be estimated.240

2.2. Proposed active set criterion (AS-bands)241

We want to learn jointly the best set of filters ϕ∗ ∈ F and
the corresponding MLC classifier. This is achieved by mini-
mizing Eq. (1) jointly on ϕ and W,b. As in Rakotomamonjy
et al. (2013), we can extend the optimality conditions in (6) to
all filters with zero weights that are not included in the current
active set ϕ:

||Gφθ ,·||2 ≤ λγφθ ∀φθ < ϕ (7)

Indeed, if this constraint holds for a given feature not in the242

current active set, then adding this feature to the optimization243

problem will lead to a row of zero weights W(d+1),· for this fea-244

ture. But this also means that if we find a feature that violates245

Eq. (7), its inclusion in ϕ will (after re-optimization) make the246

global MLC cost decrease and provide a feature with non-zero247

coefficients for all classes.248

The pseudocode of the proposed algorithm is given in Al-249

gorithm 1: we initialize the active set ϕ0 with the spectral bands250

and run a first MLC minimizing Eq. (1). Then we generate a251

random minibatch of candidate features, Φθ j , involving spatial252

filters with random types and parameters. We then assess the253

optimality conditions with (7): if the feature φ∗θ j
with maximal254

||Gθ j,·||2 is greater than λγ j + ε, it is selected and added to the255

current active set [φ∗θ j
∪ ϕ]. After one feature is added the MLC256

classifier is retrained and the process is iterated using the new257

active set.258

2.3. Hierarchical feature learning (ASH-bands)259

Algorithm 1 searches randomly in a possibly infinite di-260

mensional space corresponding to all the possible spatial filters261

computed on the input bands. But despite all their differences,262

the spatial filters proposed in the remote sensing community263
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Algorithm 1 Multiclass active set selection for MLC (AS-
Bands)
Inputs
- Bands to extract the filters from (B)
- Initial active set ϕ0 = B

1: repeat
2: Solve a MLC with current active set ϕ
3: Generate a minibatch {φθ j }

p
j=1 < ϕ

4: Compute G as in (7) ∀ j = 1 . . . p
5: Find feature φ∗θ j

maximizing ||Gθ j,·||2

6: if ||Gθ∗j ,·
||2 > λγi + ε then

7: ϕ = φ∗θ j
∪ ϕ

8: end if
9: until stopping criterion is met

(see, as an example, those in Tab. 4) can yield only a limited264

complexity and non-linearity. When the classes are not linearly265

separable, learning a linear classifier may require a large num-266

ber of these relatively simple features. In this section we inves-267

tigate the use of hierarchical feature generation that can yield268

much more complex data representation and therefore hope-269

fully decrease the number of features necessary for a good clas-270

sification.271

Hierarchical feature extraction is obtained by adding the al-272

ready selected features in the pool of images that can be used273

for filtering at the next feature generation step. Using a retained274

filter as a new possible input band leads to more complex fil-275

ters with higher nonlinearity. This is somehow related to the276

methods of deep learning, where deep features are generally277

obtained by aggregation of convolution operators. In our case,278

those operators are substituted by spatial filters with known279

properties, which adds up to our approach the appealing prop-280

erty of direct interpretability of the discovered features. In deep281

learning models, interpretation of the features learned is becom-282

ing possible, but at the price of series of deconvolutions (Zeiler283

and Fergus, 2014).284

Let h j ∈ N be the depth of a given feature φθ j , with 0 be-285

ing the depth of original features: this is the number of filtering286

steps the original bands has undergone to generate filter φθ j .287

For example, the band 5 has depth h5 = 0, while the filters that288

are issued from this band, for example a filter k issued from an289

opening computed on band 5, will have depth hk = 1. If the290

opening band is then re-filtered by a texture filter into a new291

filter l, its depth will be hl = 2. This leads to a much more com-292

plex feature extraction that builds upon an hierarchical, tree-293

shaped, suite of filters. The depth of the feature in the feature294

generation tree is of importance in our case since it is a good295

proxy of the complexity of the features. In order to avoid over-296

fitting, we propose to regularize the features using their depth297

in the hierarchy. As a criterion, we use a regularization weight298

of the form γ j = γ
h j

0 , with γ0 ≥ 1 being a term penalizing depth299

in the graph.300

The proposed hierarchical feature learning is summarized301

in Algorithm 2.302

Algorithm 2 Multiclass active set selection for MLC, hierar-
chical deep setting (ASH-Bands)
Inputs
- Bands to extract the filters from (B) with depth h = 1
- Initial active set ϕ0 = B

1: repeat
2: Solve a MLC with current active set ϕ
3: Generate a minibatch {φθ j , h j}

p
j=1 < ϕ using B as input for

filters
4: Compute depth-dependent regularizations as

γ j = γ
h j

0
5: Compute G as in (7) ∀ j = [1 . . . p]
6: Compute optimality conditions violations as

Λ j = ||Gθ j,·||2 − λγ j − ε, ∀ j = [1 . . . p]
7: Find feature φ∗θ j

maximizing Λ j

8: if Λθ∗j
> 0 then

9: ϕ = φ∗θ j
∪ ϕ

10: B = φ∗θ j
∪ B

11: end if
12: until stopping criterion is met

3. Data and setup of experiments303

In this section, we present the three datasets used, as well304

as the setup of the four experiments considered.305

3.1. Datasets306

We studied the proposed active set method on four hyper-307

spectral classification tasks, involving two crops identification308

datasets and one urban land use dataset (considered in two ways):309

a) Indian Pines 1992 (AVIRIS spectrometer, HS): the first310

dataset is a 20-m resolution image taken over the Indian311

Pines (IN) test site in June 1992 (see Fig. 3). The im-312

age is 145 × 145 pixels and contains 220 spectral bands.313

A ground survey of 10366 pixels, distributed in 16 crop314

types classes, is available (see Table 1). This dataset is a315

classical benchmark to validate model accuracy. Its chal-316

lenge resides in the strong mixture of the classes’ signa-317

tures, since the image has been acquired shortly after the318

crops were planted. As a consequence, all signatures are319

contaminated by soil signature, making thus a spectral-320

spatial processing compulsory to solve the classification321

problem. As preprocessing, 20 noisy bands covering the322

region of water absorption have been removed.323

b) Indian Pines 2010 (ProSpecTIR spectrometer, VHR HS):324

the second dataset considers multiple flightlines acquired325

near Purdue University, Indiana, on May 24-25, 2010 by326

the ProSpecTIR system (Fig. 4). The image subset ana-327

lyzed in this study contains 445×750 pixels at 2m spatial328

resolution, with 360 spectral bands of 5nm width. Six-329

teen land cover classes were identified by field surveys,330

which included fields of different crop residue, vegetated331
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Table 1: Classes and samples (nc
l ) of the ground truth of the Indian Pines 1992

dataset (cf. Fig. 3).

Class nc
l Class nc

l

Alfalfa 54 Oats 20
Corn-notill 1434 Soybeans-notill 968
Corn-min 834 Soybeans-min 2468
Corn 234 Soybeans-clean 614
Grass/Pasture 497 Wheat 212
Grass/Trees 747 Woods 1294
Grass/Past.-mowed 26 Towers 95
Hay-windrowed 489 Other 380

Total 10366

(a) (b)

Figure 3: Indian Pines 1992 AVIRIS data.(a) False color composition and (b)
ground truth (for color legend, see Tab. 1). Unlabeled samples are in black.

(a) (b)

Figure 4: Indian Pines 2010 SpecTIR data.(a) RGB composition and (b) ground
truth (for color legend, see Tab. 2). Unlabeled samples are in black.

areas, and man-made structures. Many classes have reg-332

ular geometry associated with fields, while others are re-333

lated with roads and isolated man-made structures. Ta-334

ble 2 shows class labels and number of training samples335

per class.336

c) Houston 2013 (CASI spectrometer VHR HS + LiDAR337

data). The third dataset depicts an urban area nearby the338

Table 2: Classes and samples (nc
l ) of the ground truth of the Indian Pines 2010

dataset (cf. Fig. 4).

Class nc
l Class nc

l
Corn-high 3387 Hay 50045
Corn-mid 1740 Grass/Pasture 5544
Corn-low 356 Cover crop 1 2746
Soy-bean-high 1365 Cover crop 2 2164
Soy-bean-mid 37865 Woodlands 48559
Soy-bean-low 29210 Highway 4863
Residues 5795 Local road 502
Wheat 3387 Buildings 546

Total 198074

campus of the University of Houston (see Fig. 5). The339

dataset was proposed as the challenge of the IEEE IADF340

Data Fusion Contest 2013 (Pacifici et al., 2013). The341

hyperspectral image was acquired by the CASI sensor342

(144 spectral bands at 2.5m resolution). An aerial LiDAR343

scan was also available: a digital surface model (DSM)344

at the same resolution as the hyperspectral image was ex-345

tracted, coregistered and used as an additional band in346

the input space. Fifteen urban land-use classes are to be347

classified (Tab. 3). Two preprocessing steps have been348

performed: 1) histogram matching has been applied to349

the large shadowed area in the right part of the image350

(cf. Fig 5), in order to reduce domain adaptation prob-351

lems (Camps-Valls et al., 2014), which are not the topic352

of this study: the shadowed area has been extracted by353

segmenting a near-infrared band and the matching with354

the rest of the image has been applied; 2) A height trend355

has been removed from the DSM, by applying a linear356

detrending of 3m from the West along the x-axis. Two357

classification experiments were performed with this data:358

– Houston 2013A: we consider the left part of the im-359

age, which is unaffected by the cloud shadow. This360

corresponds to an image of size (349×1100) pixels.361

The same subsampling was applied to the LiDAR362

DSM. The whole ground truth within the red box363

in Figure 5c was used to extract the train and test364

samples.365

– Houston 2013B: the whole image was considered.366

Separate training and test set (in green and red in367

Fig. 5d, respectively), are considered instead of a368

random extraction. In this case, even though the369

projected shadow has been partially corrected by370

the local histogram matching, some spectral drift371

remains between the test samples (some of which372

are under the shadow) and the training ones (which373

are only in the illuminated areas). This was the set-374

ting of the IEEE IADF Data Fusion Contest 2013375

and aimed at classification under dataset shift (Camps-376

Valls et al., 2014). This problem is much more377

challenging than Houston 2013A and we use it as378

a benchmark against the state of the art, i.e. the379

results of the contest. However, remind that our380
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Table 3: Classes and samples (nc
l ) of the ground truth of the Houston 2013

dataset (cf. Fig. 5).

Class nc
l Class nc

l
Healthy grass 1231 Road 1219
Stressed grass 1196 Highway 1224
Synthetic grass 697 Railway 1162
Trees 1239 Parking Lot 1 1233
Soil 1152 Parking Lot 2 458
Water 325 Tennis Court 428
Residential 1260 Running Track 660
Commercial 1219 Total 14703

method is not designed to solve domain adaptation381

problems explicitly.382

3.2. Setup of experiments383

For every dataset, all the features have been mean-centered384

and normalized to unit norm. This normalization is mandatory385

due to the optimality conditions, which is based on a scalar386

product (thus depending linearly on the norm of the feature).387

In all the experiments, we use the multiclass logistic classi-388

fier (MLC) with `1`2 norm implemented in the SPAMS pack-389

age2. We start by training a model with all available bands (plus390

the DSM in the Houston2013A/B case) and use its result as the391

first active set. Therefore, we do not reduce the dimensionality392

of the data prior to the feature generation. Regarding the active393

set itself, we used the following parameters:394

- The stopping criterion is a number of iterations: 150 in395

the Pines 1992, 2010 and Houston 2013 B and 100 in the396

Houston 2013A case (the difference explained by faster397

convergence in the last dataset).398

- A minibatch is composed of filters extracted from 20 bands,399

randomly selected. In the Houston 2013A/B case, the400

DSM is added to each minibatch.401

- The possible filters are listed in Tab. 4. Structuring ele-402

ments (S E) can be disks, diamonds, squares or lines. If403

a linear structuring elements is selected, an additional ori-404

entation parameter is also generated (α ∈ [−π/2, . . . π/2]).405

These filters are among those generally used in remote406

sensing hyperspectral classification literature (see Fauvel407

et al. (2013)), but any type of spatial or frequency filter,408

descriptor or convolution can be used in the process.409

- A single minibatch can be used twice (i.e. once a first410

filter has been selected, it is removed and Eq. (7) is re-411

evaluated on the remaining filters after re-optimization412

of the MLC classifier).413

In each experiment, we start by selecting an equal number414

of labeled pixels per class lc: we extracted 30 random pixels415

per class in the Indian Pines 1992 case, 60 in the Indian Pines416

2http://spams-devel.gforge.inria.fr/

Table 4: Filters considered in the experiments (Bi, B j: input bands indices (i, j ∈
[1, . . . b]); s: size of moving window, S E : type of structuring element; α:
angle).

Filter θ

Morphological
- Opening / closing Bi, s, α
- Top-hat opening / closing Bi, s, S E, α
- Opening / closing by re-

construction
Bi, s, S E, α

- Opening / closing by re-
construction top-hat

Bi, s, S E, α

Texture
- Average Bi, s
- Entropy Bi, s
- Standard deviation Bi, s
- Range Bi, s
Attribute
- Area Bi, Area threshold
- Bounding box diagonal Bi, Diagonal thresh-

old
Band combinations
- Simple ratio Bi/B j

- Normalized ratio (Bi − B j)/(Bi + B j)
- Sum Bi + B j

- Product Bi ∗ B j

2010 and in the Houston 2013A/B case3. The difference in the417

amount of labeled pixels per class is related to i) the amount of418

labeled pixels available per task and ii) the complexity of the419

problem at hand. As test set, we considered all remaining la-420

beled pixels, but disregard those in the spatial vicinity of the421

pixels used for training. In the Indian Pines 1992 case, we con-422

sider all labeled pixels out of a 3×3 window around the training423

pixels, in the Indian Pines 2010 case a 7 × 7 window and in the424

Houston 2013A case a 5 × 5 window. The difference is basi-425

cally related to the images spatial resolution. In the Houston426

2013B case, a spatially disjoint test set was provided in a sep-427

arate file and was therefore used for testing purposes without428

spatial windowing.429

When considering the hierarchical model ASH-bands, ev-430

ery feature that is added to the active set is also added to the431

input bands B (see line 10 of Algorithm 2). In order to penalize432

overcomplex deep features, we considered γ = 1.1h, where h is433

the depth of the feature defined in Section 2.3. When adding434

filters issued from two inputs (as, for example, band ratios)435

h = max(hBi , hB j ) + 1.436

Each experiment was repeated 5 times, by random sampling437

of the initial training set (the test set also varies in the Indian438

Pines 1992/2010 and Houston 2013A datasets, since it depends439

on the specific location of the training samples). Average per-440

formances, along with their standard deviations, are reported.441

3When the number of pixels available was smaller than lc, we extracted 80%
for training and left the rest for testing
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(a) CASI image after local histogram matching

(a) Detrended LiDAR DSM [m]

 

 

10 20 30 40 50 60
(c) Ground truth

(d) Training samples (green) vs test samples (red)

Figure 5: Houston 2013.(a) RGB composition of the CASI data, (b) DSM issued from the LiDAR point cloud and (c) train and test ground truths. (for color legend,
see Tab. 2). The area in the red box of the (c) panel has been used in the Houston2013A experiment, while the whole area has been used in the Houston2013B
experiment, with (d) a training/test separation shown in the last panel (green: training, red: test). Unlabeled samples are in black.

4. Results and discussion442

In this section, we present and discuss both the numerical443

results obtained and the feature selected in the AS-Bands (shal-444

low) and ASH-Bands (deep) algorithms.445

4.1. Performances along the iterations446

AS-Bands: Numerical results for the three datasets in the AS-447

Bands (shallow) setting are provided in Fig. 6: the left column448

illustrates the evolution of the Kappa statistic (Foody, 2004)449

along the iterations and for three levels of `1`2 regularization450

λ: the higher the λ parameter, the sparser the model (and the451

harder to violate the optimality conditions). The right column452

of Fig. 6 shows the evolution of the number of features in the453

active set.454

For all the datasets, the iterative feature learning corresponds455

to a continuous, almost monotonic, increase of the performance.456

This is related to the optimality conditions of Eq. (1): each time457

the model adds one filter φθ∗j to ϕ, the MLC cost function de-458

creases while the classifier performances raises. Overfitting is459

prevented by the group-lasso regularization: on the one hand460

this regularizer promotes sparsity through the `1 norm, while461

on the other hand it limits the magnitude of the weight coef-462

ficients W and promotes smoothness of the decision function463

by the use of the `2 norm. Note that for the Houston 2013B464

dataset, the final classification performance is at the same level465

as the one of the winners of the contest, thus showing the ability466

of our approach to compete with state of the art methods.467

For each case study, the model with the lowest sparsity (λ =468

0.0001) shows the initial best performance (it utilizes more fea-469
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Figure 6: Left: numerical performance (Kappa statistic) of AS-Bands for differ-
ent degrees of regularization λ and filtering the original bands. Right: number
of active features during the iterations.

tures, as shown in the right column) and then keeps providing470

the best performances. However, the model with λ = 0.001 has471

an initial sparser solution and shows a steeper increase of the472

curve in the first iterations. When both models provide similar473

performance, they are actually using the same number of fea-474

tures in all cases. The sparsest model (λ = 0.01, black line)475

shows the worst results in two out of the three datasets and476

in general is related to less features selected: our interpreta-477

tion is that the regularization (λ = 0.01) is too strong, leading478

to a model that discards relevant features and is too biased for479

a good prediction (even when more features are added). As a480

consequence, the learning rate may be steeper than for the other481

models, but the model does not converge to an optimal solution.482

ASH-Bands: The performance of ASH-Bands are compared483

to those of AS-Bands in Fig. 7. The case of λ = 0.001 is484

shown (the blue curves of Fig. 7 correspond to the blue curves485

of Fig. 6). From this comparison, two tendencies can be no-486

ticed: on the one hand, ASH-Bands shows better learning rates487

when the classification problem is fixed (i.e., no spectral shifts488
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Figure 7: Results of the ASH-Bands method. Left: numerical performance
(Kappa statistic) for λ = 0.001. Right: number of active features during the
iterations.

are observed between the training and test data: Indian Pines489

1992, Indian Pines 2010 and Houston 2013A): by constructing490

more complex features, ASH-Bands can solve the classification491

problem in a more accurate way and without increasing sub-492

stantially the size of the model (both AS-Bands and ASH-Bands493

show similar number of active features during the process). On494

the other hand, in the Houston 2013B case ASH-Bands is out-495

performed by the shallow model AS-Bands by 0.03 in κ. The496

variance of the single runs is also significantly higher (see, the497

ASH-Bands row for this dataset in Tab. 5). We interpret this498

slower learning rate by an overfitting of the training data in the499

presence of dataset shift: since the test distribution is differ-500

ent that the one observed in training (by the projected cloud501

in the hyperspectral data), the spatial filters learned seem to be-502

come too specialized in explaining the training data and are then503

less accurate in the case of the (shifted) test distribution. Such504

behavior has been documented before in deep learning litera-505

ture, especially when little training examples are used to learn506

the features (Bengio, 2012). Note that the classification perfor-507
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Table 5: Results by MLC classifiers trained with the spectral bands (ω), with spatial features extracted from the three first principal components, PCs (s, including
morphological and attribute filters) or with the proposed active set (AS-). In the Houston 2013A/B cases, features extracted from the DSM have been added to the
input space of the baselines.

Method Ω Pines 1992 Pines 2010 Houston 2013A Houston 2013B
No spatial info MLC-ω `1 0.42 ± 0.02 0.58 ± 0.01 0.90 ± 0.02 0.61 ± 0.01
(baseline) # features 60 ± 3 107 ± 9 135 ± 6 54 ± 3

MLC-ω `2 0.59 ± 0.03 0.90 ± 0.01 0.92 ± 0.02 0.80 ± 0.01
# features 200 360 145 145

Spatial info AS-bands `1`2 0.83 ± 0.02 0.98 ± 0.01 0.98 ± 0.01 0.93 ± 0.01
from bands # features 96 ± 5 68 ± 5 46 ± 4 71 ± 3
(proposed) ASH-bands `1`2 0.85 ± 0.03 0.99 ± 0.001 0.99 ± 0.01 0.90 ± 0.03

# features 86 ± 6 56 ± 3 52 ± 5 75 ± 2
Spatial info from MLC-s `1 0.85 ± 0.02 0.84 ± 0.01 0.97 ± 0.01 0.76 ± 0.01
three top PCs # features 85 ± 7 64.2 ± 3 122 ± 12 82 ± 5
(baseline) MLC-s `2 0.85 ± 0.01 0.96 ± 0.01 0.97 ± 0.01 0.87 ± 0.01

# features 217 228 269 273
Spatial info from AS-pcs `1`2 0.89 ± 0.03 0.99 ± 0.01 0.98 ± 0.01 0.92 ± 0.01
all PCs # features 82 ± 4 83 ± 8 57 ± 4 64 ± 4
(proposed) ASH-pcs `1`2 0.88 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.92 ± 0.02

# features 102 ± 7 68 ± 2 59 ± 3 74 ± 6

mance is still κ = 0.9 on average.508

4.2. Numerical performances at the end of the feature learning509

Comparisons with competing strategies where the MLC clas-510

sifier is learned on pre-defined feature sets are reported in Ta-511

ble 5. First, we discuss the performance of our active set ap-512

proach when learning the filters applied on the original bands513

(AS-Bands and ASH-Bands): in the Indian Pines 1992 case, the514

AS- methods obtain average Kappas of 0.83 using 96 features515

and 0.85 using 86 features, respectively. This is a good result516

if compared to the upper bound of 0.86 obtained by a classifier517

using the complete set of 14‘627 morphological and attribute518

features extracted from each spectral band (result not reported519

in the table)4. On both the Indian Pines 2010 and Houston520

2013A datasets, the AS-Bandsmethod provided average Kappa521

of 0.98. ASH-Bands provided comparable results, on the aver-522

age 0.01 more accurate, but still in the standard deviation range523

of the shallow model. The exception is the last dataset, Houston524

2013B, for which the shallow model provides a Kappa of 0.93,525

while the hierarchical model is 0.03 less accurate, as discussed526

in the previous section.527

We compared these results to those obtained by classifiers528

trained on fixed raw bands (MLC−ω) or on sets of morpholog-529

ical and attribute filters extracted form the three first principal530

components (MLC-s). We followed the generally admitted hy-531

pothesis that the first(s) principal component(s) contain most of532

the relevant information in hyperspectral images (Benediktsson533

et al., 2005). On all the datasets, the proposed AS-bandsmethod534

performs remarkably well compared with models using only the535

spectral information (MLC-ω) and compares at worse equiv-536

alently (and significantly better in the Indian Pines 2010 and537

4Only squared structuring elements were used and the filter size range was
pre-defined by expert knowledge.

Houston 2013B cases) with models using `2 classifiers (thus538

without sparsity) and three to four times more features includ-539

ing spatial information (MLC-s). The good performance of the540

`2 method on the Indian Pines 1992 dataset (Kappa observed of541

0.85) is probably due to the application of the PCA transform542

prior to classification, which, besides allowing to decrease the543

dimensionality of the data, also decorrelates the signals and iso-544

lates the bare soil reflectance, which is present for almost all545

classes (cf. the data description in Section 3). For this reason,546

we also investigated a variant of our approach where, instead of547

working on the original spectral space, we used all the princi-548

pal components extracted from the original data (AS-PCs and549

ASH-PCs). In the Indian Pines 1992 case, the increase in per-550

formance is striking, with a final Kappa of 0.89. For the three551

other datasets, the results remain in the same range as for the552

AS-bands results.553

4.3. Multiclass selection554

For the four images, the active set models end up with a555

maximum of 50 − 100 features, shared by all classes. This556

model is very compact, since it corresponds to only 30 − 50%557

of the initial dimensionality of the spectra. Due to the group-558

lasso regularization employed, the features selected are active559

for several classes simultaneously, as shown in Fig. 8, which il-560

lustrates the W> matrix for the Indian Pines 2010 and Houston561

2013B experiments. The matrices correspond to those at the562

end of the feature learning, for one specific run of AS-Bands563

with λ = 0.0001. In both plots, each column corresponds to564

a feature selected by the proposed algorithm and each row to565

one class; the color corresponds to the strength of the weight566

(positive or negative). One can appreciate that the selected567

features (columns) have large coefficients – corresponding to568

strong green or brown tones in the figures – for more than one569

class (the rows).570
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Figure 8: Final weight matrix for a run of the Indian Pines 2010 (top) and
Houston 2013B (bottom) experiments.
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Figure 10: Analysis of the depth of the features in the final active set of one run
of the ASH-Bands and λ = 0.001.

4.4. Features visualization in AS-Bands571

Figure 9 illustrates some of the features selected by AS-572

Bands in the Houston 2013B case. Each column corresponds573

to a different zoom in the area and highlights a specific class.574

We visualized the features of the same run as the bottom row575

of Fig. 8 and visualized the six features with highest ||W j,·||2,576

corresponding to those active for most classes with the highest577

squared weights. By analysis of the features learned, one can578

appreciate that they clearly are discriminative for the specific579

classification problem: this shows that, by decreasing the over-580

all loss, adding these features to the active set really improves581

class discrimination.582

4.5. Role of the features issued from the hierarchical model583

ASH-Bands584

Finally, we study in detail the hierarchical features that have585

been discovered by our method. First, we discuss the distribu-586

tion of the depth of features in the active set in the ASH-Bands587

model. Top row of Fig. 10 shows the distribution of the weights588

of the features in both the inputs bank B and in the active set ϕ589

at the end of the feature learning. Regarding the final bank B,590

which contains 489 features in the Indian Pines 2010 and 244591

in the Houston 2013A case, most of the features are of depth592

0 (the original features), 1 and 2. But if we consider the final593

active set ϕ, of size 67 (Indian Pines 2010) and 56 (Houston594

2013A), we see that the median depth is of 2 in both cases:595

this means that no features of depth 0 (no original features) are596

kept in the final active set. The only exception is provided by597

the LiDAR data in the Houston 2013A dataset, which is kept598

in the final active set. These observations are confirmed by the599

distributions illustrated in the bottom row of Fig. 10: the dis-600

tribution of depths in the final bank B (blue dashed line) has601

60-70% of features of depth 0, while the distribution of the fea-602

tures selected during the iterations (green line with circle mark-603

ers) shows an average more towards a depth of 2. The features604

in the final active set ϕ (red line) show a distribution even more605

skewed towards higher depth levels, showing that features of606

low depth (typically depths of 1) are first added to ϕ and then607

replaced by features with higher depth issued from them.608

To confirm this hypothesis even further, we study some of609

the features in the final active set, illustrated in Fig. 11: when610

considering features of higher depth, we can appreciate the strong611

nonlinearity induced by the hierarchical feature construction, as612

well as the fact that intermediary features (the original band 105613

or the features of depth 2) are discarded from the final model,614

meaning that they became uninformative during the process,615

but were used as basis to generate other features that were rel-616

evant. Another interesting behavior is the bifurcation observed617

in these features: the entropy filter on band 105 was re-filtered618

in two different ways, and ended up providing two very com-619

plementary, but informative filters to solve the problem.620

5. Conclusions621

In this paper, we proposed an active set algorithm to learn622

relevant features for spatio-spectral hyperspectral image classi-623

fication. Confronted to a set of filters randomly generated from624

the bands of the hyperspectral image, the algorithm selects only625

those that will improve the classifier if added in the current in-626

put space. To do so, we exploit the optimality conditions of the627

optimization problem with a regularization promoting group-628

sparsity. We also propose a hierarchical extension, where ac-629

tive features (firstly bands and then also previously selected630

filters) are used as inputs, thus allowing for the generation of631

more complex, nonlinear filters. Analysis of four hyperspec-632

tral classification scenarios confirmed the efficiency (we use a633

fast and linear classifier) and effectiveness of the approach. The634

method is fully automatic, can include the user favorite types635

of spatial or frequency filters and can accommodate multiple636

co-registered data modalities.637

In the future, we would like to extend the hierarchical algo-638

rithm to situations, where a datasets shift has occurred between639

the training and testing distribution: we observed that the pro-640

posed hierarchical algorithm yields lower performances on data641

with spectral distortion between training and test data, as in the642

Houston 2013B dataset. Moreover, connections to deep neural643
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Class Soil Tennis c. Run track Parking 2 Residential Str. grass Road Water

RGB

GT

Classification
(AS-bands)

Feature: 31
Entropy, 15 × 15
Band 145 (Lidar)
Active in 11 classes

Feature: 11
Attribute area
Band 145, 7010 pix.
Active in 11 classes

Feature: 12
Attribute area
Band 68, 2010 pix.
Active in 12 classes

Feature: 3
Closing, diamond
Band 110, 7 × 7
Active in 11 classes

Feature: 46
Closing rec. top hat
Band 106, 15 × 15
Active in 5 classes

Figure 9: Visualization of the features with highest ||W j,· ||2 for one run of the Houston 2013B results (cf. bottom matrix of Fig. 8). First row: RGB subsets; second
row: ground truth; third row: output of the classification with the proposed approach; fourth row to end: visualization of the six features with highest squared
weights.

nets can be better formalized and lead to more principled way644

of exploring and choosing the features.645
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