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Abstract We consider the consumption-investment optimization problem for the fi-
nancial market model with constant proportional transaction rates and Lévy price
process dynamics. Contrarily to the recent work in [4], portfolio process trajectories
are only left and right limited. This allows us to identify an optimal làdlàg strategy,
e.g. in the two dimensional case, as it is possible to suitably rebalance the portfolio
processes when they jump outside the no trade region of the solvency cone.
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1 Introduction

We study a consumption-investment problem with infinite horizon for financial market
models including proportional transaction costs and when price’s dynamics is driven
by a Lévy process. This problem originates from the seminal paper of [2]. Davis and
Norman [3] rigorously solved the problem and provided the optimal consumption plan
in a diffusion model with transaction costs. Although the value functionW is in general
not smooth, Soner and Shreve [12] shows that W is solution to the HJB equation in a
weak sense, i.e. is a viscosity solution. When the risky asset prices follow exponential
Lévy processes, Framstad et al. [6] have obtained the same results as those of [12]
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under some mild conditions. An extension to the jumping diffusion case is studied by
Kabanov et al. [4] where a general market model with conic constraints is considered.

The present paper extends [4] to the case where the controls (the portfolio strategies
and consumption plans) are only left and right limited (làdlàg). This generalization is
important as we need it to identify an optimal strategy, as conjectured in the two-
dimensional case by Framstad et al. [6]. Indeed, in [6], the set of controls is the family
of all right continuous and left limited strategies but the conjectured optimal scontrol
is only làdlàg. Actually, despite this contradiction, considering làdlàg strategies is the
good intuition as the negative effects induced by price process jumps on portfolio
processes may be corrected by an immediate re-balancement. The economic intuition
is also straightforward. When asset prices move in response to unpredictable events,
which is typically the case at jumping times of a Lévy process, a trading response
should be immediately be made after the event i.e. the strategy or control should only
be right limited. However, if a market information is announced at a predictable time,
e.g. in the presence of a predictable labor income stream, a trade may be executed
immediately before the announcement, i.e. the strategy is right-continuous at that
predictable time.

Although the main results in this paper extend the results of [4] and [6], one needs
to re-examine carefully each step of the proofs. One of the most difficult part is to
show that the Bellman function is the unique viscosity solution to the HJB equation.
In the presence of one bond and one risky asset, we study the regularity of the Bellman
function and give a construction of the optimal strategy which is conjectured in [6].

The paper is organized as follows:

– Section 2: Description of the consumption optimization problem.
– Section 3: Elementary properties of the value function (Bellman function) W .
– Section 4: We show that W is a viscosity solution of a Hamilton-Jacobi-Bellman

(HJB) equation.
– Section 5: We show that the (HJB) equation admits a unique solution under some

mild conditions and as soon as there exists a Lyapunov function.
– Section 6: We propose a condition under whichW is finite. This is in particular the

case when there exists a non negative classical supersolution to the (HJB) equation.
– Section 7: We show that W is continuous when finite.
– Sections 8,9: For the power utility function, we construct a Lyapunov function and

a non negative classical supersolution for Sections 5 and 6.
– Section 10: We apply the general results to a two-dimensional model. Under some

conditions, we prove that the value function is continuously twice differentiable and
we construct an optimal control. To do so, we solve a Skorokhod problem. Note
that we introduce in this part a new definition of viscosity solution in a weaker
sense. This allows us to change the global operator by a local one and then deduce
that the Bellman function is C2.

– Appendix: Resolution of the Skorokhod problem for Section 10.

Notations:
In Rd, we use standard notations like |x|, the Euclidean norm of x ∈ Rd, d(x, y) =
|x− y|, etc. The Euclidean scalar product between two vectors x, y ∈ Rd is denotes by
xy ∈ R.
We shall use the notations A+ and A− to designate the left (resp. right) limit of a
process A and we also denote by At− and At+ its left and right limit at time t. If A is
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a làdlàg predictable process of finite variations, the left and right jump processes are
denoted by

∆A := A−A−, ∆+A := A+ −A,

and we introduce the associated càdlàg processes:

Adt :=
∑
s≤t

∆As, Ad+t :=
∑
s<t

∆+As, t ≥ 0.

The continuous part of A is defined as

Ac := A−Ad −Ad,+− .

We denote Ȧc the optional version of the Radon-Nikodym derivative dAc/d‖Ac‖ where
‖Ac‖ is the total variation of Ac.

2 Optimal consumption investment problem

We consider the financial market model with jumps adopted in [4]. The price return
process is modeled by a d-dimensional Lévy process (Yt)t≥0 defined on a stochastic
basis (Ω,F , (Ft)t≥0,P) satisfying the usual conditions. We denote by p(dz, dt) its jump
measure and q(dz, dt) = Π(dz)dt its compensator. We suppose that Π(dz) is a non
negative measure concentrated on (−1,∞)d and∫

Rd

(
|z|2 ∧ |z|

)
Π(dz) <∞. (2.1)

The dynamics of Y is given by

dYt = µt+ ΞdWt +

∫
Rd

z (p(dz, dt)− q(dz, dt)) , (2.2)

where µ ∈ Rd, W is a m-dimensional standard Brownian motion and Ξ is a matrix of
dimension d ×m. In the identification of an optimal strategy, we shall only consider
a pure jump Lévy process with finite activity, i.e.

∫
R
|z|π(dz) < ∞. The general case

remains open.

Two constant cones K and C are given. They are supposed to be closed and proper,
i.e. K ∩ (−K) = {0} and C ∩ (−C) = {0}. We assume that C ⊆ intK 6= ∅. In finance
K and C stand respectively for the set of transaction constraints (solvency cone of
financial positions with non negative liquidation values) and consumption constraints,
respectively. The dynamics of a portfolio process is defined by:

dV it = V it−dY
i
t + dBit − dCit , i = 1, . . . , d, V0 = V0− = x, (2.3)

where the controls π = (B,C) are làdlàg predictable processes of finite variations. The
dynamics (2.3) means that the portfolio process V is self-financing. The variations of
V are only due to the increments of Y . The transaction costs described by B are with-
drawn from the portfolio value. At last, C represents the cumulated sum of consumed
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wealth. If x ∈ Rd is an initial endowment, we assume that π = (B,C) belongs to the
class denoted by Ax of all admissible controls satisfying the following properties:

1) Ḃc ∈ −K, dP, d‖Bc‖ a.e., Ċc ∈ C, dP, d‖Cc‖ a.e.,
2) ∆+Bτ ∈ −K, ∆+Cτ ∈ C, a.s. for all stopping times τ ,

3) ∆Bτ ∈ −K, ∆Cτ ∈ C, a.s. for all predictable stopping times τ ,

4) If V = V π, π = (B,C) ∈ Ax, is such that Vτ ∈ intK for some stopping time τ ,
then V +

τ = Vτ +∆+Bτ −∆+Cτ ∈ intK,

5) If V = V π, π = (B,C) ∈ Ax, is such that Vτ− ∈ intK (resp. K) for some stopping
time τ , then Vτ− +∆Bτ −∆Cτ ∈ intK (resp. K),

6) x+∆+B0 ∈ intK.

The three last conditions mean that portfolio manager does not deliberately get his
position out of the solvency cone. It is also assumed that ∆B+

0 = ∆C0 = ∆+C0 = 0
and dCc is absolutely continuous with respect to the Lebesgue measure and we write
dCct = ctdt.

Using the monotonicity of the controls B,C with respect to the partial order in-
duced by K (i.e. ∀x, y ∈ Rd, x � y ⇔ y − x ∈ K), we may deduce that B and C are
of finite variations. Indeed, since intK 6= ∅, by an appropriate change of coordinates
we may assume w.l.o.g. that all coordinates of B,C are monotonic, hence are of finite
variations.

Without loss of generality, we assume that C = Cc is continuous as the jumps
of C are ignored in the optimization problem we consider. Precisely, we assume that
dCt = ctdt almost everywhere w.r.t. the Lesbegue dt measure on R.

For every control π ∈ Ax, let us introduce the stopping time

θπ = inf
{
t : V πt /∈ intK

}
, (2.4)

where V π is the portfolio process starting from x ∈ Rd and satisfying (2.3). We suppose
that the strategy π = (B,C) is frozen after the exit time, i.e. ∆+Bθ = 0 and dBt =
ct = 0 for t > θ. Throughout the paper, we fix a discount coefficient β > 0.

For every control π = (B,C) ∈ Ax, x ∈ intK, we define the utility process

Jπt (x) :=

∫ t∧θπ

0

e−βsU(cs)ds,

where U is a non-negative utility function defined on C. We assume that U is concave,
U(0) = 0 and U(x)/|x| → 0 as |x| → ∞. The optimal consumption problem consists
in optimizing the utility process Jπ(x) over the set of all admissible strategies. To do
so, we define the Bellman function as

W (x) := sup
π∈Ax

EJπ∞(x), x ∈ intK. (2.5)

Showing that the Bellman function is finite is not a trivial task. Indeed, this is based
on the existence of classical supersolutions to the associated HJB equation, see Lemma
6.2. Moreover, the continuity of W is proven in Theorem 7.4 in Appendix.
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3 Some elementary properties of the Bellman function

We denote by � the partial order defined by K, i.e. if x, y ∈ Rd, x � y ⇔ x− y ∈ K.

Proposition 3.1 The function W is increasing with respect to the partial order �.

Proof. Suppose that x2 � x1. Let π = (B,C) ∈ Ax1 and V (1) be such that

V
(1)
0− = x1,

dV
(1)i
t = V

(1)i
t−

dY it + dBit − dCit , t ≥ 0, i = 1, · · · , d.

Let us define V (2)
0− = x2 and V

(2)
t = V

(1)
t if t ≥ 0. From the dynamics of V (1) we

deduce that

V
(2)
0− = x2,

dV
(2)i
t = V

(2)i
t−

dY it + dB̃it − dCit , t ≥ 0, i = 1, · · · , d,

where B̃it = Bit + (xi1 − xi2)I[0,∞)(t) is still a làdlàg and predictable process of finite

variations satisfying ∆B̃t ∈ −K a.s. since x1 − x2 ∈ −K. As V (2)
0− , V

(1)
0− ∈ intK it is

straightforward that θ2 = θ1 where θi, i = 1, 2, are the stopping times defined by (2.4)
respectively for V (2) and V (1). It follows that π̃ = (B̃, C) ∈ Ax2 and we deduce that
W (x1) ≤W (x2). 2

In the following, we obtain lower bounds for the Bellman function. To do so, let us
define the liquidation function associated to the solvency cone K, i.e. for x ∈ K,

l(x) := sup{z ∈ R+ : x− ze1 ∈ K}.

We have x − l(x)e1 ∈ K. Then, consider the strategy ∆B0 := l(x)e1 − x and
Bt = B0 for t ≥ 0. For a given consumption plan c, the corresponding portfolio
process is: Vt = (Xt, 0) where

Xt := l(x)S1
t − S1

t

∫ t

0

(S1
u)−1cudu.

If the consumption plan is cs = κXs, then Yt := Xt(S
1
t )−1 satisfies

Yt := l(x)− κ
∫ t

0

Yudu,

i.e. Yt = l(x)e−κt. It follows that Xt = S1
t l(x)e−κt. We deduce that the process X

does not hit zero, i.e. the process V stays in the interior of the solvency cone. With the
strategy π := (B,C) above,

Jπ∞ =

∫ ∞
0

e−βtU(κS1
t l(x)e−κt)dt,

and then,

W (x) ≥ sup
κ>0

E

∫ ∞
0

e−βtU(κS1
t l(x)e−κt)dt.

In the particular case where Y 1
t = 0, i.e. S1

t = 1, we have the following:
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Lemma 3.2 With S1 ≡ 1 and the power utility function U(x) = uγ(xe0), where
uγ(t) = tγ/γ, γ ∈ (0, 1), we have

W (x) ≥ 1

γ
κγ−1
∗ lγ(x) =

1

γ

(
β

1− γ

)γ−1

lγ(x), (3.6)

where κ∗ := β/(1− γ).

4 The HJB equation

In the following, we denote by Cp(K) the set of all continuous functions f on K such
that supx∈K |f(x)|(1 + |x|)−p <∞. The set of all functions f which are C2, i.e. twice
continuously differentiable on intK is denoted by C2(K). We use the notation C2(x),
x ∈ R2, for the functions having only these properties on a neighbourhood of x. For
each π = (B,C) ∈ Ax, x ∈ intK, and every function f ∈ C1(K) ∩ C2(x) which are
increasing with respect to the order �K , we consider the integro-differential operator

H(f, x) : =

∫
Rd

[
f(x+ diag (x)z)I(x, z)− f(x)− f ′(x)diag (x)z

]
Π(dz), (4.7)

where I(v, z) = Iv+diag (v)z∈intK. Applying a Taylor expansion to f ∈ C1(K), we
claim that

|f(x+ diag (x)z)I(x, z)− f(x)− f ′(x)diag (x)z| ≤ Cx(|z| ∧ |z|2),

where Cx is a constant depending on x. Therefore, the operator H is well defined. Let
us now define

G : = (−K) ∩ ∂O1(0),

ΣG(p) : = sup
x∈G

px,

U∗(p) : = sup
x∈C

(U(x)− px) ,

Av : = (diag v).Ξ ((diag v).Ξ)
T
, v ∈ Rd,

and the operators:

F0(X, p,H,W, x) : =
1

2
TrA(x)X + µT (diag x)p+H − βW, (4.8)

L0φ : = F0(φ′′(x), φ′(x), H(φ, x), φ(x), x), (4.9)

F (X, p,H,W, x) : = max
{
F0(X, p,H,W, x) + U∗(p), ΣG(p)

}
, (4.10)

Lφ : = F (φ′′(x), φ′(x), H(φ, x), φ(x), x). (4.11)

Let us introduce the Dirichlet problem associated to the HJB equation:

F (W ′′(x),W ′(x), H(W,x),W (x), x) = 0, x ∈ intK, (4.12)

W (x) = 0, on ∂K. (4.13)
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We consider a possible solution to the HJB equation in the viscosity sense. Observe
that the integro-differential operator H is not locally defined because of the operator
H. Therefore, we define viscosity solutions in the global sense as follows:

Definition 4.1 A function v ∈ C(K) is called a viscosity supersolution of (4.12) on
a subset K̃ ⊆ K if for every x ∈ int K̃ and every f ∈ C1(K) ∩ C2(x) such that
v(x) = f(x) and v ≥ f on K, the inequality Lf(x) ≤ 0 holds.

Definition 4.2 A function v ∈ C(K) is called a viscosity subsolution of (4.12) on
a subset K̃ ⊆ K if for every x ∈ int K̃ and every f ∈ C1(K) ∩ C2(x) such that
v(x) = f(x) and v ≤ f on K, the inequality Lf(x) ≥ 0 holds.

Definition 4.3 A function v ∈ C(K) is called a viscosity solution of (4.12) on a subset
K̃ ⊆ K if v is simultaneously a viscosity super- and subsolution on the subset K̃ ⊆ K.

When, the subset K̃ = K, we just say that v is a viscosity solution (resp. super- or
subsolution). At last, a function v ∈ C1(K)∩C2(intK) is called classical supersolution
of (4.12) on a subset K̃ ⊆ K if Lv ≤ 0 on int K̃. We add the adjective strict when
Lv < 0 on the set intK.

Lemma 4.4 A function v ∈ C(K) is a viscosity supersolution of (4.12) on a subset
K̃ ⊆ K if and only if, for every point x ∈ int K̃, the inequality Lf(x) ≤ 0 holds for
any function φ ∈ C2(x), such that the difference v − φ attains its global minimum on
K at x.

Proof. The proof of this result is the same than the proof of [9, Lemma 4.2.4] except
that we replace the notion of local minimum by the global one. 2

Remark 4.5 In the classical theory developed for differential equations, the notion of
viscosity solution admits an equivalent formulation in terms of super- and subjets J+,
J− (see definition in [4]). But this is not the case in our formulation due to the non-
local property of the integro-differential operator. Although, there is a link between the
notion of viscosity solutions and super- and subjets as stated in [4, Section 7].

Theorem 4.6 Suppose that W takes finite values. Then,

i) The Bellman function W is a viscosity supersolution to (4.12).

ii) The Bellman function W is a viscosity subsolution to (4.12).

Theorem 4.6 implies that the Bellman function is a viscosity solution to (4.12). We
shall see conditions under which W is finite.

4.1 Proof of Theorem 4.6

The proof is based on preliminary results we formulate before. The proof of the following
lemma is given in [4].

Lemma 4.7 For every portfolio process V = V π, π ∈ Ax, the process IV−∈∂K |∆Y |I[0,θπ]
is indistinguishable from zero.
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Let us define for each n the compact set

Kn := {x ∈ K : |x| ≤ n} ∩ {x ∈ K : d(x, ∂K) ≥ 1

n
}.

Note that (Kn)n≥1 is an increasing sequence whose union is intK. For every control
π = (B,C) ∈ Ax and x ∈ intK, we define V θ

n
+ as the stopped portfolio process.

V θ
n
+ = V π,x,θ

n
+ := V π,xI[0,θn[ + V π,xθn+

I[θn,∞[, (4.14)

where θn is the first instant when the portfolio exits Kn. We also define Bθ
n
+ similarly.

Note that the value of V π,xθn may be outside intK due to a possible jump of the Lévy
process at θn but, in this case, V π,xθn− /∈ ∂K by virtue of Lemma 4.7. From the dynamics
of V π,x, we deduce that

V
θn+
t = x+

∫ t

0

I[0,θn](s)diag (V
θn+
s− )(µsds+ ΞdWs) +B

θn+
t − C

θn

t ,

+

∫ t

0

∫
Rd

diag (V
θn+
s− )zI[0,θn](s) (p(dz, ds)− q(dz, ds)) .

We propose to study the quantity

X̄f,n
t := e−βtf(V

θn+
t+ )I(V

θn+
t− ,∆Yt∧θn) + Jπt , (4.15)

by means of the Ito formula. We set f(V
θn+
t+ )I(V

θn+
t− ,∆Yt∧θn) = 0 by convention when

I(V
θn+
t− ,∆Yt∧θn) = 0 so that X̄f,n

t is well defined even if f is only defined on K. If Kn
is replaced by K we write X̄f

t instead of X̄f,n
t . We also introduce

Ṽ nt := Vt+I[0,θn[(t) + Vθn−I[θn,∞[(t).

We have the following key result:

Lemma 4.8 (Itô expansion) Let f ∈ C1(K) ∩ C2(int K) be an increasing function
with respect to the order �K . Then, we have

X̄f,n
t = f(x) +Nt∧θn +Rt∧θn

+

∫ t∧θn

0

e−βu
[
L0f(Ṽ nu−)− f ′(Ṽ nu−)cu + U(cu)

]
du,

where N is a local martingale and R is a decreasing process such that R0 = 0.

Proof. Note that we do not assume any regularity of f on ∂K. Therefore, we can
not directly apply the Ito formula to X̄f,n

t . To overcome this difficulty, instead of
considering V θ

n
+ , we study the process V θ

n
− defined by

V θ
n
− := V I[0,θn[ + Vθn−I[θn,∞[. (4.16)

We also have a representation for V θ
n
− :

V
θn−
t = x+

∫ t

0

I[0,θn](s)diag (V
θn−
s− )(µsds+ ΞdWs) +B

θn−
t − C

θn

t

+

∫ t

0

∫
Rd

diag (V
θn−
s− )zI[0,θn)(s) (p(dz, ds)− q(dz, ds)) .
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For a sake of simplicity, we write Ṽt := V
θn−
t+ = V

θn−
t +∆+B

θn−
t . The Itô formula applied

to the process e−βtf(Ṽt) := e−βtf(V
θn−
t+ ) yields

e−βtf(Ṽt) = f(x) +

∫ t

0

e−βuf ′(Ṽu−)dṼu − β
∫ t

0

e−βuf(Ṽu−)I[0,θn](s)du

+
1

2

∫ t

0

e−βsTrAṼs−f
′′(Ṽs−)I[0,θn](s)ds

+
∑
s≤t

e−βs
[
f(Ṽs)− f(Ṽs−)− f ′(Ṽs−)(Ṽs − Ṽs−)

]
.

Using (4.16) and the fact that B
θn−
t +∆+B

θn−
t = Bt+1[0,θn) +Bθn−1[θn,∞), we deduce

that∫ t

0

e−βuf ′(Ṽu−)dṼu =

∫ t

0

e−βuf ′(Ṽu−)I[0,θn)(u)diag (Ṽu−)(µudu+ ΞdWu)

+

∫ t

0

e−βuf ′(Ṽu−)dBcu +

∫ t

0

e−βuf ′(Ṽu−)cudu

+
∑
s≤t

e−βsI[0,θn)(s)f
′(Ṽs−)

(
∆+Bs +∆Bs

)
+

∫ t

0

∫
Rd

e−βuf ′(Ṽu−)diag (Ṽs−)zI[0,θn)(s) (p(dz, ds)− q(dz, ds)) .

Note that Ṽs = Ṽs− + diag Ṽs−∆Ys +∆+Bs +∆Bs. We then rewrite∑
s≤t

e−βs
[
f(Ṽs)− f(Ṽs−)− f ′(Ṽs−)(Ṽs − Ṽs−)

]
=
∑
s≤t

e−βs
[
f(Ṽs)− f(Ṽs− + diag Ṽs−∆Ys)

]
I[0,θn)(s)

+
∑
s≤t

e−βs
[
f
(
Ṽs− + diag (Ṽs−)∆Ys

)
− f(Ṽs−)− f ′(Ṽs−)diag (Ṽs−)∆Ys

]
I[0,θn)(s)

−
∑
s≤t

e−βsf ′(Ṽs−)
(
∆+Bs +∆Bs

)
I[0,θn)(s).

Moreover,∑
s≤t

e−βs
[
f
(
Ṽs− + diag (Ṽs−)∆Ys

)
− f(Ṽs−)− f ′(Ṽs−)diag (Ṽs−)∆Ys

]
I[0,θn)(s)

=

∫ t

0

∫
Rd

e−βs
[
f(Ṽs− + diag (Ṽs−)z)− f(Ṽs−)− f ′(Ṽs−)diag (Ṽs−)z

]
I[0,θn)(s) p(dz, ds).

Since I(Ṽs− ,∆Ys) = 1 for s < θn, we may omit the indicator I within the operator H
for s < θn. We deduce that

e−βtf(Ṽt) = f(x) + Ñt∧θn + R̃t∧θn (4.17)

+

∫ t∧θn

0

e−βu
[
L0f(Ṽu−)− f ′(Ṽu−)cu

]
du, (4.18)
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where

Ñt =

∫ t

0

e−βuf ′(Ṽu−)diag (Ṽu−)ΞI[0,θn](u)dWu (4.19)

+

∫ t

0

∫
Rd

e−βu
[
f(Ṽu− + diag (Ṽu−)z)− f(Ṽu−)

]
I[0,θn)(u) (p(dz, du)− q(dz, du)) .

The residual term is

R̃t : =
∑
s≤t

e−βsI[0,θn)(s)

[
f
(
Ṽs− + diag (Ṽs−)∆Ys +∆B+

s +∆Bs

)
− f

(
Ṽs− + diag (Ṽs−)∆Ys

)]
+

∫ t

0

e−βuf ′(Ṽu−)I[0,θn)(u)dBcu. (4.20)

The process R̃ is decreasing due to the monotonicity of f with respect to K. Finally,
observe that

X̄f,n
t − e−βtf(Ṽt) = Jπt + e−βθ

n

[f(Vθn+)I(Vθn−,∆Yθn)− f(Vθn−)] 1t=θn ,

= Jπt + e−βθ
n
[
f(Vθn+)− f(Vθn− + diag (Vθn−)∆Yθn)

]
I(Vθn−,∆Yθn)1t=θn

+ e−βθ
n
[
f(Vθn− + diag (Vθn−)∆Yθn)I(Vθn−,∆Yθn)− f(Vθn−)

]
1t=θn .

(4.21)

Plugging the r.h.s of (4.21) into (4.17), as the Lesbesgue measure dt does not charge
any point, we conclude the theorem with

Ñt =

∫ t

0

e−βuf ′(Vu−)diag (Vu−)ΞI[0,θn](u)dWu (4.22)

+

∫ t

0

∫
Rd

e−βu [f(Vu− + diag (Vu−)z)I(Vu− ,∆Yu)− f(Vu−)] I[0,θn](u) (p(dz, du)− q(dz, du)) ,

and

R̃t : =
∑
s≤t

e−βsI[0,θn](s)
[
f
(
Vs− + diag (Vs−)∆Ys +∆+Bs +∆Bs

)
− f(Vs− + diag (Vs−)∆Ys)

]
I(Vs− ,∆Ys) +

∫ t

0

e−βuf ′(Vu−)I[0,θn](s)dB
c
s.

(4.23)

2

Remark 4.9 If the function f ∈ C2(Rd), we may directly apply the Ito formula to
Xf
t := e−βtf(Vt+) + Jπt and we obtain the following result:

Xf
t = f(x) +Nt +Rt +

∫ t∧θ

0

e−βu
[
L0f(Vu−)− f ′(Vu−)cu + U(cu)

]
du,

where N is a local martingale and R is a decreasing process with R0 = 0. Moreover,
Xf
t = X̄f

t if f vanishes outside intK.
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We now formulate a strict supersolution property which is the key point to deduce
that W is a global viscosity subsolution of the HJB equation by using the dynamic
programming principle. We fix a closed ball such that Or(x) ⊆ O2r(x) ⊆ intK and
we define the stopping time τπ := τπr as the exit time of V π,x from Or(x), i.e.

τπ := inf{t ≥ 0 : |V π,xt − x| ≥ r}. (4.24)

Lemma 4.10 Let f ∈ C2(K) ∩ C1(K) be such that Lf ≤ −ε ≤ 0 on Or(x). There
exists a constant η := η(ε, r) and an interval (0, t0] such that

sup
π∈Ax

EX̄f,n
t∧τπ ≤ f(x)− ηt, t ∈ (0, t0], (4.25)

where t 7→ X̄f,n
t∧τπ is defined by (4.15).

Proof. We fix a strategy π and omit its symbol in the notations below. Observe
that only the behaviour of the processes we consider does matter on [0, τ ]. For n large
enough, we have O2r(x) ⊆ intKn. Therefore, τπ ≤ θn hence we may apply Lemma
4.8 so that

X̄f,n
t∧τ = f(x) +Nt∧τ +Rt∧τ +

∫ t∧τ

0

e−βu
[
L0f(Vu−) + U∗(Vu−)

]
du

−
∫ t∧τ

0

e−βu
[
U∗(Vu−) + f ′(Vu−)cu − U(cu)

]
du,

= f(x) +Nt∧τ +Rt∧τ +

∫ t∧τ

0

e−βuLf(Vu−)du

−
∫ t∧τ

0

e−βu
[
U∗(Vu−) + f ′(Vu−)cu − U(cu)

]
du

+

∫ t∧τ

0

e−βu
[
L0f(Vu−) + U∗(Vu−)− Lf(Vu−)

]
du.

We deduce that

X̄f,n
t∧τ = f(x) +Nt∧τ + R̃t∧τ +

∫ t∧τ

0

e−βuLf(Vu−)du

−
∫ t∧τ

0

e−βu
[
U∗(Vu−) + f ′(Vu−)cu − U(cu)

]
du, (4.26)

where R̃ is a decreasing process such that R̃0 = 0 and N is a local martingale. As it is
shown in Lemma 8.3 [4], the stopped process Nτ is a martingale hence EN t∧τ = 0.

By assumption, Lf(y) ≤ −ε for all y ∈ Or(x) and so ΣG(f ′(y)) ≤ −ε on [0, τ ]. It
follows that f ′(y)k ≤ −ε|k| whatever k ∈ −K so that f ′(Or(x)) ⊆ intK∗ on [0, τ ].
In particular, for s ∈ [0, τ ], f ′(Vs−)Ḃcs ≤ −ε|Ḃcs|. We deduce that the following term
above (appearing in the expression (4.23) of R) is bounded as follows:

∫ t∧τ

0

e−βuf ′(Vu−)Iu≤θḂ
c
ud‖Bc‖u ≤ −ε

∫ t∧τ

0

e−βuIu≤θ|Ḃcu|d‖Bc‖u.

On the other hand, the other terms defining R in (4.23) can be estimated as follows:
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f
(
Vs− + diag (Vs−)∆Ys +∆B+

s +∆Bs
)
− f(Vs− + diag (Vs−)∆Ys)

= (f(Vs+)− f(Vs)) 1∆Bs=0 + (f(Vs+)− f(Vs−)) 1∆Bs 6=0,

= f ′(γs)(∆Bs +∆+Bs),

where γs ∈ [Vs, Vs+] on the set {∆Bs = 0} and γs ∈ [Vs−, Vs+] on the set {∆Bs 6= 0}.
Observe that γs ∈ Or(x) if s < τ . If s = τ we may assume without loss of generality
that the controls ∆B+

τ = ∆Bτ = 0 hence Vτ = Vτ+ as we consider the supremum
given in (4.25). Therefore, we have

[
f
(
Vs− + diag (Vs−)∆Ys +∆B+

s +∆Bs
)
− f(Vs− + diag (Vs−)∆Ys)

]
Is≤τ

≤ −ε
(
|∆B+

s |+ |∆Bs|
)
Is≤τ .

Therefore, by Equality (4.26), we deduce that

EX̄f,n
t∧τ ≤ f(x)− εe−βt(t ∧ τ)− e−βtEZt,

where

Zt : =

∫ t∧τ

0

r(cs, f
′(Vs−))ds+ ε

∫ t∧τ

0

|Ḃcs|d‖Bc‖s + ε
∑
s≤t∧τ

(
|∆B+

s |+ |∆Bs|
)
,

r(c, p) : = U∗(p) + pc− U(c).

Recall that U∗(p) = supx∈C(U(x) − px) ≥ 0 since U(0) = 0. Moreover, by as-
sumption,

inf
p∈f ′(Or(x)), c∈C, |c|=1

pc ≥ ε.

Since U(c)/|c| → 0 as |c| → ∞, we finally deduce that there exists a constant κ > 1
such that

inf
p∈f ′(Or(x))

r(c, p)) ≥ κ−1|c|, ∀c ∈ C, |c| ≥ κ.

Therefore, ∫ t∧τ

0

r(cs, f
′(Vs−))ds ≥ κ−1

∫ t∧τ

0

I|cs|≥κ|cs|ds.

Moreover, the second integral defining Z dominates κ1‖Bc‖t∧τ for some κ1 > 0.
Indeed, recall that all norms in Rd are equivalent, in particular c−1|.| ≤ |.|1 ≤ c|.| for

some c > 0 where |x|1 :=
d∑
i=1

|xi| and |.| is the Euclidean norm. It follows that

c−1‖Bc‖ ≤ VarBc ≤ c‖Bc‖,

where VarBc is the total variation of Bc with respect to |.|1. At last, we have:

|Ḃc|1 =
d∑
i=1

|Ḃc i| =
d∑
i=1

∣∣∣∣ dBc id‖Bc‖

∣∣∣∣ =
d∑
i=1

∣∣∣∣ dBc i

dVarBc i

∣∣∣∣ dVarBc id‖Bc‖ =
dVarBc

d‖Bc‖ .
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The claimed property follows. We deduce some constant γ > 0 such that

EXf
t∧τ ≤ f(x)− e−βtγ−1EZ̃t,

where

Z̃t := t ∧ τ +

∫ t∧τ

0

I|cs|≥κ|cs|ds+ ‖B‖t∧τ+.

Observe that

Z̃t ≥ t ∧ τ + ‖B‖t∧τ+ −
∫ t∧τ

0

I|cs|≤κ|cs|ds ≥ (1− κ)t ∧ τ + ‖B‖t∧τ+.

Using the stochastic formula of V , we immediately get the existence of a number t0 > 0
and a measurable set Γ with P(Γ ) > 0 on which

|V π,xt − x| ≤ r/2 + δ‖B‖t+, t ∈ [0, t0],

whatever the control π = (B,C). Diminishing t0, we may assume without loss of
generality that κt0 ≤ r/(4δ). For any t ≤ t0, the inequality ‖B‖τ+ ≥ r/(2δ) holds on
the set Γ ∩ {τ ≤ t}. Therefore, if t ≤ t0,

Z̃t ≥ (1− κ)τ + 2κt0 ≥ κt0 ≥ t.

On the set Γ ∩ {τ > t}, the inequality Z̃t ≥ t obviously holds. Thus, EZ̃t ≥ tP(Γ ) if
t ∈ [0, t0] and the result is proven. 2

Observe that, if n is large enough, τπ ≤ θn hence Xf,n
t∧τπ does not depend on n.

Lemma 4.11 Suppose that W is continuous on intK. Then, for any stopping time
τ ∈ Tf , we have:

W (x) ≥ sup
π∈Ax

E
(
Jπτ (x) + e−βτW (V x,πτ+ )Iτ<θ

)
.

Proof. The proof is an adaptation of the proof of [4, Lemma 9.2]. In the latter, it
suffices to replace ρ by ρ := inf{j ≥ 1 : V x,πτ+ ∈ Oj}. 2

Lemma 4.12 Let Tf be the set of finite stopping times. Then,

W (x) ≤ sup
π∈Ax

inf
τ∈Tf

E
(
Jπτ + e−βτW (V x,πτ )Iτ<θ

)
. (4.27)

Proof. This lemma is proved in [4] since it corresponds to [4, Lemma 9.1] which does
not depend on the structure imposed on the controls B. 2

Proof of Theorem 4.6.
i) We adapt the proof of [4, Lemma 10.2] since the arguments of the proof are

based on a strategy π = (B,C) such that B = 0 and, in our case, we need Lemma 4.11
to replace [4, Lemma 9.2]). In that case, Vt+ = Vt for all t ≥ 0 and the Ito formula is
valid as observed in Remark 4.9 but also in [4].

ii) Let x ∈ intK and φ ∈ C1(K) ∩ C2(K) be a function with φ(x) = W (x) and
W ≤ φ on K. Suppose that φ is not a subsolution, i.e. there exists x ∈ intK such that
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the required inequality fails. Precisely, by continuity, suppose that Lφ ≤ −ε, ε > 0, on
a neighborhood Or′(x) ⊆ int K of x. By virtue of Lemma 4.10, there exists a constant
η := η(ε) and an interval (0, t0] such that

sup
π∈Ax

E
(
Jx,πt∧τπr + e−β(t∧τ

π
r )φ(V x,πt∧τπr +)I(V x,πt∧τπr −,∆Yt∧τ

π
r

)
)
≤ φ(x)− ηt, t ∈ (0, t0],

(4.28)

where τπ := τπr is given by (4.24). We may assume w.l.o.g. that r = r′. Fix an arbitrary
t ∈ (0, t0]. Applying Lemma (4.12) to V+, we deduce that there exists π ∈ Ax such
that

W (x) ≤ inf
τ∈Tf

E
(
Jx,πt∧τ + e−β(t∧τ)W (V x,πt∧τ+)It∧τ<θ

)
+

1

2
ηt. (4.29)

AsW ≤ φ and since I(V x,πt∧τπr −,∆Yt∧τ
π
r

) = 0 implies that It∧τπr <θ = 0, we obtain from
above that W (x) ≤ φ(x)− 1

2ηt, in contradiction since W (x) = φ(x). 2

5 Uniqueness theorem

Definition 5.1 We say that a positive function ` ∈ C1(K)∩C2(intK) is a Lyapunov
function if the following properties are satisfied:

1) `′(x) ∈ intK∗ and L0`(x) ≤ 0 for all x ∈ intK,
2) `(x)→∞ as |x| → ∞.

In other words, ` is a classical supersolution of the truncated equation (excluding
the term U∗), continuous up to the boundary, and increasing to infinity at infinity.
Let us introduce the following condition on Π which guaranties the uniqueness of the
HJB equation we consider, under the condition that there exists a Lyapunov function
as stated in the next theorem.

Condition Π0: ∀x ∈ intK, Π(z : x+ diag xz ∈ ∂K) = 0.

Remark 5.2 This condition holds in the two dimensional case if the first component
of the underlying asset is a bond B = 1 so that Π = δ0 ⊗ π where we suppose that π
does not charge the singletons.

Theorem 5.3 Suppose that there exists a Lyapunov function ` and the Lévy measure
Π is such that

Π(z : x̂+Dx̂z ∈ ∂K}) = 0 ∀x̂ ∈ intK.

Then the Dirichlet problem (4.12) has at most one viscosity solution in the class of
continuous functions satisfying the growth condition

W (x)/`(x)→ 0, |x| → ∞. (5.30)

Moreover, W is concave.



Consumption-Investment Optimization Problem 15

5.1 Proof of Theorem 5.3

Uniqueness is an immediate consequence of Theorem 5.4 below. Moreover, Theorem
5.5 ensures that the unique solutionW is concave. Notice that Proposition 8.34 ensures
the existence of a Lyapunov function under mild assumptions.

Theorem 5.4 (Maximum principle) Suppose that there exists a Lyapunov function
` and Π satisfies Condition Π0. Let K̂ be a nonempty subset of K with nonempty
interior. Let W be a continuous viscosity subsolution of the Dirichlet problem (4.12)
on K̂ satisfying the growth condition

|W (x)|/`(x)→ 0, |x| → ∞. (5.31)

Let W̃ be a continuous viscosity supersolution of the Dirichlet problem (4.12) on K̃

such that W̃ ≥ W on ∂K̂. Suppose that either W̃ ≥ 0 or W̃ satisfies (5.31). Then,
W̃ ≥W on K̂.

Proof. The proof is an easy adaptation of the proof of [4, Theorem 11.2 ]. Indeed, we
follow the same reasoning but we consider the supremum of ∆non the set K̂. 2

Theorem 5.5 If the HJB equation (4.12) admits a unique global viscosity solution in
C0(K), then the Bellman function is concave.

Proof. Consider the (modified) Bellman function Ŵ only defined by the (non empty)
class of admissible strategies generating the portfolio processes evolving in (intK)∪{0}
on R+, i.e

Âx :=
{
π ∈ A : V πt ∈ (intK) ∪ {0} , ∀ t ≥ 0

}
6= ∅, 1

and

Ŵ (x) := sup
π∈Âx

EJπ∞(x), x ∈ intK,

We also consider the corresponding stopping times

θ = θx,π := inf{t : V x,πt /∈ intK}

for π ∈ Âx and we have V πt = 0 for t ≥ θ.Therefore, the consumption strategy c is
zero after θ. We deduce that the Bellman function Ŵ is a global viscosity solution to
the same HJB equation as W . Indeed, we use Lemma 4.12 or equivalently [4, Lemma
9.1] and we adapt [4, Lemma 9.2], where we replace the random variable ρ in the proof
of [4, Lemma 9.2] by ρ := inf{j ≥ 1 : V x,πτ+ ∈ Oj} and the strategy π̃ is replaced by

π̃ : = πI[0,τk) +
∞∑
n=1

[(yn − V x,πτk−, 0) + π̄n,k]I[τk,∞[I{ρ=n}I{V x,πτk−
−yn∈K}I{τk<θ}.

For t < τk, it is clear that V π̃t ∈ (intK)∪{0} as π ∈ Âx. Moreover, on {ρ = n}, V π̃τk =

yn ∈ intK provided that V x,πτk− − yn ∈ K and τk < θ. Otherwise, V x,π̃τk = V x,πτk− = 0 by
Lemma 4.7. It follows that π̃ ∈ Âx and we may conclude as in [4, Lemma 9.2] since
u ≥ 0.

By assumption, the global viscosity solution of this HJB equation is unique hence
Ŵ = W. It is well known that the function Ŵ is concave (the proof of it is given in
Framstad et al. [6]). Therefore, W is also concave. 2

1 Observe that Âx 6= ∅. Indeed, rebalance the portfolio starting from x ∈ intK so that
V+ = 0.
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6 Finiteness of the value function

We denote by Φ the set of all continuous functions f : K 7→ R+ increasing with respect
to the partial ordering �K and such that for every x ∈ intK and π = (B,C) the
positive process Xf

t = e−βt∧θf(V θt+) + Jπt , t ≥ 0, is a supermartingale. The following
lemma (see also [4]) is a consequence of Lemma 4.8:

Lemma 6.1 Let f ∈ C2(Rd) be a non negative classical supersolution of (4.12) which
vanishes outside intK, then f ∈ Φ.

Proof. First, we claim that a classical supersolution is increasing with respect to the
partial ordering on K. Indeed, by the finite increments formula, for any x, h ∈ intK,

f(x+ h)− f(x) = f ′(x+ νh)h

for some ν ∈ [0, 1]. The right-hand side is non negative because for the supersolution f
we have the inequality ΣG(f ′(y)) ≤ 0 whatever is y ∈ intK, or, equivalently, f ′(y)h ≥
0 for all h ∈ K. As a classical supersolution of (4.12), f satisfies the inequality

L0f(Vu−)− f ′(Vu−)cu + U(cu) ≤ 0, ∀u < θ.

By Remark 4.9, as (Nθn

t )t≥0 is a local martingale bounded from below by −f(x), the
local martingale Nt := limn→∞Nθn

t is also bounded from below. Therefore, it is a
supermartingale. In particular, Nt is integrable and so is the non positive process

R+

∫ .∧θ

0

e−βu
[
L0f(Ṽu−)− f ′(Ṽu−)cu + U(cu)

]
du.

We then conclude that (Xf
t ) is a supermartingale. 2

The following proposition formulates finiteness and continuity up to boundary ∂K
of the Bellman function in term of Φ. This corresponds to [4, Lemma 8.1 ].

Proposition 6.2

a) If f ∈ Φ, then W ≤ f on K. Hence, if Φ 6= ∅, then W is finite.

b) If x0 ∈ ∂K is such that, for every ε > 0, there exists fε ∈ Φ with fε(x0) ≤ ε,
then W is continuous at x0 and W (x0) := 0.

Corollary 6.3 Let f ∈ C2(Rd) be a non negative classical supersolution of (4.12)
which vanishes outside intK, then W is finite.

Proof. By Lemma 6.1, Φ 6= ∅. We conclude by Proposition 6.2. 2

7 Continuity of the value function

Lemma 7.1 Let us consider x0 ∈ int K. Then, lim supλ→1W (λx0) ≤W (x0).
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Proof. We may find π̃n = (B̃n, C̃n) ∈ Aλx0
depending on λ such that

W (λx0) ≤ E

∫ θπ
n

0

e−βsU(c̃ns )ds+
1

n
. (7.32)

Observe that, if π̃n = (B̃n, C̃n) ∈ Aλx0
, then π̃n/λ := (B̃n/λ, C̃n/λ) ∈ Ax0 and

θπ̃
n/λ = θπ̃

n

. We rewrite π̃n as π̃n = λπn where πn := (Bn, Cn) ∈ Ax0 . By (7.32),
we deduce that

W (λx0) ≤ E

∫ θπ
n

0

e−βsU(λcns )ds+
1

n
.

As λ−1 ∈]0, 1[ and x 7→ U(x) is concave with U(0) = 0, we get that

U(cns ) = U
(
λ−1(λcns ) + (1− λ−1)× 0

)
≥ λ−1U(λcns ).

We then get W (λx0) ≤ λW (x0) + n−1 and the conclusion follows as n→∞. 2

Lemma 7.2 We have Vt− ∈ intK if t ∈ [0, θ[.

Proof. Suppose that Vt− ∈ ∂K for some t < θ. Then, by Lemma 4.7 and Assumption
5) of the model, we have ∆Yt = ∆Bt = ∆Ct = 0. Therefore, Vt = Vt− ∈ ∂K hence a
contradiction. 2

Note that we also deduce from Lemma 4.7 that the portfolio process exits K either
in a continuous manner (in the case Vθ− ∈ ∂K) or due to a jump (in the case Vθ− ∈
intK).

Lemma 7.3 Let us consider a sequence xn → x0 ∈ intK and T ∈ (0,∞). Then, for
any π ∈ Ax0 , the sequence of portfolios V (n) = V π,xn with initial values V (n)

0−
= xn is

such that
T ∧ θ ≤ lim inf

n
θn ∧ T

where θ, θn are the stopping times defined by V := V π,x, V (n) respectively in (2.4).

Proof. Note that V (n) and V are uniquely defined by (2.3). Moreover, Ṽ n := V (n)−V
satisfies the dynamics

dṼ nit = Ṽ nit− dY
i
t , Ṽ n0− = xn − x0.

Hence Ṽ nit = (xin − xi0)Sit or equivalently Ṽ nt = diag ((xn − x0)/S0)St. We deduce
that

sup
t≤T
|V (n)
t − Vt| ≤

|xn − x0|
|S0|

S∗T

where S∗T := supt≤T |St|. On the other hand, if δ > 0 is small enough, we may write

inf
s≤T∧θ−δ

d(Vs; ∂K) = lim
n
d(Vsn ; ∂K),

where sn ∈ [0, T ∧ θ − δ] converges to s0 ∈ [0, T ∧ θ − δ] by compactness argument.
First assume that sn ↑ s0. Then,

inf
s≤T∧θ−δ

d(Vs; ∂K) = d(Vs0− ; ∂K) > 0,
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by virtue of Lemma 7.2. Otherwise, we get that

inf
s≤T∧θ−δ

d(Vs; ∂K) = d(Vs0+
; ∂K) > 0.

Therefore, there exists ε > 0 such that

d(Vs; ∂K) > ε, ∀s ∈ [0, T ∧ θ − δ].

Applying the triangular inequality d(Vs; ∂K) ≤ d(Vs;V ns )+d(V ns ; ∂K) we then deduce
that

d(V ns ; ∂K) > ε− d(Vs;V ns ) ≥ ε− |xn − x0||S0|
S∗T , s ∈ [0, T ∧ θ − δ].

It follows that for n large enough

d(V ns ; ∂K) > 0, s ∈ [0, T ∧ θ − δ].

We deduce that θn ≥ T ∧ θ − δ if n is large enough. We have shown that whatever
δ > 0 is small enough, there exists a.s. n0 such that, for every n ≥ n0, T ∧ θ− δ ≤ θn.
Therefore, T ∧ θ − δ ≤ infn≥n0

θn and finally T ∧ θ ≤ lim infn θn ∧ T . 2

Theorem 7.4 Assume that W (x0) <∞ where x0 ∈ intK. Then, W is continuous at
x0.

Proof. It suffices to show that W is both upper semicontinuous and lower semicontin-
uous.
• Let us first show that lim supx→x0

W (x) ≤ W (x0). In the contrary case, we have
lim supx→x0

W (x) > W (x0). Note that lim supx→x0
W (x) = limkW (xk) where xk is

a subsequence converging to x0. As x0 ∈ intK, we may assume that xk ∈ intK. We
define x̃k = (1 + k−1)x0 ∈ intK such that x̃k ∈ x0 + intK if k is large enough. As
xk → x0 and x̃k − intK is an open set containing x0, there exists a subsequence xnk
such that xnk ∈ x̃k − intK hence xnk � x̃k. Since W is increasing with respect to
�, we obtain that lim supkW (x̃k) ≥ limkW (xnk) > W (x0). On the other hand, by
virtue of Lemma 7.1, W (x̃k) ≤W (x0) hence a contradiction.
• Let us show that lim infxn→x0 W (xn) ≥W (x0). For an arbitrary ε > 0, there exists
π ∈ Ax0 such that

W (x0) ≤ ε+ E
∫ θπ

0

e−βsU(cs)ds.

We then deduce T ∈ (0,∞) such that

W (x0) ≤ 2ε+ E
∫ θπ∧T

0

e−βsU(cs)ds.

We introduce the stopping times θn associated to the portfolios defined by the strategy
π and the initial values xn. Observe the inequality

Is<lim infn θn∧T ≤ lim inf
n

Is≤θn∧T .
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So, by virtue of Lemma 7.3 and Fatou’s lemma, we then deduce that

W (x0) ≤ 2ε+ lim inf
n

E
∫ θn∧T

0

e−βsU(cs)ds,

W (x0) ≤ 2ε+ lim inf
n

W (xn).

Since ε > 0 is arbitrarily chosen, we deduce that W (x0) ≤ lim infnW (xn). 2

8 Existence of Lyapunov functions

In this subsection, we study the existence of Lyapunov functions. We only focus on the
case where the matrix A = (aij) is diagonal with aii = σi, such that σ0 = 0, µ0 = 0
and σi 6= 0, i = 1 . . . d, i.e. the first asset is a numéraire and the others are risky assets.
We also suppose that the utility function is U(x) = uγ(xe0), where uγ(t) = tγ/γ, γ ∈
(0, 1), and C = R+e0. In this subsection we work under the following condition∫

Rd

|z|Π(dz) <∞.

For p ∈ intK∗, we construct a Lyapunov function of the form v(x) := uη(px),where
uη(x) = xη

η and γ < η < 1. Note that the Bellman function is homogeneous of degree
γ. Therefore, we choose η ≥ γ so that the Lyapunov function is growing faster than
the Bellman function. If such a Lyapunov exists, the HJB equation admits a unique
concave solution in C1 by Theorem 5.3.

We have u′η(x) = (px)η−1p ∈ intK∗ as required for v to be a Lyapunov function.
Moreover,

L0v(x) =
1

2
〈A(x)p, p〉u′′η(px) + 〈µ(x), p〉u′η(px)− βuη(px)

+

∫
Rd

[
uη(px+ tpdiag (x)z)I(x, z)− uη(px)− u′η(px)tpdiag (x)z

]
Π(dz).

Let us denote the integral expression above by Hη(x). Our goal is to choose u such
that L0v(x) ≤ 0 on intK, or equivalently

β ≥ sup
x∈K

[
pdiag (x)µ

u′η(px)

uη(px)
+

1

2
〈A(x)p, p〉

u′′η(px)

uη(px)
+
Hη(x)

uη(px)

]
.

Let us introduce

Lη(p, x) = pdiag (x)µ
u′η(px)

uη(px)
+

1

2
〈A(x)p, p〉

u′′η(px)

uη(px)
.

We have

Lη(p, x) =
1

2

η

1− η

d∑
i=1

µ2i
σ2i
− 1

2
η(1− η)

d∑
i=1

(
σipixi
px

− µi
σi(1− η)

)2

,

≤ 1

2

η

1− η

d∑
i=1

µ2i
σ2i
.
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We then choose β such that

β ≥ 1

2

η

1− η

d∑
i=1

µ2i
σ2i

+ sup
x∈K

Hη(x)

uη(px)
.

Put k(p, x) = 1
pxpdiag (x). We have

Hη(x)

uη(px)
≤
∫
Rd

[
(1 + k(p, x)z)η1{1+k(p,x)z>0} − 1− ηk(p, x)z

]
Π(dz).

Note that k(p, tx) = k(p, x) for t > 0. Therefore, instead of considering the r.h.s of the
equality above on K, we may simply consider it on B1 := K ∩ O1, where O1 is the
unit ball {x : |x| = 1}. It is easy to prove that this expression is bounded on B1. We
then define

h(η) := inf
p∈intK∗

sup
x∈B1

∫
Rd

[
(1 + k(p, x)z)η1{1+k(p,x)z>0} − 1− ηk(p, x)z

]
Π(dz),

and we chose β such that

β >
1

2

η

1− η

d∑
i=1

µ2i
σ2i

+ h(η). (8.33)

We may deduce the following:

Proposition 8.1

i) If the condition (8.33) holds, then v(x) = (px)η

η , 1 > η > γ is a Lyapunov
function with respect to L0 for some p ∈ K∗ with p1 = 1.

ii) Set h̄(γ) := lim inf
η↘γ

h(η) and suppose that

β >
1

2

γ

1− γ

d∑
i=1

µ2i
σ2i

+ h̄(γ). (8.34)

Then, the HJB equation admits a unique solution under the conditions of Theorem 5.3.

9 Classical supersolution

The hypothesis of this section are those of Section 8 and the notations are the same.
By Lemma 6.1, if we construct a non negative classical supersolution f ∈ C2(Rd) of
(4.12) which vanishes outside intK, then f ∈ Φ. Therefore, by Proposition 6.2, W is
finite.

Let us define v(x) := kuγ(px). By definition,

U∗(v′(x)) = sup
y∈C

(
U(y)− v′(x)y

)
= sup
y∈C

(
U(y)− ku′γ(px)py

)
,

= sup
y1≥0

(
(y1)γ

γ
− k(px)γ−1p1y1

)



Consumption-Investment Optimization Problem 21

Then, with p1 = 1, U∗(v′(x)) = k
γ
γ−1 (px)γ(1/γ − 1). Since u′ ≥ 0, G ⊆ −K, and

p ∈ K∗\{0}, we have

ΣG(v′(x)) = sup
x∈G

u′γ(p.x)px ≤ 0.

Our goal is to choose p, k so that, on intK, we have

k
γ
γ−1 (px)γ(1/γ − 1) +

k

2
〈A(x)p, p〉u′′γ(px) + k〈µ(x), p〉u′γ(px)− kβuγ(px)

+

∫
Rd

[
uγ(px+ tpdiag (x)z)I(x, z)− uγ(px)− u′γ(px)tpdiag (x)z

]
Π(dz) ≤ 0.

Adapting the reasoning of the previous subsection, we choose β such that

β >
1

2

γ

1− γ

d∑
i=1

µ2i
σ2i

+ h(γ) + k
1

γ−1 (1− γ). (9.35)

Proposition 9.1

i) Suppose that Condition (9.35) holds. Then, the function

v(x) =
k

γ
(px)γ ,

is a classical supersolution to the HJB equation for some p ∈ K∗ with p1 = 1.

ii) In the two–dimensional model with the power utility function, assume that the
Merton parameter satisfies

κM :=
1

1− γ

(
β − γµ2

2σ2(1− γ)
− h(γ)

)
> 0.

Then, there exists p ∈ K∗ with p1 = 1 such that the function f(x) = m(px)γ is a
classical supersolution of the HJB equation and m > (1/γ)κγ−1

M .

Combining Propositions 8.1 and 9.1, we obtain the following result

Corollary 9.2 Let h∗ be defined as h∗(γ) := max(h(γ), h̄(γ)). If

β >
1

2

γ

1− γ

d∑
i=1

µ2i
σ2i

+ h∗(γ), (9.36)

there exists a classical supersolution to the HJB equation and a Lyapunov function with
higher growing order than the Bellman function one.
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10 Application to the two-asset model

We investigate the properties satisfied by the Bellman function and we construct an
optimal policy in the case d = 2. We use the notation z = (x, y)′ = (z1, z2)′ to
designate a generic element z of R2 where ′ is the transpose operator. The canonical
basis of R2 is (e1, e2) where e1 = (1, 0)′ and e2 = (0, 1)′. The risk-free asset (a Bond)
is supposed to be a constant, and the risky asset follows a geometric Lévy process:

dS1
t = 0, S1

0 = 1,

dS2
t = S2

t−

(
µdt+ σdWt +

∫
R

x(p(dy, dt)− q(dy, dt))
)
, S2

0 = 1,

where p is the jump measure of S2 and q(dy, dt) = π(dy)dt is its compensator. We
suppose that π(dy) is a positive measure concentrated in (−1,∞) which does not
charge the singletons and satisfies the following condition

Condition (I): ∫ ∞
−1

max (1, |t|)π(dt) <∞. (10.37)

The inequality (10.37) ensures that π is a finite measure such that the associated
Lévy process has a finite activity. This implies that

Y 1 = 0, Y 2
t = σWt + µt+

Nt∑
i=1

χi

where Nt =
∑∞
n=1 1Tn≤t is a Poisson process of intensity λ > 0 and (χi)i≥1 is a

sequence of i.i.d. π-distributed random variables independent of N . A portfolio process
satisfies by definition the following dynamics:

dV 1
t = dL21

t − (1 + λ12)dL12
t − ctdt,

dV 2
t = V 2

t−

(
µdt+ σdWt +

∫
R

x(p(dy, dt)− q(dy, dt))
)

+ dL12
t − (1 + λ21)dL21

t ,

where Lij , i, j = 1, 2, are the transfer processes supposed to be làdlàg and (λij)i,j=1,2

are the transaction costs coefficients. We rewrite the dynamics of a portfolio process
under the vector form:

dVt = diag Vt−

(
µ̃dt+ σ̃dWt +

∫
z(p̃(dz, dt)− Π̃(dz)dt)

)
+ dBt − dCt.

In the following, we use the notations µ̃ = (0, µ)′, σ̃ = (0, σ)′ and, with z = (x, y)′,

p̃(dz, dt) = δ0(dx)dt⊗ δ∆Yt(dy)dNt, Π̃(dz) = λδ0(dx)⊗ π(dy).

This means that A = diag (0, σ2) is the diagonal matrix with diagonal elements 0 and
σ2. Morever, we introduce dCt = (ctdt, 0)′ and

dBt = (dL21
t − (1 + λ12)dL12

t , dL
12
t − (1 + λ21)dL21

t )′.
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The optimization problem reads as

E
∫ θ

0

e−βsu(cs)ds→ max,

where u : R+ → R is a concave utility function. In the sequel, we consider the case
of power utility functions, i.e. u(r) = rγ

γ , γ ∈ (0, 1). Therefore, W is homogeneous of
degree γ:

W (νx) = νγW (x), ∀x ∈ K, ν ≥ 0. (10.38)

In this framework, the solvency cone K is simply a sector generated by the vectors
g1 = (1+λ12)e1−e2, g2 = (1+λ21)e2−e1. The dual cone of K is K∗ = cone {p1, p2}
with p1 = (1 + λ12)e2 + e1, p2 = (1 + λ21)e1 + e2. For the sake of simplicity, we
suppose that λ12 = λ21 = λ. The consumption region is C = R+e1. Therefore, the
HJB equation is given by:

F (W ′′(z),W ′(z), H(W, z),W (z), z) = 0, (10.39)

W (z) = 0 on ∂K, (10.40)

where

F0(X, p,H,W, z) : =
1

2
σ2yX22 + µyp2 +H − βW, (10.41)

F (X, p,H,W, z) : = max
{
F0(X, p,H,W, z) + U∗(p), ΣG(p)

}
. (10.42)

By simple computation, we get that U∗(p) = 1
γ (p1)

γ
γ−1 , if p = (p1, p2)′. Moreover

ΣG(p) ≤ 0⇔ max{−g1p,−g2p} ≤ 0,

and

H(u, z) =

∫
R

[
u(x, y(1 + t))I(z, t)− u(x, y)− u′y(x, y)yt

]
π(dt),

where I(z, t) := 1{(x,y+yt)∈intK}, z = (x, y)′.We now formulate properties satisfied by
the operator H(u, z):

Lemma 10.1
i) If u ∈ C1(K) ∩ C1(K \ Re1) is a non negative concave function such that

ΣG(u′) ≤ 0 on K (i.e. u is increasing with respect to the natural order on K), then
the operator H(u, z) is non positive.

ii) If u ∈ C1(K \Re1) is homogeneous of degree γ < 1 and π(R) <∞ then H(u, .)
is continuous on K ∩ {(x, y) : y > 0}. Moreover, if uy(x, 0+) exists and is finite, then
so is H(u, (x, 0+)).

iii) If u ∈ C2(K \Re1) is homogeneous of degree γ < 1 and π(R) <∞ then H(u, .)
is C1 on K ∩ {(x, y) : y > 0}. Moreover, if uy(x, 0+), uyy(x, 0+) exist and are finite,
then so is H(u, (x, 0+)).
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Proof. i) We aim to prove that P (z, t) ≤ 0 where

P (z, t) := u(x, y(1 + t))I(z, t)− u(x, y)− u′y(x, y)yt. (10.43)

It is clear that P (z, t) = 0 in the case where y = 0. Otherwise, since u ≥ 0, we deduce
that P (z, t) ≤ u(x, y(1 + t))− u(x, y)− u′y(x, y)yt. So,

P (z, t) ≤ u(x, y(1 + t))− u(x, y)− u′y(x, y)yt,

≤
(
u′y(x, θx)− u′y(x, y)

)
yt,

where θx ∈ [y, y(1 + t)]. Since the function y → u(x, y) is concave, y 7→ u′y(x, y) is non
increasing on C1(K \Re1) hence P (z, t) ≤ 0.

ii) Assume that (x, y) ∈ K and y > 0. Let zn := (xn, yn) ∈ K, yn > 0 be a
sequence convergent to z := (x, y). Since u is locally Lipschitz on K \Re1, we have for
n large enough P ((xn, yn), t) − P ((x, y), t) = o(1) uniformly on t ∈ (−1, 0). We now
consider t ≥ 0. Using the homogeneity of u, we obtain

u(xn, yn + ynt)− u(x, y + yt) = (1 + t)γ(u(
xn

1 + t
, yn)− u(

x

1 + t
, y)) = (1 + t)γo(1),

uniformly on t ≥ 0. Finally,

u(xn, yn)− u(x, y) = o(1),

and, similarly,
u′y(xn, yn)ynt− u′y(x, y)yt = o(t).

We deduce that

P ((xn, yn), t)− P ((x, y), t) = o(1)max (1, |t|).

This implies that H(u, zn)→ H(u, z) when n→∞. The case y = 0 is proved similarly,
using the boundedness of (uy(zn))n≥1 when yn → 0.

iii) The proof is similar than ii). 2

Let us also suppose the following:

Condition (II):

β >
γµ2

2σ2(1− γ)
+ h∗(γ),

where the function h∗ is given in Corollary 9.2. By Corollary 9.2, Condition (I) and
(II) implies the existence of a Lyapunov function with higher growing order than the
Bellman function and a classical supersolution to the HJB equation. Therefore, using
Proposition 6.2, we deduce that the Bellman function is finite on K and continuous
up to the boudary ∂K, see Theorem 7.4. Therefore, we deduce by Theorem 5.3 that
the HJB equation admits a unique concave solution in the class C1(K). Actually, we
prove that W ∈ C2(K) in Subsection 10.1. To do it, we first formulate some well
known results from the literature on the Bellman function. Recall that these results
hold provided that W is continuous, concave and monotone with respect to K. The
proofs (for continuous diffusion processes, see [12] and [9]) may be extended to the
processes with jumps, as we shall see.
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Theorem 10.2 The cone K can be splitted into three non-empty open disjoint cones
Ki, i = 0, 1, 2, such that K = K̄0∪K̄1∪K̄2 with K̄0 = cone {g̃1, g̃2}, K̄1 = cone {g1, g̃1}
and K̄2 = cone {g̃2, g2} for some vectors g̃1, g̃2. Moreover, K1 contains cone (g1, e1)
and K2 contains cone (2µσ−2(1− γ)−1(1 + λ)−1g2 + e2, g2) . On K1 ∪K2,W is C∞

and is given by

W (z) = a1u(p1z), onK1, (10.44)

W (z) = a2u(p2z), onK2, (10.45)

where a1, a2 are some constants such that

a1 ≥
(

β

1− γ

)γ−1

, a2 ≥
(

β

1− γ

)γ−1
1

(1 + λ)γ
.

Proof. We adapt the proof of [9, Proposition 4.8.2]. With ϕ(x) := a1u(p1x), we need
to show that

L0ϕ(x) + u∗(ϕx) +H(ϕ, x) ≤ 0,

for all x ∈ cone (g1, e1). By Lemma 10.1 (i), we have H(ϕ, x) ≤ 0. Moreover, as in the
proof of [9, Proposition 4.8.2], L0ϕ(x) + u∗(ϕx) ≤ 0 due to the lower bound given by
Lemma 3.2. This implies that ϕ is a classical super solution of our HJB equation on
the subset K̂ = cone (g1, e1). Moreover, by construction, W = ϕ on K̂. By Theorem
5.4, we deduce that W ≤ ϕ on K̂. Similarly, we follow the proof of [9, Proposition
4.8.2, statement b)] using Theorem 5.4. We then define K1, K2 as the largest sectors
on which (10.44) and (10.45) hold. 2

Lemma 10.3 If

W (e1) =
1

γ

(
β

1− γ

)γ−1

,

then the axis of the abscises is not the common boundary of K1 and K2.

Proof. We follow the proof of [9, Lemma 4.8.4 ]. Suppose the opposite. Then, the
function ψ(z) = a2(p2z)

γ coincides with W (z) on the sector cone (g2, e1). Then, we
may deduce the value of a2 using the assumption of the lemma. Hence, we deduce with
z = (x, y) that

L0ψ(z) + u∗(ψx(z)) = a2(p2z)
γ−1y

(
1

2
σ2(γ − 1)

y

p2z
+ µ

)
+H(ψ, z).

With z = (x, y) where x, y > 0 and x is fixed, the first term in the r.h.s. above admits
a lower bound cxy provided that y is sufficiently close to 0 and cx > 0 only depends
on x, a2, γ, µ and λ. On the other hand, we may write

H(ψ, z) =
y2

2

∫ M

−1

ψ′′(z + yθt)t
2π(dt) +

∫ ∞
M

P (z, t)π(dt), (10.46)

where |θt| ≤ |t| for all t ≥ −1, and P is defined by (10.43). We choose M large
enough such that π([M,∞)) is close to 0. Precisely, as ψy(z) = a2((1 +λ)x+ y)γ−1 is
bounded by a constant depending on x when y is small enough, we deduce that ψ(x, ·)
is Lipschitz and finally ∣∣∣∣∫ ∞

M

P (z, t)π(dt)

∣∣∣∣ ≤ εxy
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where εx is arbitrarily small provided that we choose M large enough. We fix M such
that εx ≤ cx/3. If t ∈ (−1,M), the factor ψ′′(z + yθt)|t| appearing in the first term
of the r.h.s. of (10.46) is also bounded by a constant depending on M but we may
choose y small enough such that ψ′′(z + yθt)|t|y is as small as we want. We finally
deduce that |H(ψ, z)| ≤ (2cx/3)y provided that y is small enough. This implies that
L0ψ(z) + u∗(ψx(z)) > 0 for some z small enough. This yields a contradiction. 2

10.1 Reduction to one variable and regularity of the value function.

Using the homogeneity property of the Bellman function we reduce our problem to
the case of one variable by considering the restriction of the Bellman function on the
intersection of the line {z=(x,y) : x+y=1} with the interior of K. Indeed, if we define
ψ(t) := W (1 − t, t), t ∈ ∆ := [− 1

λ , 1 + 1
λ ], so that we may reconstruct W from ψ by

the formula
W (x, y) = (x+ y)γψ(

y

x+ y
), (x, y) ∈ intK.

As in [12] and [9], we may show that ψ is the viscosity solution to the new HJB equation
obtained by the change of variables above:

max
i=0,1,2

li(f) = 0, (10.47)

with the two first-order operators

l1(f) := −λγf + (1 + λz)f ′, l2(f) := −λγf − (1 + λ− λz)f ′,

and the second-order operator

l0(f) := f2f
′′ + f1f

′ + f0f +
1− γ
γ

[γf − zf ′]
γ
γ−1 +H(z, f, f(z), f ′(z)),

where

f2(z) : =
1

2
σ2z2(1− z)2,

f1(z) : = −σ2(1− γ)z(1− z)(z − θ), θ := (1− γ)−1µσ−2,

f0(z) : =
1

2
σ2γ(γ − 1)z2 + γµz − β,

H(z, f, v, v′) : =

∫ ∞
−1

[
(1 + zt)γf(

z + zt

1 + zt
)1(1−z,z(1+t))∈K − v − zt(γv + (1− z)v′)

]
dπ(t).

Recall that W is concave by Theorem 5.5. Then, the function ψ defined above is
also concave on∆ and its derivatives ψ′, ψ′′ exist almost everywhere. Therefore, (10.47)
holds in the classical sense as stated in [4, Lemma 6.1]. Moreover, ψ being concave, it
admits left and right derivatives which are respectively left and right continuous and
such that the inequality D+ψ ≤ D−ψ holds and is strict only on a countable set.
Moreover, by Theorem 10.2, ψ(z) > 0 when z is sufficiently close to λ−1 or 1 + λ−1.
Since ψ is concave, we deduce that ψ > 0 on int∆.

We now adapt some results from the literature about regularity of the Bellman
function. We mainly focus on the extra term H(z, ψ, ψ(z), ψ′(z)).
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Proposition 10.4 The function ψ is continuously differentiable on the interval int∆
except, maybe at zero. If ψ′ has a discontinuity at 0, then

ψ(0) =
1

γ

(
1− γ
β

)1−γ
=

1

γ
κ1−γ∗ . (10.48)

Proof. We adapt the proof of [9, Lemma 4.8.6]. The only difference is due to the
operator H. Clearly, this does not change the proof when z /∈ {0, 1} as H takes fi-
nite values. When z = 1, we need to show the extra property that H(zn, ψ, ψ

′) →
H(1, ψ,D±ψ) as zn → 1 with zn < 1 and zn > 1 respectively. To see it, observe
that 1(1−z,z(1+t))∈K = 1, π(dt) a.s., if z ∈ [0, 1]. If the sequence zn > 1 is such
that zn → 1, then 1(1−zn,zn(1+t))∈K → 1 if t > −1. Moreover, if z bounded in a
neighbourhood of 1, the quantity z(1 + t)/(1 + zt) is uniformly bounded in t > −1
and in z. As D±ψ(1) exists, we then deduce that the integrand defining H(zn, ψ, ψ

′)
is uniformly bounded by cmin(1, |t|) for some constant c > 0 independent of n. This
implies that the dominated convergence theorem applies. Finally, when zn ↑ 1, we get
that H(zn, ψ, ψ

′)→ H(1, ψ,D−ψ). As in [9, Lemma 4.8.6], we finally get that

f0(1)ψ(1) + u∗(γψ(1)−D−ψ(1)) +H(1, ψ,D−ψ) ≤ 0, (10.49)

f0(1)ψ(1) + u∗(γψ(1)−D+ψ(1)) +H(1, ψ,D+ψ) ≤ 0, (10.50)

where u∗(x) := xγ(γ−1)−1

. Let α ∈ (0, 1) be such that p = αD−ψ + (1− α)D+ψ. By
(10.49) and (10.50), we deduce that

f0(1)ψ(1) + αu∗(γψ(1)−D−ψ(1)) + (1− α)u∗(γψ(1)−D−ψ(1)) +H(1, ψ, p) ≤ 0.

Since u∗ is strictly convexe, we get that f0(1)ψ(1)+u∗(γψ(1)−p)+H(1, ψ,D+ψ) < 0,
in contradiction with [9, Lemma 4.8.6, Inequality (4.8.20 ]. The conclusion follows in
the case where z = 1.

In the case of z = 0, we also need to verify the convergence of H(zn, ψ, ψ
′) to

H(0, ψ, ψ′) as zn → 0 with zn ∈ (0, 1). In this case, 1(1−zn,zn(1+t))∈K = 1 for all
n if t > −1. We verify that the quantity z(1 + t)/(1 + zt) is uniformly bounded in
t > −1 and z ≥ 0. With z > 0, we have 1 + tz ≥ z + tz = z(1 + t) > 0 hence
0 ≤ z(1 + t)/(1 + zt) ≤ 1. Therefore, the dominated convergence theorem also applies
and we get that f0(0)ψ(0) + u∗(γψ(0)) + H(0, ψ, 0) ≤ 0 and finally f0(0)ψ(0) +
u∗(γψ(0)) +H(0, ψ, 0) = 0 if ψ′ admits a discontinuity at zero. Since H(0, ψ, 0) = 0,
the conclusion follows. 2

A direct consequence of the proposition above is that the Bellman function is C1

on intK \R+e1. More precisely we have:

Corollary 10.5 The value function is C1 on intK \R+e1. If ψ is not C1 on R+e1,

then (10.48) holds. Furthermore, even if ψ is not C1 on R+e1, the partial derivative
Wx is defined and continuous, and the one-sided derivatives Wy(x, 0±) are also defined
and satisfy the one-sided continuity conditions

Wy(x, 0±) = lim
(ξ,η)→(x,0±)

Wy(ξ, η) = xγ−1
(
γψ(0) +D±ψ(0)

)
, x > 0.

Proof. The first claim is an immediate consequence of Proposition 10.4. When y = 0,
W (x, y) = xγψ(0) so that Wx(x, y) exists and is given by Wx(x, y) = γxγ−1ψ(0).



28 E. LEPINETTE and T.Q. TRAN

Otherwise, when y 6= 0 or equivalently z = z(x, y) = y/(x + y) 6= 0, then ψ is
differentiable at the point z hence W (x, y) = (x+ y)γψ(z(x, y)) exists and is given by

Wx(x, y) = γ(x+ y)γ−1ψ(z(x, y)) + (x+ y)γzx(x, y)ψ′(z(x, y)). (10.51)

Since D±ψ(0) exists, it is natural to take the convention 0 × ψ′(0) = 0 even if ψ′(0)
does not exist. It follows that (10.51) holds everywhere. In particular,Wx is continuous.

Similarly, when y 6= 0, i.e. z(x, y) 6= 0, Wy(x, y) exists and is given by

Wy(x, y) = γ(x+ y)γ−1ψ(z(x, y)) + (x+ y)γzy(x, y)ψ′(z(x, y)). (10.52)

The claim follows. 2

Lemma 10.6 The interior of K0 is nonempty.

Proof. It suffices to micmic the proof of [9, Lemma 4.8.7] by virtue of Proposition 10.4
and Lemma 10.3. 2

Since K0 6= ∅ and K1 contains cone (g1, e1), there exists two real numbers z1, z2 ∈
∆ satisfying

0 ≤ z1 < z2 < 1 +
1

λ
,

such that
K0 = {(x, y) ∈ intK : z1 <

y

x+ y
< z2}.

Moreover, we have

ψ(z) = κ1(1 + λz)γ , z ∈ [−λ−1, z1],

ψ(z) = κ2(1 + λ− λz)γ , z ∈ [z2, 1 + λ−1].

for some constants κi, i = 1, 2.

Proposition 10.7 The point e1 belongs to intK1.

Proof. We adapt the proof of [9, Proposition 4.8.8]. In the case where γW (e1) > κγ−1
∗ ,

the proof is based [9, Lemma 4.2.5.] that we need to verify for global viscosity solutions,
i.e. when replacing local minimum by global minimum. As a real-valued continuous
function admits a global minimum on a compact subset, we may easily adapt the proof
provided that [9, Lemma 4.2.4] also holds. To see it, we adapt the proof of the latter
replacing local by global domination. At last, if γW (e1) > κγ−1

∗ , we observe that
H(zn, ψ, ψ

′) → 0 as zn → 0. This is indeed shown in the last part of the proof of
Proposition 10.4. We then conclude. 2

Corollary 10.8 The function ψ is C1.

Proposition 10.9 We have l1ψ(z) < 0 and l2ψ(z) < 0 for all z ∈ (z1, z2).

Proof. We follow the reasoning given in [12, Section 6]. Using the same notations, as
ψ is C1, we deduce by [12, Proposition 6.2.] that the sub differential is a singleton, i.e.
∂W (x, y) = {W ′(x, y)}. Therefore, the functions θ+ and θ− defined in [12, Section 6]
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coincide with the function θ2 := (1 + λ)−1g2W
′ 2. We parametrize the half-line D2

originating at (0, g1) and parallel to (0, g2) as in [12], i.e.

D2 :=

{
(x(ρ), y(ρ)) :=

(
1− ρ

1 + λ
,− 1

1 + λ
+ ρ

)
, ρ ≥ 0

}
.

SinceW is concave, [12, Property (6.6)] holds hence the function ρ 7→ θ2(x(ρ), y(ρ))
is non increasing as stated by [12, Lemma 6.3, (6.7)]. Let us define the coefficient 3

ρ2 := inf{ρ : θ2(x(ρ), y(ρ)) = 0.

Observe that ρ2 ∈ (0,∞) by Theorem 10.2. By [12, Lemma 6.3 , (6.8)], and by con-
tinuity, we get the property θ2(x(ρ), y(ρ) = 0 for all ρ ≥ ρ2 since θ2 ≥ 0 on K and
ρ 7→ θ2(x(ρ), y(ρ)) is non increasing. Moreover, it is trivial that θ2(x(ρ), y(ρ)) > 0 for
all ρ < ρ2. This implies that the conic sector generated by the points ofD2 parametrized
by ρ ≥ ρ2 coincides with K2 of Theorem 10.2. Similarly, We parametrize the half-line
D1 originating at the (0, g2) and parallel to (0, g1):

D1 =

{
(x(ρ), y(ρ)) := (− 1

1 + λ
+ ρ, 1− ρ

1 + λ
), ρ ≥ 0

}
.

We also define θ1 := (1 + λ)−1g1W
′ and

ρ1 := inf{ρ : θ1(x(ρ), y(ρ)) = 0.

Similarly, we obtain that the conic sector generated by the points of D1 parametrized
by ρ ≥ ρ1 coincides with K1 of Theorem 10.2. Moreover, by definition of ρ1, we get
that θ1(x(ρ), y(ρ)) > 0 for all ρ < ρ1. This means that l1(ψ) < 0 and l2(ψ) < 0 on
(z1, z2). 2

In order to apply the Itô formula and construct an optimal control, we need for
the value function W to be C2 across the boundary of the cone K0, except at 0. To
do so, we introduce the following local operator deduced from the global operator l0
by freezing the value function ψ.

l̄0(f) := f2f
′′ + f1f

′ + f0f +
1− γ
γ

[γf − zf ′]
γ
γ−1 + H̄(z, f(z), f ′(z)), (10.53)

where H̄(z, v, v′) = H(z, ψ, v, v′). Although, by doing so, ψ is no more a viscosity
solution of the (new) local operator but it is only a viscosity solution in a weak sens
we precise:

Definition 10.10 A function v ∈ C(K) is a weak viscosity supersolution (resp. sub-
solution) of (4.12) on a subset K̃ ⊆ K if and only if, for every point x ∈ int K̃, the
inequality Lf(x) ≤ 0 (resp. Lf(x) ≥ 0) holds for any function φ ∈ C2(x) satisfying
(v − φ)(x) < 0 (resp. (v − φ)(x) > 0) such that the difference v − φ attains its global
minimum (resp. maximum) on K at x.

As usual, weak viscosity solution is both a weak viscosity supersolution and weak
viscosity subsolution. Adapting the proof of [9, Lemma 4.2.5], we get the following:

2 Note that the coefficient (1 + λ) in our paper corresponds to the coefficient (1 − λ)−1 =
(1− µ)−1 of [12].

3 Denoted by ρ0 in [12].
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Lemma 10.11 Let ψ ∈ C1(a, b) be a weak viscosity solution of the (local) equation

ψ′′(z) = G(ψ′(z), ψ(z), z)

on a nonempty subinterval (a′, b′) ⊆ (a, b). Suppose that z 7→ G(ψ′(z), ψ(z), z) is
continuous on [a′, b′]. Then, ψ ∈ C2(a′, b′) and the equation holds in the classical
sense.

Proof. It suffices to repeat the proof of [9, Lemma 4.2.5]. Indeed, with the same nota-
tions, the case of interest is when the minimum of ψ − ψε is negative. In that case, we
use the weak supersolution property. Otherwise, ψ − ψε ≥ 0, i.e. ψ ≥ ψε on [z1, z2],
which is the desired conclusion. Symmetrically, when the maximum of ψ − ψε is posi-
tive, we use the weak subsolution property. On the contrary, we have ψ ≤ ψε and the
conclusion follows. 2

Proposition 10.12 Suppose that l1ψ(z0) < 0 and l2ψ(z0) < 0 at some point z0 ∈
(0, 1 + λ−1]\{1}. Then, if π(R) <∞, ψ ∈ C2(z0).

Proof. By continuity, we may assume that l1ψ(z) < 0 and l2ψ(z) < 0 for all z in some
interval [a, b] where a < z0 < b. As z0 6= 1, we may suppose that 1 /∈ [a, b]. We show
that ψ is a weak viscosity solution to the equation l̄0ψ = 0 on [a, b].

First, as ψ is a viscosity supersolution to the equation maxi=0,1,2 liψ = 0, this is
also a viscosity supersolution to l0ψ = 0. Indeed, maxi=0,1,2 liφ ≤ 0 implies l0φ ≤ 0
for any test function φ.

Let us now consider any function f ∈ C2(z0) where z0 ∈ (a, b) and suppose that
that the difference ψ−f attains its global minimum on K at z0 such that (ψ−f)(z0) <
0. Let us consider f̃r := fξr+ψ(1−ξr) where, by the one dimensional version of Lemma
11.1, ξr ∈ [0, 1] is infinitely differentiable, vanishes outside the ball of center z0 and
radius r → 0 and ξr = 1 on a smaller ball around z0. Note that ψ − f̃r = (ψ − f)ξr.
Since ξr ≥ 0, (ψ − f̃r)(z) ≥ (ψ − f)(z0)ξr(z). As (ψ − f)(z0) < 0 and ξr ≤ 1,
(ψ−f)(z0)ξr(z) ≥ (ψ−f)(z0). This implies that (ψ−f̃r)(z) ≥ (ψ−f̃r)(z0), i.e. ψ−f̃r
admits a global minimum at z0. Therefore, l0f̃r(z0) ≤ 0. Notice that by assumption
f(z0) > ψ(z0) so that, by continuity of f , we may choose r → 0 and ε > 0 small
enough such that f̃r(z) ≥ ψ(z)− εh(z) on z ∈ Dh where h is a continuous function we
may choose arbitrarily. Actually, we choose h on a set Dh 3 z0 such that h(z0) = 1.
Precisely, if z0 > 1, h is defined on Dh = [1,∞) with h = 0 on [1, (z0+1)/2]. If z0 < 1,
h is defined on Dh = [0, 1] and h = 0 on [(z0 + 1)/2, 1]. Notice that the range of the
mapping δ : t 7→ (z0 + z0t)/(1 + z0t) is Dh when 1 + z0t > 0 and limt→∞ δ(t) = 1.
Therefore, the integral∫ ∞

−1

(1 + z0t)
γh(

z0 + z0t

1 + z0t
)1(1−z0,z0(1+t))∈Kdπ(t)

is well defined and finite as h[(z0 + z0t)/(1 + z0t)] vanishes when (z0 + z0t)/(1 + z0t)
is closed to 1, i.e. when t is closed to ∞. From the inequalities l0f̃r(z0) ≤ 0 and
f̃ ≥ ψ− εh on z ∈ Dh, we then deduce that l̄0f(z0) ≤ 0 as ε→ 0, i.e. we have replaced
f̃ by ψ in the global operator.

Since ψ is a viscosity subsolution of the equation maxi=0,1,2 liψ = 0, for any
test function dominating ψ, we have maxi=0,1,2 liφ ≥ 0. Moreover, maxi=1,2 liφ =
maxi=1,2 liψ < 0 since l1 and l2 are local operators only depending on the values
of ψ and its first derivative at the considered point z ∈ (a, b). It follows that l0φ =
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maxi=0,1,2 liφ ≥ 0. As above, we deduce that ψ is a weak viscosity subsolution of the
equation l̄0ψ = 0 on [a, b] hence ψ is finally a weak viscosity solution of the equation
l̄0ψ = 0 on [a, b].

Let us define the local operator ζ(f, z) := l̄0f(z) − f2(z)f ′′(z). Since π(R) < ∞,
we deduce by Corollary 10.8 and Lemma 10.1 (ii) that z 7→ ζ(ψ, z) is continuous on
(0, 1 + λ−1]. We deduce that z 7→ G(ψ′(z), ψ(z), z) := −ζ(f, z)/f2(z) is continuous.
Recall that the operator which appears in the definition of G is local as we have frozen
the dependence in the test function ψ before. Therefore, by the weak solution property
and Lemma 10.11, ψ ∈ C2[a, b]. 2

The following result corresponds to [12, Proposition 8.5]. Its proof may be easily
adapted to the case with jumps. To do so, we use the continuity of the function z →
H(z, ψ, ψ′) as stated by Lemma 10.1 i).

Proposition 10.13 Suppose that π(R) <∞. The function ψ is C2 on the set (z1, z2)\
{1} and satisfies the HJB equation ψ = 0 on this set in the classical sense.

The proposition above implies that the value function satisfies the HJB equation
L0(W ) + U∗(Wx) = 0 on K0 \ Re2 in the classical sense and it is C2 on this set.
It remains to study W on the set Re2. To do so, we follow the proof of in [12, Theo-
rem 9.1].

Proposition 10.14 The second derivative Wyy is well defined and is continuous ac-
cross R+e2. Moreover, W satisfies the equation L0(W ) + U∗(Wx) = 0 on K0 in the
classical sense.

Finally, we deduce the following:

Corollary 10.15 Suppose that π(R) <∞. Then, the value function W is C2.

10.2 Optimal control

The following important result provides an optimal policy for the optimization problem.
The proof is based on the resolution of a Skorohod problem described in Appendix.

Theorem 10.16 Suppose that the boundaries of K0 are different from the x- and y-
axes. Let (x, y) ∈ K̄0, then the Skorokhod problem (11.62) with σ(Vt) := (−Wx(Vt)

1
γ−1 , Vt)

admits a unique solution. Moreover, the portfolio process V participating in the solution
of this problem is an optimal portfolio. An optimal strategy is given by the formula

Bt =

∫ t

0

g(Vs)dks, (10.54)

ct = W
1

γ−1
x , (10.55)

where W is the Bellman function.

Proof. Existence of a solution to the Skorohod problem holds by Theorem 11.4.
Note that θπ =∞ since V +

t ∈ K0, ∀ t, andWx is positive (hence (10.55) makes sense).
We shall only consider the case where K0 is included in the first quadrant. Otherwise,
we refer to Remark 10.18. By Propositions 10.9 and 10.13, the function ψ coincides
on the interval (z1, z2) with a C2-function ψ̃ defined on (−λ−1, 1 + λ−1). Indeed, it
suffices to replace ψ by suitable parabolic functions outside (z1, z2). In particular, since
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ψ̃′ is Lipschitz on [z1, z2] and W (z) = (x + y)γ ψ̃(z) where z = y/(x + y) on K0, we
also deduce that W ′ is also Lipschitz on K0. Moreover, by [9, Lemma 4.7.1,Corollary
4.7.6], W 6= 0 implies that W ′(z) ∈ K∗\{0} ⊆ (0,∞)2 hence W ′x(z) > 0 for all z. It
follows that σ is locally Lipschitz on the set K0. We then deduce that the Skorokhod
problem admits a unique solution. We check the second assertion. Applying Lemma
4.8, since the term R of the expansion is negative, we have

e−βtW (V +
t ) + Jπt ≤ W (x, y) +Nt

+

∫ t

0

e−βu
[
L0W (Vu−)−W ′(Vu−)cu + U(cu)

]
du.

Moreover, when c is defined by (10.55), we haveWx(Vu−)cu+U(cu) = U∗(cu). There-
fore, the last integral term in the equality above is zero by virtue of Proposition 10.14.
It remains to prove that N is a martingale and

lim
n→∞

Ee−βtnW (V +
tn )→ 0, (10.56)

for a sequence of real numbers tn → ∞. To prove (10.56), we observe that |W (z)| ≤
κ|z|γ and |Wx(z)| ≤ κ|z|γ−1 where κ is an upper bound of W and Wx on the inter-
section ∆0 of the set K0 with the line x+ y = 1. This is deduced from the continuity
of W on ∆0 and the fact that ψ′(0+) < ∞. We deduce the existence of a constant κ
such that

E
∫ ∞
0

e−βtW (V +
t )dt ≤ κE

∫ ∞
0

e−βt|V +
t |

γdt ≤ κE
∫ ∞
0

e−βtu(ct)dt ≤ κW (x). (10.57)

Since W is finite, this implies the existence of a sequence tn ↑ ∞ such that (10.56)
holds. Details of this assertion are given in Lemma 10.17. We now prove that Nt is a
true martingale. Indeed, by a similar argument, we have

|zWy(z)| ≤ κ|z|γ ≤ (1 + |z|), z ∈ K0.

Hence, we infer that the stochastic process
∫ ·
0
e−βuWy(V 2

u−)V 2
u−σdWu is a martingale.

The second process definingN is the integral with respect to the Lévy measure. Observe
that, for each fixed s, we have I(Vs− , z) = 1 (because V +

s ∈ K̄0, ∀ s). Moreover, using
the finite Taylor expansion, we get∣∣∣W (Ṽs− + diag (Ṽs−)z)−W (Ṽs−)

∣∣∣ ≤ |W ′(η)||diag (Ṽs−)z|,

where η ∈ [Ṽs− , Ṽs− + diag (Ṽs−)z] satisfies |η| ≤ |Ṽs− |(1 + |z|). It follows that∣∣∣W (Ṽs− + diag (Ṽs−)z)−W (Ṽs−)
∣∣∣ ≤ κ|η|γ−1|diag (Ṽs−)z| ≤ κ|Ṽs− |

γ(1 + |z|)γ−1|z|,

where the last inequality is deduced from the inequality |W ′(η)| ≤ κ|η|γ−1. We then
obtain that ∣∣∣W (Ṽs− + diag (Ṽs−)z)−W (Ṽs−)

∣∣∣ ≤ κ|Ṽs− |γ |z|.
Therefore, as the Lévy process is of finite activity and (10.57) holds,

E
∫ t

0

∫
R

e−βu
∣∣∣W (Ṽs− + diag (Ṽs−)z)I(Ṽs− , z)−W (Ṽs−)

∣∣∣π(dz)ds ≤ κW (x) <∞.
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By [8, Theorem I.1.33 b., p73], we deduce that the purely discontinuous local martingale
N satisfies Evar(N)∞ <∞ hence is a martingale. 2

To complete the proof of the theorem, we need the following lemma

Lemma 10.17 Suppose that
∫∞
0
Xudu < ∞ where Xu = Ee−βuW (Vu+) ≥ 0. Then

limt→∞Xt → 0.

Proof. Observe that e−βtW (V +
t ) + Jπt = W (x) + Nt. With Yu = e−βuW (Vu+), we

get that for u ≥ s, Yu − Ys = Nu − Ns − (Jπu − Jπs ) where Jπu − Jπs ≥ 0. Since N
is a martingale, we deduce that Xu − Xs ≤ 0, i.e. X is decreasing. Therefore, the
integrablity of

∫∞
0
Xudu ensures that limt→∞Xt → 0. Indeed, if limt→∞Xt → c > 0,

then
∫∞
0
Xudu ≥

∫∞
0
cdu =∞, hence a contradiction. 2

Remark 10.18 The situations where x ∈ Ki, i = 1, 2, are easily reduced to the one
treated in the theorem above. Indeed, recall that the function W restricted on the set Ki
is constant along the direction gi, i = 1, 2. Instead of considering the initial position x ∈
Ki, i = 1, 2, we consider the point x̃ lying on the boundary of K0 by projecting x onto
K0 parallel to gi. This translation does not change the value of the Bellman function,
meaning thatW (x) = W (x̃). Therefore, the optimal strategy for x is constructed simply
by adding the initial jump ∆B0 := x̃−x to the optimal strategy given by the Skorokhod
problem with the initial point x̃.

11 Appendix: the Skorokhod problem

11.1 Skorokhod problem for continuous diffusion processes

The construction of the optimal control for the two-dimensional optimal consumption
problem we consider in Section 10 is based on the resolution of the so-called Skorokhod
problem. This problem is about existence and uniqueness of the solution to a S.D.E.
with reflection. We first recall some known results for the continuous diffusion case.
We provide the proof for the sake of completeness. In the next section, we extend these
results to finite activity pure-jumps Lévy processes.

Let γ : ∂K0 7→ R2 be a vector-valued function with g(x) = −gi on (∂K0∩∂Ki)\{0}
and γ(0) = 0. Let Y be the process Yt = (Y 1

0 , Y
2
0 ) + (t,Wt), t ≥ 0, where W is

a standard Brownian motion. Let σ = R2 7→ R2 × R2 be a matrix-valued function
which is Lipschitz-continuous.

On the closed cone K̄0 of Section 10, we consider the Skorokhod problem formulated
as follows: find a pair of adapted continuous processes V ∈ R2 and k ∈ R, starting
respectively from x ∈ K̄0 and zero, such that k is non decreasing and

dVt = σ(Vt)dYt + γ(Vt)dkt, (11.58)

dkt = IVt∈∂K0
dkt, (11.59)

Vt ∈ K0 , ∀t ≥ 0. (11.60)

For any compact subset C of R2 and for all ε > 0, let us define

Cε :=
⋃
c∈C

B(c, ε), (11.61)

where B(c, ε) is the closed ball of radius ε and center c. Recall the well known result:
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Lemma 11.1 For any compact subset C of R2 and for all ε > 0, there exists χε ∈
C∞(R2, [0, 1]) such that χε = 1 on Cε and χε vanishes outside C2ε.

The aim of this section is to show that the R.S.D.E (11.58) admits a solution on the
set K0 which is trapped at zero. To do so, we shall prove several intermediate lemmas.
The main proof is based on the existence of a solution to a R.S.D.E. on a bounded
domain G if the direction of the reflection is given by a function γ ∈ C2 satisfying the
following condition (see [5]):

C1: γ ∈ C2(R2,R2) and there is b ∈ (0, 1) such that⋃
0≤t≤b

B(x− tγ(x), tb) ⊆ Gc = R2 \G, for allx ∈ ∂G.

Theorem 11.2 The Skorokhod problem (11.58) admits a solution which is trapped at
zero.

Proof. Let us introduce the polygons

Kn
0 := K0 ∩ {(x, y) : ε−1

n ≤ x+ dy ≤ εn},

where εn → ∞. Let D be the bisector of the cone Kn
0 and d > 0 such that D :=

{(x, y) : −dx+y = 0}. Let x ∈ ∂Kn
0 be a starting point. The case x = 0 being trivial,

we assume that x 6= 0 hence x ∈ Kn
0 if n is large enough.

• Step 1. There exists closed regions K̃n
0 such that Kn

0 ⊆ K̃n
0 ⊆ Kn+1

0 which satisfy
Condition C1 for some reflection function γn such that γn(x)→ γ(x) for all x ∈ ∂K0.
Indeed, we denote by an and bn the two points of ∂K0 ∩ {(x, y) : εn = x+ dy} such
that yan > ybn . Observe that bn is the symmetric of an with respect to the bisector D.
Similarly, cn and dn are the two symmetric points of ∂K0 ∩ {(x, y) : ε−1

n = x+ dy}.
We then define K̃n

0 as the polygon

K̃n
0 := K0 ∩ {(x, y) : (ε−1

n + ε−1
n+1)/2 ≤ x+ dy ≤ (εn + εn+1)/2},

and denote by ãn and b̃n the two points of ∂K0 ∩ {(x, y) : (εn + εn+1)/2 = x+ dy}
such that yãn > yb̃n . Similarly, c̃n and d̃n are the two points of ∂K0 ∩{(x, y) : (ε−1

n +

ε−1
n+1)/2 = x+ dy} such that yc̃n > yd̃n .

Let η1 be the outward normal to ∂K0 ∩ K1 and η2 be the outward normal to
∂K0∩K2. We consider a unit vector g3 such that g3η1 > 0 and g3(1, d) > 0. Similarly,
we define g4 as a unit vector such that g4η2 > 0 and g4(1, d) > 0, g5 is a unit vector
such that g5η1 > 0 and g5η2 > 0. Let us introduce the smooth function γn(x) =
(γ1n(x), γ1n(x)) with

γ1n(x) := −
(
g1χ

1(x) + g2χ
2(x) + g3(1− χ1(x))(1− χ4(x))χ3(x)

)
,

γ2n(x) := −
(
g4(1− χ2(x))(1− χ3(x))χ4(x) + g5(1− χ1(x))(1− χ2(x))χ5(x)

)
.

By Lemma 11.1, χi ∈ C∞(R2, [0, 1]) for all i = 1, · · · , 5,. Moreover, with the notation
given by (11.61) above, if γn is sufficiently closed to 0, these functions satisfy :

χ1(x) = 1 on [dn, bn]γn and χ1(x) = 0 on R2\[dn, bn]2γn ,
χ2(x) = 1 on [cn, an]γn and χ2(x) = 0 on R2\[cn, an]2γn ,
χ3(x) = 1 on (Cn3 )γn :=

(
[ẽn, b̃n] ∪ [̃bn, bn]

)
γn

and χ3(x) = 0 on R2\(Cn3 )2γn ,
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χ4(x) = 1 on (Cn4 )γn := ([ẽn, ãn] ∪ [ãn, an])γn and χ4(x) = 0 on R2\(Cn4 )2γn .
χ5(x) = 1 on (Cn5 )γn :=

(
[cn, c̃n] ∪ [c̃n, d̃n] ∪ [d̃n, dn]

)
γn

and χ5(x) = 0 onR2\(Cn5 )2γn .

Let us denote by η(x) the outward normal at each point of ∂K̃n
0 . The mapping

η : ∂K̃n
0 7→ R2 is continuous except at the points ãn, b̃n, c̃n, d̃n where it admits left

and righ limits we denote by η(x±). Moreover, by construction we have γn(x)η(x−) > 0
and γn(x)η(x+) > 0 for all x ∈ ∂K̃n

0 .
Observe that

d(x− tγn(x), ∂K̃n
0 ) ≥ min

x∈∂K̃n
0

d(x− tγn(x), ∂K̃n
0 ) := mn, ∀x ∈ ∂K̃n

0 .

By a compactness argument, mn = d(x∞ − tγn(x∞), ∂K̃n
0 ) for some x∞ ∈ K̃n

0 . Since

d(x∞ − tγn(x∞), ∂K̃n
0 ) ≥ −tγn(x∞)η(x∞±) = 2bt,

where 2b := −γn(x∞)η(x∞±) > 0, we finally deduce that Condition C1 holds.

• Step 2. By virtue of [5, Corollary 5.2], since σ is globally Lipschitz on the bounded
domain K̃n

0 , there exists a unique strong solution (V n, kn), starting from x, to the
reflected S.D.E. (11.58) on the domain K̃n

0 . Let us introduce

τn := inf{t : V nt (1, d) = ε−1
n },

ρn := inf{t : V nt (1, d) = εn},

and µn := τn ∧ ρn. On the intervall [0, µn], the process (V n, kn) is solution to (11.58)
on the domain K̃n+1

0 with respect to γn+1. Indeed, on the intervall [0, µn], the re-
flection only occurs on the boundary ∂K0 on which γn+1 and γn coincides with γ.
By the uniqueness property given by [5, Corollary 5.2], we deduce that (V n, kn) =
(V n+1, kn+1) on [0, µn]. It follows that µn ≤ µn+1. The rest of the proof is done as
in [9, page 229]. 2

11.2 Skorokhod problem for pure-Jumps Lévy processes

The setting of this subsection is given in Subsection 11.1. Let γ : ∂K0 7→ R2 be a
vector-valued function with g(x) = −gi on (∂K0 ∩ ∂Ki)\{0} and γ(0) = 0. Recall
that, as the Lévy process we consider is of finite activity, it can be represented as the
sum of a compound poison process and a Wiener process. So, consider a process Y
defined by

Yt = (Y 1
0 , Y

2
0 , 0) + (t,Wt, Nt), t ≥ 0,

whereW is a standard Brownian motion and N is a pure jump process of finite activity.
This means that

Nt =

Ñt∑
k=1

∆NTk ,

where ∆NTk are i.i.d. random variables and Ñt =
∑
k 1Tk≤t is a Poisson process with

jump stopping times (Tk)k≥1. Let σ = R2 7→ R2 × R2 × R2 be a matrix-valued
function which is Lipschitz-continuous.

We consider the Skorokhod problem on K0 formulated as follows: find a pair of
adapted làdlàg (resp. càglàd) processe V , starting from x ∈ K0 and real-valued process
k, starting at zero and increasing, such that
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dVt = σ(Vt−)dYt + γ(Vt)dkt,

dkt = IVt∈K\intK0
dkt,

V +
t ∈ K̄0, ∀t ≥ 0. (11.62)

The goal is to show that this R.S.D.E has a solution on the set K̄0. To do so, we
shall use the following:

Lemma 11.3 [Projection onto K0 parallel to −K]
Assume that K ⊆ R2 is a constant cone satisfying the hypothesis of the introduction
and K0 ⊆ K is a closed cone with ∂K0 ⊆ intK and intK0 6= ∅. For every x ∈ K,
there exists a unique y := P−KK0

(x) ∈ K0 such that

‖x− y‖ = min
k∈K
{‖x− k‖ : x− k ∈ K}.

We omit the proof which is standard. It is easily observable that the direction of
x− P−KK0

(x) is given by g2 if x ∈ K2 and g1 if x ∈ K1.

Theorem 11.4 There exists a unique solution to the Skorokhod problem (11.62).

Proof. Let (Tk)k≥1 be the jump stopping times of the process Y . Assume that we have
already constructed a solution (V, k) to (11.62) on the interval [0, Tk). Define

VTk := VTk− + σ(VTk−)∆YTk .

Let us introduce
VTk+ = P−KK0

(VTk) ∈ L0(R2,FTk) ∈ ∂K0,

where the projection operator PK0
is defined in Lemma 11.3. We define ∆+kTk by the

equality
∆+VTk := γ(VTk)∆+kTk .

Applying Theorem 11.2 and the strong markov property, there exists a solution (Ṽ , k̃)
to (11.62) from the starting point Ṽ0 := VTk+ with respect to Ñt := NTk+t − NTk
and W̃t := WTk+t −WTk defined on the interval [0, T k+1 − T k]. We then define

Vt := Ṽt−Tk , and kt := kTk+ + k̃t−Tk , t ∈ (T k, T k+1).

Uniqueness follows from uniqueness on each interval [Tk, Tk+1). 2
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