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Abstract

Domain adaptation from one data space (or domain) to the other is one of the
most challenging tasks of modern data analytics. If the adaptation is done cor-
rectly, models built on a specific data space become able to process data depicting
the same semantic concepts (the classes), but observed by another observation
system with its own specificities. In this paper, we propose an optimal transporta-
tion model that aligns the representations in the source and target domains. We
learn a transportation plan matching both PDFs and constrain labeled samples
in the source domain to remain close during transport with a non convex group
regularization. This way, we exploit at the same time the labeled information
in the source (the same that will be used by the classifier after adaptation) and
the unlabeled distributions observed in both domains. We propose an efficient
majoration-minimization algorithm to solve the resultaing optimization problem
and discuss its convergence. Numerical experiments of real data show the interest
of the method, that outperforms state-of-the-art approaches.

1 Introduction

The multiplication of data sources and acquisition devices provides nowadays tremendous quantities
of data. In practical applications, the wealth of data available is however often counterbalanced by
the lack of annotated information, which is generally necessary to run classification algorithms aim-
ing at generalizing over new unseen examples. Moreover, classical learning methods are challenged
by the plurality of sources and by the need of designing methods that are accurate when predicting
in a previously unseen environment, or target domain: this is mostly due to subtle or pronounced
discrepancies observed in the different data distributions, or drifts. In computer vision, for example,
this problem is known as the visual adaptation problem, where domain to domains drifts may occur
when changing lighting conditions, acquisition devices, or by considering the presence or absence
of backgrounds [1]. In practice, the causes of drift are numerous and application-specific.

Several works study the generalization capabilities of a classifier allowing to transfer knowledge
from a labeled source domain to an unlabeled target domain: this situation is referred to as trans-
ductive transfer learning [2]. In this work, we assume that the source and target domains are by
essence different, which is usually referred to as the domain adaptation. We address the most dif-
ficult variant of this problem, where data labels are only available in the source domain. This is
the unsupervised domain adaptation problem, whose bet is that the effects of the drifts can be
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reduced if data undergo a phase of adaptation toward a common representation where both domains
look more alike.

Several theoretical works [3, 4, 5] have emphasised the role played by the divergence between the
two domains probability distribution functions, leading to a principled way of solving the domain
adaptation problem: to bring closer both distributions, while using the label information available in
the source domain to learn a classifier. This work follows the same intuition, by exploring the use of
the optimal transport (OT) distances as a measure of divergence and transporting the samples so that
theirs distribution is more similar. OT distances are also known as Wasserstein, Monge-Kantorovich
or Earth Mover distances, and have very strong and important properties: i) they can be evaluated
when only empirical measures of those distributions are observed, and without the estimation of
parametrical or semi-parametrical distributions as a pre-process; ii) there is no particular constraint
on the overlap of the support of the distributions to provide meaningful results, which is clearly
not the case with other information theoretic divergences, such as the Kullback-Leibler divergence.
Building on those properties, we propose an original algorithm for domain adaptation based on OT.
Most of the method and some results presented in this paper were already previously published
in [6]. We provide in this paper a complementary discussion on the convergence of the computation
strategy, and a new experiment on real data which validates the previously established conclusions.

Related works on Domain Adaptation are presented in the next Section, while Section 3 formalizes
the problem of unsupervised domain adaptation and the use of optimal transport to solve it. The orig-
inality of our approach resides in the inclusion of an additional regularization term tailored to fit the
domain adaptation constraints. Their pertinency is examined in the experimental Section 5, where
we demonstrate the efficiency of the new proposed framework on an optical character recognition
task and a computer vision problem.

2 Related works on Domain adaptation

Domain adaptation strategies can be roughly divided in two families, depending on whether they
can access labels in the target domains (semi-supervised DA) or not (unsupervised DA).

In the first family, we find methods searching for projections discriminative in both domains, either
by using dot products between the source samples and the transformed target samples [1, 7, 8], by
learning projections, for which labeled samples of the target domain fall on the correct side a large
margin classifier trained on the source data [9] or by extracting common features under pairwise
constraints [10, 11].

The second family is the one considered in this paper. Many works have considered finding a com-
mon feature representation for the two (or more) domains. This representation, or latent space,
allows to project samples from all domains in a space where a classifier using only the labeled sam-
ples from the source domain generalize well on the target domains [12, 13]. The representation
transfer can be performed by matching the means of the domains in the feature space [13], aligning
the domains by their correlations [14] or by using pairwise constraints [15]. In most of these works,
the common latent space is found via feature extraction, where the dimensions retained summarize
the information common to the domains. Recently, the unsupervised domain adaptation problem
has been revisited by considering strategies based on a gradual alignment of the feature represen-
tation: in [16], authors compare gradual distortions and therefore use intermediary projections of
both domains along the Grassmannian geodesic connecting the source and target observed eigen-
vectors. In [17, 18], authors propose to obtain all sets of transformed intermediary domains by
using a geodesic-flow kernel, instead of sampling a fixed number of projections along the geodesic
path. While these methods have the advantage of providing easily computable out-of-sample exten-
sions (by projecting unseen samples onto the latent space eigenvectors), the transformation defined
remains global and must be therefore applied the same way to the whole target domain.

Our proposition strongly differs from those reviewed above, as it defines a local transportation plan
for each sample in the source domain. In this sense, the domain adaptation problem can be seen as
a graph matching problem [19, 20] for all samples to be transported, where their final coordinates
are found by mapping the source samples to coordinates matching the marginal distribution of the
target domain. In the authors knowledge, this is the first attempt to use optimal transportation theory
in domain adaptation problems.
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3 Optimal transportation and domain adaptation
Let Ω ⊆ Rd be an input measurable space of dimension d and C = {−1, 1} the set of labels. P(Ω)
denotes the set of all the probability measures over Ω. The standard learning paradigm assumes clas-
sically the existence of a set of data Xs = {xsi}

Ns
i=1 associated with a set of class label information

Ys = {ysi }
Ns
i=1, ysi ∈ C (the learning set), and a data set with unknown labels Xt = {xti}

Nt
i=1 (the

testing set). In order to determine the set of labels Yt associated with Xt , one usually relies on an
empirical estimate of the joint probability distribution P(X,Y) ∈ P(Ω × C) from (Xs,Ys), and
the assumption that Xs and Xt are drawn from the same distribution µ ∈ P(Ω).

In the considered adaptation problem, one assumes the existence of two distinct joint probability dis-
tributions Ps(X,Y) and Pt(X,Y), which correspond respectively the source and target domains.
Their respective marginal distribution over X are µs and µt.

We are searching for a transformation between the two domains that minimizes the impact of the
domain change. This intuition is motivated by theoretical generalization bound [21], which contains
the divergence between the source and target distributions. Based on such bound, we propose a
principled way to perform domain adaptation that reduces both this divergence and the classification
error in the source domain. This method is based on the computation of OT between the empirical
distributions and performing a transportation of the source samples and their label onto the target
distribution, leading to a decrease in the divergence between those distributions.

3.1 Monge-Kantorovitch optimal transportation and discrete distributions

The Kantorovitch formulation of the optimal transport [22] seeks for a probabilistic coupling γ ∈
P(Ω1 × Ω2) between Ω1 and Ω2:

γ0 = argmin
γ

∫
Ω1×Ω2

c(x,y)dγ(x,y), s.t. PΩ1#γ = µs,PΩ2#γ = µt, (1)

where PΩi is the projection over Ωi. In this formulation, γ can be understood as a joint probability
measure with marginals µs and µt. γ0 is the unique solution to the optimal transport problem.

Since one does not have a direct access to µs or µt, but rather to collections of samples from those
distributions, the optimal transport problem is generally adapted to the discrete case. In this case,
the two empirical distributions can be expressed as

µs =

ns∑
i=1

psi δxs
i
, µt =

nt∑
i=1

ptiδxt
i

(2)

where δxi
is the Dirac at location xi ∈ Rd. psi and pti are probability masses associated to the

i-th sample, and belonging to the probability simplex, i.e.
∑ns

i=1 p
s
i =

∑nt

i=1 p
t
i = 1. The set of

probabilistic coupling between those two distributions is the set of doubly stochastic matrices P
defined as

P =
{
γ ∈ (R+)ns×nt | γ1nt = µs,γ

T1ns = µt
}

(3)
where 1d is a d-dimensional vector of ones. The Kantorovitch formulation of the optimal trans-
port [22] becomes:

γ0 = argmin
γ∈P

〈γ,C〉F (4)

where 〈., .〉F is the Frobenius dot product and C ≥ 0 is a cost matrix, whose terms C(i, j) depict
the energy needed to move a probability mass from xsi to xtj . In our setting, this cost was chosen as
the Euclidian distance between the two locations, i.e. C(i, j) = ||xsi − xtj ||2, but alternative metrics
could be interestingly explored.

Once the transport γ0 has been computed, the source samples must be transported in the target
domain using their transportation plan. In our approach, we suggest to compute directly the image
of the source samples as the result of this transport, i.e. for t = 1. Those images can be expressed
through γ0 as center of masses of the weighted target samples. Let Tγ0

: Rd → Rd be the mapping
induced by the optimal transport coupling. This map transforms the source elements Xs in a their
corresponding elements in the target domain, X̂s. The mapping Tγ0

can be expressed as:

X̂s = Tγ0
(Xs) = diag((γ01nt)

−1)γ0Xt. (5)
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Since T−1
γ0

= TγT
0

, we note that Tγ0
is fully invertible and can be also used to compute an adapta-

tion from the target domain to the source domain.

3.2 Regularized optimal transport

Regularization is a classical approach used to prevent overfitting when only few samples are avail-
able, or even in presence of outliers. While it is always possible to enforce a posteriori a given
regularity in the transport result, a more theoretically convincing solution is to regularize the trans-
port by relaxing some of the constraints in the problem formulation of Eq.(4). This possibility has
been explored in recent papers [23, 24].

More specifically, in [24], Cuturi proposes to regularize the expression of the transport by the entropy
of the probabilistic coupling. The regularized version of the transport γλ0 is then the solution of the
following minimization problem:

γλ0 = argmin
γ∈P

〈γ,C〉F −
1

λ
h(γ), (6)

where h(γ) = −
∑
i,j γ(i, j) log γ(i, j) computes the entropy of γ. The intuition behind this

form of regularization is the following: since most of the elements of γ0 should be zero with high
probability, one can look for a smoother version of the transport by relaxing this sparsity through
an entropy term. As a result, and contrary to the previous approach, more couplings with non-null
weights are allowed, leading to a denser coupling between the distributions. An appealing result of
this formulation is the possibility to derive a computationally very efficient algorithm, which uses
the scaling matrix approach of Sinkhorn-Knopp [25].

4 Domain Adaptation with Label Regularized Optimal Transport

From the definitions above, the use of optimal transport for domain adaptation is rather straightfor-
ward: by computing the optimal transport from the source distribution µs to the target distribution
µt, one defines a local transformation of the source domain to the target domain. This transformation
can be used to adapt the training distribution by means of a simple interpolation. Once the source
labeled samples have been transported, any classifier can be used to predict in the target domain. In
this section, we present our optimal transport with label regularization algorithm (OT-labreg) and
present an efficient algorithm to solve the problem. We finally discuss how to interpolate the training
set from this regularized transport.

4.1 Regularizing the transport with class labels

As it was presented in te previous section, optimal transport does not include any information about
the particular nature of the elements of the source domain (i.e. the fact that those samples belong to
different classes). However, this information is generally available, as labeled samples are used in
the classification step following the adaptation. Our proposition is to penalize couplings that match
together source samples with known different labels. This is illustrated in Figure 1.c, where samples
belonging to the same classes are only associated to points associated to the same class, contrarily
to the standard and regularized versions of the transport (Figures 1.a and 1.b ).

Principles of the label regularization. We want to concentrate the transport information on ele-
ments of the same class c for each column of γ. This is usually achieved by using `p−`q mixed-norm
regularization. The main idea is that, even if we do not know the class of the samples in the target
distribution, we can promote group sparsity in the columns of γ such that a given target point will
be associated with only one of the classes observed in the source domain.

Promoting group sparsity leads to a new term in the cost function (6), which now reads:

γ0 = argmin
γ∈P

〈γ,C〉F −
1

λ
h(γ) + η

∑
j

∑
c

||γ(Ic, j)||pq , (7)

where Ic contains the index of the lines such that the class of the element is c, γ(Ic, j) is a vec-
tor containing coefficients of the jth column of γ associated to class c and || · ||pq denotes the `q
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Figure 1: Optimal transport for two simple distributions (◦ and +). The colored circles represent 3
different classes. The optimal transport solution is depicted as blue lines, whose thickness represents
the strength of the coupling. (a) original optimal transport (OT-ori); (b) Sinkhorn transport (OT-
reg [24]); (c) proposed class-wise regularization term (OT-reglab).

norm to the power of p. η is a regularization parameter that weights the impact of the supervised
regularization.

Despite the fact that the choice p = 1, q = 2 is extremely popular choice for promoting group
sparsity, due in part to the convexity of the regularization term, we decided to choose in this work
q = 1 and p = 1/2. The use of the square root (p = 1/2) will enforce sparsity per group thanks
to its non-dependability in 0, and this approach has been recently used for promoting non-grouped
sparsity in compressed sensing [26]. Finally, this choice leads to a non-convex optimization problem
but is a perfect fit for our application since majoration of the non-convex term leads to a linear loss
that can be efficiently solved using the algorithm form [24] as discussed in the following.

4.2 Majoration Minimization strategy

The optimization problem with a `p − `1 regularization boils down to optimizing

γ0 = argmin
γ∈P

J(γ) + ηΩ(γ), (8)

with J(γ) = 〈γ, C〉F −
1
λh(γ) and the regularization term that can be expressed as

Ω(γ) =
∑
j

∑
c

||γ(Ic, j)||p1 =
∑
j

∑
c

g(||γ(Ic, j)||1) (9)

where g(·) = (·)p is a concave function of a positive variable (∀γ ≥ 0). A classical approach to
address this problem is to perform what is called Majorization-minimization [27]. This can be done
because the `p − `1 regularization term is concave in the positive orthant. For a given group of
variables, one can use the concavity of g to majorize it around a given vector ŵ > 0

g(w) ≤ g(‖ŵ‖1) + g′(‖ŵ‖1)>(w − ŵ) (10)

with g′(‖ŵ‖1) = p(‖ŵ‖1)p−1 for ŵ > 0. For each group, the regularization term can be majorized
by a linear approximation. In other words, for a fixed γ̂

Ω(γ) ≤ Ω̃(γ) = 〈γ,G〉F + cst (11)

where the matrix G has components

G(Ic, j) = p(‖γ̂(Ic, j)‖+ ε)p−1, ∀c, j (12)

We added a small ε > 0 that helps avoiding numerical instabilities, as discussed in [26]. Finally,
solving problem (7) can be performed by iterating the two steps illustrated in Algorithm 1. This
iterative algorithm is of particular interest in our case as it consists in iteratively using an efficient
Sinkhorn-Knopp matrix scaling approach [24]. Moreover this kind of MM algorithm is known to
converge in a small number of iterations.

In what follows, we provide some hints on the convergence of Algorithm 1. Remind that we want
to solve the following group-sparse entropy-regularized optimal transport problem

min
γ∈P

f(γ) + h(γ) (13)
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Algorithm 1 Majoration Minimization for `p − `1 regularized Optimal Transport
Initialize G = 0
Initialize C0 as in Equation (4)
repeat
C← C0 + G
γ ← Solve problem (6) with C
G← Update G with Equation (12)

until Convergence

where f(γ) = 〈γ,C〉 + 1
λ

∑
i,j γi,j log γi,j , h(γ) =

∑
k

(∑
i,j∈Ak

γi,j + ε
)p

, with ε > 0 and

0 < p < 1. The constraint set P over γ is defined as {γ ∈ Rns×nr : γi,j ≥ 0, γ1 = µs, γ
>1 = µr}.

Note that f(γ) is a strictly convex and smooth function, but it is not gradient Lipschitz. Similarly,
h(γ) is a strictly concave and smooth function.

The existence of a minimizer of this problem naturally derives from the facts that the objective
function is continuous and the set P can be included in a bounded subset of Rns×nr . Hence, the
objective function reaches its minimum over the constraint set.

Remark 1 Because our problem is a classical constrained smooth optimization problem, from text-
book results, we can say that γ? is a critical point of our problem if the following holds

∇f(γ?) +∇h(γ?) ∈ NP(γ?) (14)

whereNP(γ) denotes the normal cone of P at γ. Because our problem is non-convex, this condition
is only a necessary condition for local optimality.

The algorithm we used for solving the above problem is based on an iterative approach where at
each iteration, the concave function h is linearly majorized by its first-order approximation.

Theorem 1 Let {γk} be the sequence generated by Algorithm 1. The following statements hold :

1. {f(γk) + h(γk)}k is a monotone non-increasing sequence.

2. assume that γ? is a limit point of {γk} then γ? is a critical point of problem (13).

Sketch of Proof: For a sake of clarify, we will note g(γ) = f(γ) + h(γ) and g̃(γ; γk) = f(γ) +
h(γk) + 〈∇h(γk), γ − γk〉. The first statement naturally comes from the approximation of the
concave function h. Indeed from this approximation, we can deduce that

g(γk) = g̃(γk; γk) ≥ g̃(γk+1; γk) ≥ g(γk+1) (15)

which proves the first statement. For the second statement, by using continuity arguments and the
first statement we get

g̃(γ?; γ?) ≤ g̃(γ; γ?) ∀γ ∈ P
Hence, since γ? is a locally optimal for g̃(γ; γ?), it has to satisfy the critical point condition of the
above problem which is exactly Equation (14). Thus γ? is also a critical point of problem (13).

5 Numerical experiments

5.1 OCR writer adaptation dataset

In order to illustrate the ability of optimal transport to perform domain adaptation, we apply our
approach on an OCR problem. The dataset consists in 51935 images of handwritten letters (of size
8×16 pixels) with 26 classes (the letters of the alphabet) written by 158 different writers [28, 29]. By
considering each writer as a domains, we study a large variety of inter-subjects adaptation problems
(1582-158=24806 source-target problems). Finally, note that the problem is extremely difficult due

6



(a) (b) (c)

Figure 2: Comparison of the accuracy of all OCR adaptation problems for different methods (no
adapt., OT-reg and OT-reglab). When the points are situated below the diagonal black line, it
means that the performance of the method on the x-axis is better.

Method Mean ACC p-value
no adapt. 0.378 < 10−300

OT-reg 0.434 < 10−300

OT-reglab 0.448 -

Table 1: Mean accuracy and p-value for a Wilcoxon Signrank test comparing the methods to the
best performing OT Class on the OCR dataset.

to the small number of samples per subject and the high variability of the writing patterns between
subjects.

As classifier, we use a KNN with k = 5 and the regularization parameters λ = 10 and η = 10,
selected for a good average performance across all transport. Results in Table 1 show the highest
performances for the class regularized optimal transport (OT-reglab). The average improvement is
also confirmed statistically with a Wilcoxon signrank test. The extremely small value of the p-value
is due to the large number of performance sampling.

Fig 2 illustrates the single pairwise adaptation problems for the three methods considered: for each
pair of methods, we report the accuracy of one approach as a function of the accuracy of another one.
Interestingly, the figure shows that , on average, both OT-reg and OT-reglab perform better than
a direct classification, while OT-reglab performs slightly better than the transport with Sinkhorn
regularization only (OT-reg). Moreover, we can also observe that stronger gains are obtained for
easier classification problem (upper right corner of the graphs). This can be explained by the fact that
easier classification problems require a lighter adaptation and the probability of having a permutation
of the classes along transport is smaller.

5.2 Visual adaptation dataset

We now evaluate our method on a challenging real world dataset coming from the computer vision
community1. The dataset tackles a visual recognition task of several categories of objects, studied in
the following papers [16, 17, 18]. The dataset contains images coming from four different domains:
Amazon (online merchant), the Caltech-256 image collection [30], Webcam (images taken from a
webcam) and DSLR (images taken from a high resolution digital SLR camera). The domains are
respectively noted in the remainder as A, C, W and D. As preprocessing, SURF description were
computed, which allows to transform each image into a 800 bins histogram, subsequently normal-
ized and reduced to standard scores. We followed the experimental protocol exposed in [17]: each
dataset is considered in turn as the source domain and used to predict the others. Within those
datasets, 10 classes of interest are extracted. The source domain are formed by picking 20 elements
per class for domains A,C and W, and 8 for D. The training set is then formed by adapting these
samples to the target domain. The latter is composed of all the elements in the test domain. The clas-
sification is conducted using a 1-NN classifier, which avoids cross-validation of hyper-parameters.

1Results reported from [6].
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Methods
without labels with

no adapt. SuK [31] SGF [16] GFK [17] OT-ori OT-reg GFK-lab [17] OT-reglab
C→A 20.8± 0.4 32.1± 1.7 36.8± 0.5 36.9± 0.4 30.6± 1.6 41.2± 2.9 40.4± 0.7 43.5± 2.1
C→D 22.0± 0.6 31.8± 2.7 32.6± 0.7 35.2± 1.0 27.7± 3.7 36.0± 4.1 41.1± 1.3 41.8± 2.8
A→C 22.6± 0.3 29.5± 1.9 35.3± 0.5 35.6± 0.4 30.1± 1.2 32.6± 1.3 37.9± 0.4 35.2± 0.8
A→W 23.5± 0.6 26.7± 1.9 31.0± 0.7 34.4± 0.9 28.0± 2.0 34.7± 6.3 35.7± 0.9 38.4± 5.4
W→C 16.1± 0.4 24.2± 0.9 21.7± 0.4 27.2± 0.5 26.7± 2.3 32.8± 1.2 29.3± 0.4 35.5± 0.9
W→A 20.7± 0.6 26.7± 1.1 27.5± 0.5 31.1± 0.7 29.0± 1.2 38.7± 0.7 35.5± 0.7 40.0± 1.0
D→A 27.7± 0.4 28.8± 1.5 32.0± 0.4 32.5± 0.5 29.2± 0.8 32.5± 0.9 36.1± 0.4 34.9± 1.3
D→W 53.1± 0.6 71.5± 2.1 66.0± 0.5 74.9± 0.6 69.8± 2.0 81.5± 1.0 79.1± 0.7 84.2± 1.0

mean 25.8 33.9 35.4 38.5 33.9 41.3 41.9 44.2

Table 2: Overall recognition accuracies in % and standard deviation on the domain adaptation of
visual features

We repeat each experiment 20 times and report the overall classification accuracy and the associated
standard deviation. We compare the results of the three transport models (OT-ori, OT-reg and OT-
reglab) against both a classification conducted without adaptation (no adapt.) and 3 state-of-the-art
methods: 1) the surrogate kernel approach (SuK), which in [31] was shown to outperform both
the Transfer Component Analysis method [13] and the samples reweighing scheme of [32]; 2) the
(SGF) method proposed in [16] and 3) the Geodesic Flow Kernel (GFK) approach proposed in [17].
Note that this last method can also efficiently incorporate label information: therefore we make a
distinctions between methods, which do not incorporate label information (no adapt, SuK, SGF,
GFK, OT-ori and OT-reg) and those that do (GFK-lab and OT-reglab). For each setting we used
the recommended parameters to tune the competing methods. Results are reported in Table. 5.2.

When no label information is used, (OT-reg) usually performs best. In some cases (notably when
considering the adaptation from (W→A or D→W), it can even surpass the (GFK-lab) method,
which uses labels information. OT-ori usually enhances the result obtained without adaptation, but
remains less accurate than the competing methods (except in the case of W→A where it surpasses
SGF and SuK. Among all the methods, OT-reglab usually performs best, and with a significant
increase in the classification performances for some cases (W→C or D→W). Yet, our method does
not reach state-of-the-art performance in two cases: A→C and D→A. Finally, the overall mean
value (last line of the table) shows a consistent increase of the performances with the proposed OT-
reglab, which outperforms in average GFK-lab by 2%. Also note that the regularized unsupervised
version OT-reg outperforms all the competing methods by at least 3%.

6 Conclusion and discussion

We have presented a new method for unsupervised domain adaptation based on the optimal trans-
port of discrete distributions from a source to a target domain. While the classical optimal transport
provide satisfying results, it fails in some cases to provide state-of-the-art performances in the tested
classification approaches. We proposed to regularize the transport by relaxing some sparsity con-
straints in the probabilistic coupling of the source and target distributions, and to incorporate the
label information by penalizing couplings that would mix samples issued from different classes.
This was performed by a Majoration Minimization strategy that exploits a `p− `1 norm, which pro-
motes sparsity among the different classes. The corresponding algorithm is fast, and allows to work
efficiently with sets of several thousand samples. With this regularization, competitive results were
achieved on challenging domain adaptation datasets thanks to the ability of our approach to express
both class relationship and non-linear transformations of the domains.

Possible improvements of our work are numerous, and include: i) extension to a multi-domain
setting, by finding simultaneously the best minimal transport among several domains, ii) extension
to semi-supervised problems, where several unlabelled samples in the source domain, or labelled
samples in the target domain are also available. In this last case, the group sparsity constraint
should not only operate over the columns but also the lines of the coupling matrix, which makes the
underlying optimization problem challenging. iii) Definition of the transport in a RKHS, in order to
exploit the manifold structure of the data.
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