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Introduction

Hyperspectral remote sensing allows to obtain a fine description of the materials observed by the sensor: with arrays of sensors focusing on 5-10 nm sections of the electromagnetic spectrum, hyperspectral images (HSI) return a complete description of the response of the surfaces, generally in the visible and infrared range. The use of such data, generally acquired by sensors onboard satellites or aircrafts, allows to monitor the processes occurring at the surface in a non-intrusive way, both at the local and global scale [START_REF] Lillesand | Remote Sensing and Image Interpretation[END_REF][START_REF] Richards | Remote Sensing Digital Image Analysis: An Introduction, 4th Edition[END_REF]. The reduced revisit time of satellites, in conjunction with the potential for quick deployment of aerial and unmanned systems, makes the usage of hyperspectral systems quite appealing. As a consequence, hyperspectral data is becoming more and more prominent for researchers and public bodies.

Even if the technology is at hand and images can be acquired by different platforms in a very efficient way, HSI alone are of little use for end-users and decision makers: in order to be usable, remote sensing pixel information must be processed and converted into maps representing a particular facet of the processes occurring at the surface. Among the different products traditionally available, land cover maps issued from image classification are the most common (and probably also the most used). In this paper, we refer to land cover/use classification as the process of attributing a land cover (respectively land use) class to every pixel in the image. These maps can then be used fication. Methods proposed in remote sensing image classification tend to pre-compute a large quantity of spatial filters related to the user's preference and knowledge of the problem: texture [START_REF] Pacifici | A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification[END_REF], Gabor (Li and Du, in press), morphological [START_REF] Benediktsson | Classification 663 of hyperspectral data from urban areas based on extended morphological 664 profiles[END_REF][START_REF] Dalla Mura | Morphological attribute profiles for the analysis of very high resolution images[END_REF] or bilateral filters [START_REF] Schindler | An overview and comparison of smooth labeling methods for land-cover classification[END_REF] are among those used in recent literature and we will use them as buiding blocks for our system. With this static and overcomplete set of filters (or filterbank), a classifier is generally trained.

Even if successful, these studies still rely on the definition a-priori of a filterbank. This filterbank depends on the knowledge of the analyst and on the specificities of the image at hand: a pre-defined filterbank may or may not contain the filters leading to the best performances. A filterbank constructed a-priori is also often redundant: as shown in Fig. 1, the filter bank is generally applied to each band of the image, resulting into a ( f × B)-dimensional filter bank, where f is the number of filters and B the number of bands. Proceeding this way proved in the past to be unfeasible for high dimensional datasets, such as hyperspectral data, for which the traditional way to deal with the problem is to perform a principal components analysis (PCA) and then extract the filters from the p << B principal components related to maximal variance [START_REF] Benediktsson | Classification 663 of hyperspectral data from urban areas based on extended morphological 664 profiles[END_REF]. In that case, the final input space becomes ( f × p)-dimensional. A first problem is related during this dimension reduction phase, for which the choice of the feature extractor and of the number of features p remains arbitrary and may lead to discarding information that is discriminative, but not related to large variance. Therefore, a first objective of our method is to avoid this first data reduction step.

But independently to the reduction phase, this goes against the desirable property of a model to be compact, i.e., to depend on as few input variables as possible. Therefore, in most works cited above an additional feature selection step is run to select the most effective subset for classification. This additional step can be a recursive selection (Tuia et al., 2009) or be based on kernel combination (Tuia et al., 2010), on the pruning of a neural network [START_REF] Pacifici | A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification[END_REF] or on discriminative feature extraction [START_REF] Benediktsson | Classification 663 of hyperspectral data from urban areas based on extended morphological 664 profiles[END_REF].

Proceeding this way is suboptimal in two senses: first, one forces to restrict the number and parameters of filters to be used to a subset, whose appropriateness only depends on the prior knowledge of the user. In other words, the features that are relevant to solve the classification problem might not be in the original filterbank. Second, generating thousands of spatial filters and use them all together in a classifier, that also might operate with a feature selection strategy, increases the computational cost significantly, and might even deteriorate the classification accuracy because of the curse of dimensionality. Note that, if the spatial filters considered bear continuous parameters (e.g. Gabor or angular features), there is theoretically an infinite number of feature candidates. This paper tackles these two problems simultaneously: instead of pre-computing a specific set of filters, we propose to interact with the current model and retrieve only new filters that will make it better. These candidate filters can be of any nature and with parameters unrestricted, thus allowing to explore 1. We use here a multiclass logistic classifier (MLC) with a softmax loss. MLC allows to natively handle several classes without using the One-VS-All approach and has the advantage of providing probabilistic prediction scores that can more easily be used in structured models (such as Markov random fields).

2. We employ a group lasso regularization, which allows to select features useful for many classes simultaneously, even if they do not show the highest score for a single class. This means sharing information among the classes,

similarly to what would happen in a multitask setting [START_REF] Leiva-Murillo | Multitask remote sensing data classification[END_REF]. This model, called AS-Bands, is detailed in Fig. 2(a).

3. We investigate the automatic selection of complex hierarchical spatial filters built as modifications of previously selected filters. This leads to a tree-(or graph-) based feature extraction that can encode complex nonlinear relationship for each class. Such a hierarchical re-processing of features has connections with deep neural networks [START_REF] Lecun | Backpropagation applied to handwritten zip code recognition[END_REF][START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF], which have recently proven to be able to improve significantly the performance of existing classification methods in computer vision [START_REF] Chatfield | Return of the devil in the details: Delving deep into convolutional nets[END_REF][START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF]. This model, called ASH-bands, is detailed in Fig. 2(b).

We test the proposed method on two landcover classification tasks with hyperspectral images of agricultural areas and on one landuse classification example over an urban area exploiting jointly hyperspectral and LiDAR images. In all cases, the proposed feature learning method solves the classification tasks with at least state of the art numerical performances and returns compact models including only features that are discriminative for more than one class. Among the two method proposed, the hierarchical feature learning tends to outperform the shallow feature extractor for traditional classification problems. However, when confronted to shifting distributions be- 
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In this paper we consider the classification problem as a multiclass logistic regression problem with group-lasso regularization. Learning such a classifier for a fixed amount of features ϕ corresponds to learning a weight matrix W ∈ R d×C and the bias vector b ∈ R 1×C using the softmax loss. In the following, we refer to w c as the weights corresponding to class c, which corresponds to the c-th column of matrix W. The k-th line of matrix W is denoted as W k,• . The optimization problem for a fixed feature set ϕ is defined as:

min W,b L(W, b) =        1 l c lc i=1 H(y i , x i , W, b) + λΩ(W)        (1)
where the first term corresponds to the soft-max loss with H(• • • ) defined as

H(• • • ) = log        C c=1 exp (w c -w y i ) Φ ϕ (x i ) + (b c -b y i )       
and the second term is a group-lasso regularizer. In this paper, we use the weighted 1 2 mixed norm :

Ω(W) = d j=1 γ j ||W j,• || 2 (2)
where the coefficients γ j > 0 correspond to the weights used classes. Note that this approach can be seen as multi-task learn-

225

ing where the tasks corresponds to the classifier weights of each 226 class [START_REF] Obozinski | Multi-task feature selection[END_REF][START_REF] Rakotomamonjy | pq penalty for sparse linear and sparse multiple kernel multitask learning[END_REF]. As The algorithm proposed to solve both the learning problem and feature selection is derived from the optimality conditions of the optimization problem of Eq. ( 1). Since the problem defined in Eq. ( 1) is non-differentiable, we compute the subdifferential of its cost function:

∂ W L(W, b) = Φ ϕ R + λ∂Ω(W) (3) 
where the first term corresponds to the gradient of the softmax data fitting and the second term is the sub-differential of the weighted group lasso defined in Eq. ( 2). R is a l c × C matrix that, for a given sample i ∈ {1, ., l c } and a class c ∈ {1, ., C}, equals:

R i,c = exp(M i,c -M i,y i ) -δ {y i -c} C k=1 exp(M i,k -M i,y i ) l c C k=1 exp(M i,k -M i,y i ) (4)
where M = Φ ϕ W + 1 l c b and δ {y i -c} = 1 if c = y i and 0 otherwise. In the following, we define G = Φ ϕ R as a d × C matrix corresponding to the gradient of the data fitting term w.r.t W. Note that this gradient can be computed efficiently with multiple scalar product between the features Φ ϕ and the multiclass residual R. The optimality conditions can be obtained separately for each W j,• , i.e. for each line j of the W matrix. Ω(W) consists in a weighted sum of non differentiable norm-based regularization [START_REF] Bach | Convex optimization 660 with sparsity-inducing norms[END_REF]. The optimality condition for the 2 norm consists in a constraint with its dual norm (namely itself):

||G j,• || 2 ≤ λγ j ∀ j ∈ ϕ (5)
which in turn breaks down to:

||G j,• || 2 = λγ j if W j,• 0 ||G j,• || 2 ≤ λγ j if W j,• = 0 (6)
These optimality conditions show that the selection of one vari-233 able, i.e. one group, can be easily tested with the second con-234 dition of equation ( 6). This suggests the use of an active set 235 algorithm. Indeed, if the norm of correlation of a feature with 236 the residual matrix is below λγ j , it means that this feature is not 237 useful for classification and its weight will be set to 0 for all the 238 classes. On the contrary, if not, then the group can be defined 239 as "active" and its weights have to be estimated. 240

Proposed active set criterion (AS-bands)
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We want to learn jointly the best set of filters ϕ * ∈ F and the corresponding MLC classifier. This is achieved by minimizing Eq. ( 1) jointly on ϕ and W, b. As in [START_REF] Rakotomamonjy | Learning with infinitely many features[END_REF], we can extend the optimality conditions in ( 6) to all filters with zero weights that are not included in the current active set ϕ: Compute G as in (7) ∀ j = 1 . . .

||G φ θ ,• || 2 ≤ λγ φ θ ∀φ θ ϕ ( 
p 5: Find feature φ * θ j maximizing ||G θ j ,• || 2 6: if ||G θ * j ,• || 2 > λγ i + then 7: ϕ = φ * θ j ∪ ϕ 8:
end if 9: until stopping criterion is met (see, as an example, those in Tab. 4) can yield only a limited complexity and non-linearity. When the classes are not linearly separable, learning a linear classifier may require a large number of these relatively simple features. In this section we investigate the use of hierarchical feature generation that can yield much more complex data representation and therefore hopefully decrease the number of features necessary for a good classification.

Hierarchical feature extraction is obtained by adding the already selected features in the pool of images that can be used for filtering at the next feature generation step. Using a retained filter as a new possible input band leads to more complex filters with higher nonlinearity. This is somehow related to the methods of deep learning, where deep features are generally obtained by aggregation of convolution operators. In our case, those operators are substituted by spatial filters with known properties, which adds up to our approach the appealing property of direct interpretability of the discovered features. In deep learning models, interpretation of the features learned is becoming possible, but at the price of series of deconvolutions (Zeiler and Fergus, 2014). Let h j ∈ N be the depth of a given feature φ θ j , with 0 being the depth of original features: this is the number of filtering steps the original bands has undergone to generate filter φ θ j .

For example, the band 5 has depth h 5 = 0, while the filters that are issued from this band, for example a filter k issued from an opening computed on band 5, will have depth h k = 1. If the opening band is then re-filtered by a texture filter into a new filter l, its depth will be h l = 2. This leads to a much more complex feature extraction that builds upon an hierarchical, treeshaped, suite of filters. The depth of the feature in the feature generation tree is of importance in our case since it is a good proxy of the complexity of the features. In order to avoid overfitting, we propose to regularize the features using their depth in the hierarchy. As a criterion, we use a regularization weight of the form γ j = γ Compute G as in ( 7)

∀ j = [1 . . . p] 6:
Compute optimality conditions violations as

Λ j = ||G θ j ,• || 2 -λγ j -, ∀ j = [1 . . . p] 7:
Find feature φ * θ j maximizing Λ j 8:

if Λ θ * j > 0 then

9: ϕ = φ * θ j ∪ ϕ 10: B = φ * θ j ∪ B 11:
end if 12: until stopping criterion is met

Data and setup of experiments 303

In this section, we present the three datasets used, as well 304 as the setup of the four experiments considered. 
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A ground survey of 10366 pixels, distributed in 16 crop 314 types classes, is available (see Table 1). This dataset is a method is not designed to solve domain adaptation problems explicitly.

Setup of experiments

For every dataset, all the features have been mean-centered and normalized to unit norm. This normalization is mandatory due to the optimality conditions, which is based on a scalar product (thus depending linearly on the norm of the feature).

In all the experiments, we use the multiclass logistic classifier (MLC) with 1 2 norm implemented in the SPAMS pack- -A single minibatch can be used twice (i.e. once a first filter has been selected, it is removed and Eq. ( 7) is reevaluated on the remaining filters after re-optimization of the MLC classifier).

In each experiment, we start by selecting an equal number of labeled pixels per class l c : we extracted 30 random pixels per class in the Indian Pines 1992 case, 60 in the Indian Pines 2 http://spams-devel.gforge.inria.fr/ 

B i /B j -Normalized ratio (B i -B j )/(B i + B j ) -Sum B i + B j -Product B i * B j

Results and discussion

In this section, we present and discuss both the numerical results obtained and the feature selected in the AS-Bands (shallow) and ASH-Bands (deep) algorithms.

Performances along the iterations

AS-Bands: Numerical results for the three datasets in the AS-Bands (shallow) setting are provided in Fig. 6: the left column illustrates the evolution of the Kappa statistic [START_REF] Foody | Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy[END_REF] along the iterations and for three levels of 1 2 regularization λ: the higher the λ parameter, the sparser the model (and the harder to violate the optimality conditions). The right column of Fig. 6 shows the evolution of the number of features in the active set. [START_REF] Bengio | Deep learning of representations for unsupervised and trans-666 fer learning[END_REF]. Note that the classification perfor-507 Table 5: Results by MLC classifiers trained with the spectral bands (ω), with spatial features extracted from the three first principal components, PCs (s, including morphological and attribute filters) or with the proposed active set (AS-). In the Houston 2013A/B cases, features extracted from the DSM have been added to the input space of the baselines. We compared these results to those obtained by classifiers trained on fixed raw bands (MLC-ω) or on sets of morphological and attribute filters extracted form the three first principal components (MLC-s). We followed the generally admitted hypothesis that the first(s) principal component(s) contain most of the relevant information in hyperspectral images [START_REF] Benediktsson | Classification 663 of hyperspectral data from urban areas based on extended morphological 664 profiles[END_REF]. On all the datasets, the proposed AS-bands method performs remarkably well compared with models using only the spectral information (MLC-ω) and compares at worse equivalently (and significantly better in the Indian Pines 2010 and 4 Only squared structuring elements were used and the filter size range was pre-defined by expert knowledge.

Method

Houston 2013B cases) with models using 2 classifiers (thus 538 without sparsity) and three to four times more features includ- nets can be better formalized and lead to more principled way of exploring and choosing the features.

Figure 1 :

 1 Figure1: Traditional spatio-spectral classification with contextual filters: using pre-defined filterbanks, applied on the first principal component.

Figure 2 :

 2 Figure 2: Spatio-spectral classification with the proposed active set models. (a) With only the original HSI image as bands input (shallow model, AS-Bands); (b) with the hierarchical feature extraction (deep model, ASH-bands).

  215for regularizing the jth feature. Typically one want all features 216 to be regularized similarly by choosing γ j = 1, ∀ j. However, 217 in the hierarchical feature extraction proposed in Section 2.3 218 we will use different weights in order to limit over-fitting when 219 using complex hierarchical features. 220 This regularization term promotes group sparsity, due to its 221 non differentiability at the null vector of each group. In this 222 case we grouped the coefficients of W by lines, meaning that 223 the regularization will promote joint feature selection for all 224

  if a variable (filter) is active, it will be active for all 228 classes. This is particularly interesting in in a multiclass set-229 ting, since a feature that helps in detecting a given class also 230 helps in "not detecting" the others C -1 classes: for this reason 231 a selected feature should be active for all the classifiers.

  258 2.3. Hierarchical feature learning (ASH-bands) 259 Algorithm 1 searches randomly in a possibly infinite di-260 mensional space corresponding to all the possible spatial filters 261 computed on the input bands. But despite all their differences, 262 the spatial filters proposed in the remote sensing community 263 Algorithm 1 Multiclass active set selection for MLC (AS-Bands) Inputs -Bands to extract the filters from (B) -Initial active set ϕ 0 = B

  γ 0 ≥ 1 being a term penalizing depth in the graph. The proposed hierarchical feature learning is summarized in Algorithm 2. Algorithm 2 Multiclass active set selection for MLC, hierarchical deep setting (ASH-Bands) Inputs -Bands to extract the filters from (B) with depth h = 1 -Initial active set ϕ 0 = B

  proposed active set method on four hyper-307 spectral classification tasks, involving two crops identification 308 datasets and one urban land use dataset (considered in two ways): 309 a) Indian Pines 1992 (AVIRIS spectrometer, HS): the first 310 dataset is a 20-m resolution image taken over the Indian 311 Pines (IN) test site in June 1992 (see Fig. 3). The im-312 age is 145 × 145 pixels and contains 220 spectral bands.

Figure 3 :Figure 4 : 365 -

 34365 Figure 3: Indian Pines 1992 AVIRIS data.(a) False color composition and (b) ground truth (for color legend, see Tab. 1). Unlabeled samples are in black.

age 2 .

 2 We start by training a model with all available bands (plus the DSM in the Houston2013A/B case) and use its result as the first active set. Therefore, we do not reduce the dimensionality of the data prior to the feature generation. Regarding the active set itself, we used the following parameters: -The stopping criterion is a number of iterations: 150 in the Pines 1992, 2010 and Houston 2013 B and 100 in the Houston 2013A case (the difference explained by faster convergence in the last dataset). -A minibatch is composed of filters extracted from 20 bands, randomly selected. In the Houston 2013A/B case, the DSM is added to each minibatch. -The possible filters are listed in Tab. 4. Structuring elements (S E) can be disks, diamonds, squares or lines. If a linear structuring elements is selected, an additional orientation parameter is also generated (α ∈ [-π/2, . . . π/2]). These filters are among those generally used in remote sensing hyperspectral classification literature (see Fauvel et al. (2013)), but any type of spatial or frequency filter, descriptor or convolution can be used in the process.

  Figure 5: Houston 2013.(a) RGB composition of the CASI data, (b) DSM issued from the LiDAR point cloud and (c) train and test ground truths. (for color legend, see Tab. 2). The area in the red box of the (c) panel has been used in the Houston2013A experiment, while the whole area has been used in the Houston2013B experiment, with (d) a training/test separation shown in the last panel (green: training, red: test). Unlabeled samples are in black.

For

  all the datasets, the iterative feature learning corresponds 455 to a continuous, almost monotonic, increase of the performance. 456 This is related to the optimality conditions of Eq. (1): each time 457 the model adds one filter φ θ * j to ϕ, the MLC cost function de-458 creases while the classifier performances raises. Overfitting is 459 prevented by the group-lasso regularization: on the one hand 460 this regularizer promotes sparsity through the 1 norm, while 461 on the other hand it limits the magnitude of the weight coef-462 ficients W and promotes smoothness of the decision function 463 by the use of the 2 norm. Note that for the Houston 2013B 464 dataset, the final classification performance is at the same level 465 as the one of the winners of the contest, thus showing the ability 466of our approach to compete with state of the art methods.467For each case study, the model with the lowest sparsity (λ = 468 0.0001) shows the initial best performance (it utilizes more fea-

Figure 6 :

 6 Figure 6: Left: numerical performance (Kappa statistic) of AS-Bands for different degrees of regularization λ and filtering the original bands. Right: number of active features during the iterations.

Figure 7 :

 7 Figure 7: Results of the ASH-Bands method. Left: numerical performance (Kappa statistic) for λ = 0.001. Right: number of active features during the iterations.

497ASH-

  Bands row for this dataset in Tab. 5). We interpret this 498 slower learning rate by an overfitting of the training data in the 499 presence of dataset shift: since the test distribution is differ-500 ent that the one observed in training (by the projected cloud 501 in the hyperspectral data), the spatial filters learned seem to be-502 come too specialized in explaining the training data and are then 503 less accurate in the case of the (shifted) test distribution. Such 504 behavior has been documented before in deep learning litera-505 ture, especially when little training examples are used to learn 506 the features
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  ing spatial information (MLC-s). The good performance of the 540 2 method on the Indian Pines 1992 dataset (Kappa observed of 541 0.85) is probably due to the application of the PCA transform 542 prior to classification, which, besides allowing to decrease the 543 dimensionality of the data, also decorrelates the signals and iso-544 lates the bare soil reflectance, which is present for almost all 545 classes (cf. the data description in Section 3). For this reason, 546 we also investigated a variant of our approach where, instead of 547 working on the original spectral space, we used all the princi-548 pal components extracted from the original data (AS-PCs and 549 ASH-PCs). In the Indian Pines 1992 case, the increase in per-550 formance is striking, with a final Kappa of 0.89. For the three 551 other datasets, the results remain in the same range as for the 552 AS-bands results.

  images, the active set models end up with a 555 maximum of 50 -100 features, shared by all classes. This 556 model is very compact, since it corresponds to only 30 -50% 557 of the initial dimensionality of the spectra. Due to the group-558 lasso regularization employed, the features selected are active 559 for several classes simultaneously, as shown in Fig. 8, which il-560 lustrates the W matrix for the Indian Pines 2010 and Houston 561 2013B experiments. The matrices correspond to those at the 562 end of the feature learning, for one specific run of AS-Bands 563 with λ = 0.0001. In both plots, each column corresponds to 564 a feature selected by the proposed algorithm and each row to 565 one class; the color corresponds to the strength of the weight 566 (positive or negative). One can appreciate that the selected 567 features (columns) have large coefficients -corresponding to 568 strong green or brown tones in the figures -for more than one 569 class (the rows).

  570

Figure 8 :Figure 10 :Figure 9

 8109 Figure 8: Final weight matrix for a run of the Indian Pines 2010 (top) and Houston 2013B (bottom) experiments.

Figure 9 :

 9 Figure9: Visualization of the features with highest ||W j,• || 2 for one run of the Houston 2013B results (cf. bottom matrix of Fig.8). First row: RGB subsets; second row: ground truth; third row: output of the classification with the proposed approach; fourth row to end: visualization of the six features with highest squared weights.

  || 2 is greater than λγ j + , it is selected and added to the

	255	
	256	current active set [φ * θ j ∪ ϕ]. After one feature is added the MLC
	257	classifier is retrained and the process is iterated using the new
		active set.

7)

Indeed, if this constraint holds for a given feature not in the 242 current active set, then adding this feature to the optimization 243 problem will lead to a row of zero weights W (d+1),• for this fea-244 ture. But this also means that if we find a feature that violates 245 Eq. (

7

), its inclusion in ϕ will (after re-optimization) make the 246 global MLC cost decrease and provide a feature with non-zero 247 coefficients for all classes. 248 The pseudocode of the proposed algorithm is given in Al-249 gorithm 1: we initialize the active set ϕ 0 with the spectral bands 250 and run a first MLC minimizing Eq. (1). Then we generate a 251 random minibatch of candidate features, Φ θ j , involving spatial 252 filters with random types and parameters. We then assess the 253 optimality conditions with (7): if the feature φ * θ j with maximal 254 ||G θ j ,•

Table 3 :

 3 Classes and samples (n c l ) of the ground truth of the Houston 2013 dataset (cf. Fig.5).

	Class	n c l	Class	n c l
	Healthy grass	1231	Road	1219
	Stressed grass 1196	Highway	1224
	Synthetic grass 697	Railway	1162
	Trees	1239	Parking Lot 1 1233
	Soil	1152	Parking Lot 2 458
	Water	325	Tennis Court	428
	Residential	1260	Running Track 660
	Commercial	1219	Total	14703

). This problem is much more 377 challenging than Houston 2013A and we use it as 378 a benchmark against the state of the art, i.e. the 379 results of the contest. However, remind that our 380

Table 4 :

 4 Filters considered in the experiments (B i , B j : input bands indices (i, j ∈ [1, . . . b]); s: size of moving window, S E : type of structuring element; α: angle).

	Filter	θ
	Morphological	
	-Opening / closing	B i , s, α
	-Top-hat opening / closing	B i , s, S E, α
	-Opening / closing by re-	B i , s, S E, α
	construction	
	-Opening / closing by re-	B i , s, S E, α
	construction top-hat	
	Texture	
	-Average	B i , s
	-Entropy	B i , s
	-Standard deviation	B i , s
	-Range	B i , s
	Attribute	
	-Area	B i , Area threshold
	-Bounding box diagonal	B i , Diagonal thresh-
		old
	Band combinations	
	-Simple ratio	

A MATLAB toolbox can be downloaded at the address http://remi. flamary.com/soft/soft-fl-rs-svm.html. It contains both the models presented in this paper (AS-Bands, Section

2.2 and ASH-Bands, Section 2.3), as well as the method of[START_REF] Camps-Valls | Advances in hyperspectral image classification[END_REF] 

When the number of pixels available was smaller than l c , we extracted 80% for training and left the rest for testing
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