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OPTIMAL HARDY-SOBOLEV INEQUALITIES ON COMPACT RIEMANNIAN MANIFOLDS

Given a compact Riemannian manifold (M, g) of dimension n ≥ 3, a point x 0 ∈ M and s ∈ (0, 2), the Hardy-Sobolev embedding yields the existence of A, B > 0 such that (1)

for all u ∈ H 2 1 (M ). It has been proved in Jaber [20] that A ≥ K(n, s) and that one can take any value A > K(n, s) in (1), where K(n, s) is the best possible constant in the Euclidean Hardy-Sobolev inequality. In the present manuscript, we prove that one can take A = K(n, s) in (1).

Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3 without boundary, d g be the Riemannian distance on M and H 2 1 (M ) be the Sobolev space defined as the completion of C ∞ (M ) for the norm u → u 2 + ∇u 2 . We fix x 0 ∈ M, s ∈ (0, 2) and let 2 ⋆ (s) := 2(n-s) n-2 be the critical Hardy-Sobolev exponent. We endow the weighted Lebesgue space L p (M, d g (•, x 0 ) -s ) with the norm u → u p,s := M |u| p d g (•, x 0 ) -s dv g 1 p . It follows from the Hardy-Sobolev inequality that the Sobolev space H 2 1 (M ) is continuously embedded in the weighted Lebesgue space L p (M, d g (•, x 0 ) -s ) if and only if 1 ≤ p ≤ 2 ⋆ (s), and that this embedding is compact if and only if 1 ≤ p < 2 ⋆ (s). From the embedding of

for all u ∈ H 2 1 (M ). We let K(n, s) be the optimal constant of the Euclidean Hardy-Sobolev inequality, that is

, where ω n-1 is the volume of the unit sphere on R n and Γ is the Gamma function.

 and Talenti [26] for the case s = 0, and the value for s ∈ (0, 2) has been computed by Lieb (Theorem

in

 [START_REF] Lieb | Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[END_REF]). Following Hebey [START_REF]Non linear analysis on Manifolds : Sobolev spaces and inequalities[END_REF], we define A 0 (M, g, , x 0 , s) to be the best first constant of the Riemannian Hardy-Sobolev inequality, that is (4) A 0 (M, g, x 0 , s) := inf{A > 0 ∃B > 0 such that (2) holds for all u ∈ H 2 1 (M )}. For the Sobolev inequality ((2) when s = 0), Aubin proved in [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF] that A 0 (M, g, x 0 , 0) = K(n, 0). When s ∈ (0, 2), the author proved in [START_REF] Jaber | Hardy-Sobolev equations on compact Riemannian manifolds[END_REF] that A 0 (M, g, x 0 , s) = K(n, s). In particular, for any ǫ > 0, there exists B ǫ > 0 such that we have :

(5) u 2 2 ⋆ (s),s ≤ (K(n, s) + ǫ) M |∇u| 2 g dv g + B ǫ M u 2 dv g
for all u ∈ H 2 1 (M ). See Thiam [START_REF] Thiam | Hardy and Hardy-Soboblev Inequalities on Riemannian Manifolds[END_REF] for a version with an additional remainder. The constant B ǫ obtained in [START_REF] Jaber | Hardy-Sobolev equations on compact Riemannian manifolds[END_REF] goes to +∞ as ǫ → 0, and therefore the method used in [START_REF] Jaber | Hardy-Sobolev equations on compact Riemannian manifolds[END_REF] does not allow to take ǫ = 0 in [START_REF] Caffarelli | First order interpolation inequality with weights[END_REF].

A natural question is to know whether the infimum A 0 (M, g, x 0 , s) is achieved or not, that is if there exists B > 0 such that inequality [START_REF] Aubin | On the best Sobolev inequality[END_REF] holds for all u ∈ H 2 1 (M ) with A = K(n, s). We prove the following : Theorem 1. Let (M, g) be a smooth compact Riemannian Manifold of dimension n ≥ 3, x 0 ∈ M , and s ∈ (0, 2). We let 2 ⋆ (s) := 2(n-s) n-2 be the critical Hardy-Sobolev exponent. Then there exists B 0 (M, g, s, x 0 ) > 0 depending on (M, g) and s such that

(6) M |u| 2 ⋆ (s) d g (x, x 0 ) s dv g 2 2 ⋆ (s) ≤ K(n, s) M |∇u| 2 g dv g + B 0 (M, g, s, x 0 ) M u 2 dv g for all u ∈ H 2 1 (M ).
When s = 0, Theorem 1 has been proved by Hebey-Vaugon [START_REF] Hebey | The best constant problem in the Sobolev embedding theorem for complete Riemannian Manifolds[END_REF] for best constant in the Sobolev embedding H 2 1 (M ) ⊂ L 2 ⋆ (M ), 2 ⋆ = 2n/(n -2). The best constant problem in the Sobolev embedding H p 1 (M ) ⊂ L p ⋆ (M ), p ⋆ = pn/(n -p) (n > p > 1) has been studied by Druet [START_REF] Druet | The best constants problem in Sobolev inequalities[END_REF] (see also Aubin-Li [START_REF] Aubin | On the best Sobolev inequality[END_REF]) answering a conjecture of Aubin in [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF]. The corresponding question for the embedding H 2 2 (M ) ⊂ L 2 ♯ (M ), 2 ♯ = 2n/(n -4) has been studied by Hebey [START_REF]Sharp Sobolev inequalities of Second Order[END_REF], and for the Gagliardo-Nirenberg inequalities by Brouttelande [START_REF] Brouttelande | The best-constant problem for a family of Gagliardo-Nirenberg inequalities on a compact Riemannian manifold[END_REF] and Ceccon-Montenegro [START_REF] Ceccon | Optimal Riemannian L p -Gagliardo-Nirenberg inequalities revisited[END_REF].

There is an important literature about sharp constants for inequalities of Hardy-Sobolev type on domains of the Euclidean flat space R n . A general discussion is in the monograph [START_REF] Ghoussoub | Functional inequalities: new perspectives and new applications[END_REF] by Ghoussoub-Moradifam. Hardy-Sobolev inequalities are a subfamily of the Caffarelli-Kohn-Nirenberg inequalities (see [START_REF] Caffarelli | First order interpolation inequality with weights[END_REF]). The best constants and extremals for these inequalities on R n are well understood in the class of radially symmetric functions (see Catrina-Wang [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF], Horiuchi [START_REF] Horiuchi | Best constant in weighted Sobolev inequality with weights being powers of distance from the origin[END_REF] and Chou-Chu [START_REF] Chou | On the best constant for a weighted Sobolev-Hardy inequality[END_REF]). However, there are situations when extremals are not radially symmetrical as discovered by Catrina-Wang [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF]. A historical survey on symmetry-breaking of the extremals is in Dolbeault-Esteban-Loss-Tarantello [START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF]. For Hardy-Sobolev-Maz'ya inequalities, we refer to [START_REF] Maz'ja | Sobolev spaces[END_REF], Badiale-Tarantello [START_REF] Badiale | A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics[END_REF], Musina [START_REF] Musina | Existence of extremals for the Maz'ya and for the Caffarelli-Kohn-Nirenberg inequalities[END_REF] and Tertikas-Tintarev [START_REF] Tertikas | On the existence of minimizers for the Hardy-Sobolev-Maz'ya inequality[END_REF].

A last remark is that it follows from the analysis of the author in [START_REF] Jaber | Hardy-Sobolev equations on compact Riemannian manifolds[END_REF] 

that (7) B 0 (M, g, s, x 0 ) ≥ K(n, s) (n-2)(6-s) 12(2n-2-s) Scal g (x 0 ) if n ≥ 4 the Green's function's mass of ∆ g + B0(M,g,s,x0) K(3,s) is nonpositive if n = 3,
where Scal g (x 0 ) is the scalar curvature at x 0 . The mass is defined at the end of Section 2.

The proof of Theorem 1 relies on the analysis of blowing-up families of solutions to critical nonlinear elliptic equations. In Section 1, we prove a general convergence theorem for blowing-up solutions to Hardy-Sobolev equations. In Section 2, we prove Theorem 1 by adapting the arguments of Druet (in Druet [START_REF] Druet | The best constants problem in Sobolev inequalities[END_REF]). We prove [START_REF] Ceccon | Optimal Riemannian L p -Gagliardo-Nirenberg inequalities revisited[END_REF] in Section 2.

1. Blow-up around x 0

We let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3, x 0 ∈ M , s ∈ (0, 2). We consider a family (u α ) α>0 in H 2 1 (M ) such that for all α > 0, we have u α ≥ 0, u α ≡ 0 and u α is a solution to the problem (8)

∆ g u α + αu α = λ α u 2 ⋆ (s)-1 α dg (x,x0) s λ α ∈ (0, K(n, s) -1 ) , u α 2 ⋆ (s),s = 1.
Here ∆ g := -div g (∇) is the Laplace-Beltrami operator. The existence of such a sequence of u α follows from the hypothesis of Section 2 and the existence Theorem 4 of Jaber [START_REF] Jaber | Hardy-Sobolev equations on compact Riemannian manifolds[END_REF]. It follows from the regularity and the maximum principle of [START_REF] Jaber | Hardy-Sobolev equations on compact Riemannian manifolds[END_REF] that, for any α > 0,

u α ∈ C 0,β (M ) ∩ C 2,γ loc (M \ {x 0 }), β ∈ (0, min(1, 2 -s)), γ ∈ (0, 1), and u α > 0.
Note that if ∂M = φ then we get the same result as Theorem 4 of Jaber [START_REF] Jaber | Hardy-Sobolev equations on compact Riemannian manifolds[END_REF] providing that x 0 ∈ M \ ∂M and for all α > 0, u α|∂M ≡ 0.

We define now I α as [START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF] v

∈ H 2 1 (M ) \ {0} → I α (v) := M |∇v| 2 g dv g + α M v 2 dv g v 2 2 ⋆ (s),s
.

In particular, I α (u α ) = M |∇u α | 2 g dv g + α M u 2 α dv g = λ α for all α > 0. We claim that [START_REF] Druet | The best constants problem in Sobolev inequalities[END_REF] u α ⇀ 0 weakly in H 2 1 (M ) as α → +∞. We prove the claim. As one checked, (u α ) α>0 is bounded in H 2 1 (M ). Therefore, there exists

u 0 ∈ H 2 1 (M ) such that u α ⇀ u 0 in H 2 1 (M ) as α → +∞. By I α (u α ) = λ α , we get that u α 2 ≤ C 1 α -1/2 , where C 1 > 0 is independent of α. Since H 2 1 (M ) is compactly embedded in L 2 (M )
, we then get that u 0 2 = 0. Hence u 0 ≡ 0. This proves the claim.

Since M is compact and u α ∈ C 0 (M ) for all α > 0, there exist x α ∈ M and µ α > 0 such that [START_REF] Fillippucci | On a p-Laplace equation with multiple critical nonlinearities[END_REF] max

M (u α ) = u α (x α ) = µ 1-n 2 α .
In the sequel, we denote by B ρ (z) ⊂ M the geodesic ball of radius ρ centered at z.

Proposition 1. We let (u α ) α>0 be as in [START_REF] Chou | On the best constant for a weighted Sobolev-Hardy inequality[END_REF].

Then u α → 0 as α → +∞ in C 0 loc (M \ {x 0 }).
Proof. We consider y ∈ M \ {x 0 }, ρ y = 1 3 d g (y, x 0 ). By (8), we have that ∆ g u α ≤ F α u α in B 2ρy (y), where F α is the function defined by

F α (x) = λ α u 2 ⋆ (s)-2 α /d g (•, x 0 ) s .
For any r ∈ n 2 , n 2-s , we have that B2ρ y (y) F r α dv g ≤ C 2 where C 2 > 0 is a constant independent of α. By Theorem 4.1 in Han-Lin [START_REF] Han | Elliptic partial differential equations[END_REF] (see also Lemma 4 in the Appendix), it follows that there exists C 3 = C 3 (n, s, y, C 2 ) > 0 independent of α such that, up to a subsequence, we have that max Bρ y (y)

u α ≤ C 3 u α L 2 (B2ρ y )(y) .
Since u α ⇀ 0 in H 2 1 (M ) as α → +∞ then by the last inequality, we get

lim α→+∞ u α L ∞ (Bρ y (y)) = 0.
Proposition 1 follows from a covering argument.

Proposition 2. We let (u α ) α>0 be as in [START_REF] Chou | On the best constant for a weighted Sobolev-Hardy inequality[END_REF]. Then sup M u α = +∞ as α → +∞.

Proof. We proceed by contradiction and assume that sup M u α → +∞ as α → +∞.

Then there exists C 4 > 0 independent of α such that u α ≤ C 4 . Since u α ⇀ 0 as α → +∞ in H 2 1 (M ) then by Dominated Convergence Theorem we get that lim α→+∞ u α 2 ⋆ (s),s = 0. A contradiction since for all α > 0, u α 2 ⋆ (s),s = 1. This ends the proof of Proposition 2.

Propositions 1 and 2 immediately yield the following: Proposition 3. We let (u α ) α>0 be as in [START_REF] Chou | On the best constant for a weighted Sobolev-Hardy inequality[END_REF]. Then x α → x 0 as α → +∞.

In the sequel, we fix R 0 ∈ (0, i g (M )), where i g (M ) > 0 is the injectivity radius of (M, g). We fix η 0 ∈ C ∞ c (B 3R0/4 (0) ⊂ R n ) such that η ≡ 1 in B R0/2 (0). The main result of this section is the following: Theorem 2. We let (u α ) α>0 be as in [START_REF] Chou | On the best constant for a weighted Sobolev-Hardy inequality[END_REF]. We consider a sequence (z α ) α>0 ∈ M such that lim α→+∞ z α = x 0 . We define the function ûα on B R0µ -1 α (0) ⊂ R n by [START_REF] Ghoussoub | Functional inequalities: new perspectives and new applications[END_REF] ûα (X) = µ

n 2 -1 α u α (exp zα (µ α X)),
where exp -1 zα : Ω α → B R0 (0) is the exponential map at z α . We assume that (13)

d g (x α , z α ) = O(µ α ) when α → +∞. Then (14) d g (z α , x 0 ) = O(µ α ) when α → +∞
and, up to a subsequence, η α ûα converge to û weakly in

D 2 1 (R n ) and uniformly in C 0,β loc (R n ), for all β ∈ (0, min(1, 2 -s))
, where η α := η 0 (µ α •) and

û(X) = a 2-s 2 k 2-s 2 a 2-s + |X -X 0 | 2-s n-2 2-s for all X ∈ R n with X 0 ∈ R n , a > 0 and k 2-s = (n -2)(n -s)K(n, s). In particular û verifies (15) ∆ δ û = K(n, s) -1 û2 ⋆ (s)-1 |X -X 0 | s in R n and R n û2 ⋆ (s) |X -X 0 | s dX = 1,
where | • | is the Euclidean norm on R n and δ is the Euclidean metric of R n .

Proof of Theorem 2. We consider (u α ) α , (z α ) α>0 ∈ M and ûα as in the statement of the Theorem. We define the metric ĝα : X → exp * zα g(µ α X) and also on R n , the vectors

X α = µ -1 α exp -1 zα (x α ) and X 0,α = µ -1 α exp -1 zα (x 0 ). It follows from (13) that (16) d g (z α , x α ) µ α = |X α | = O(1) when α → +∞.
The proof of Theorem 2 proceeds in several steps :

Step 1.0 : We claim that, for all α > 0, ûα verifies ( 17)

∆ ĝα ûα + αµ 2 α ûα = λ α û2 * (s)-1 α d ĝα (X, X 0,α ) s . Proof. Indeed, we consider α > 0, X ∈ B Rαµ -1 α (0). Letting x = exp zα (µ α X), we then obtain (18) ∆ ĝα ûα (X) = µ n 2 +1 α ∆ g u α (x). and (19) û2 * (s)-1 α d ĝα (X, X 0,α ) s = µ ( n 2 -1)(2 * (s)-1)+s α u 2 * (s)-1 α (x) d g (x, x 0 ) s .
Since u α verifies equation ( 8) then plugging ( 18) and ( 19) into (8), we get the claim.

Step 1.1: We claim that there exists

û ∈ D 2 1 (R n ), û ≡ 0 such that, up to a subsequence, (η α ûα ) α>0 converge weakly to û, as α → +∞, in D 2 1 (R n ).
Proof. Indeed, for all α > 0, we can write :

(20)

R n |∇(η α ûα )| 2 ĝα dv ĝα = R n η α (∆ ĝα η α )û 2 α dv ĝα + R n η 2 α |∇û α | 2 ĝα dv ĝα
Since µ α → 0 as α → +∞ then, up to a subsequence of (µ α ) α>0 , there exists C 5 > 0 independent of α such that we have in the sense of bilinear form

(21) C -1 5 δ(X) ≤ ĝα (X) ≤ C 5 δ(X) for all X ∈ B 3R 0 4µα (0)
where δ is the Euclidean metric on R n . Relations [START_REF] Jaber | Hardy-Sobolev equations on compact Riemannian manifolds[END_REF] and [START_REF] Lee | The Yamabe problem[END_REF] imply that there exists a constant C 6 > 0 independent of α such that

(22) R n |η α (∆ ĝα η α )| û2 α dv ĝα ≤ C 6 µ 2 α B 3R 0 4µα (0) û2 α dv ĝα , By passing to B 3R 0 4 (z α ) in (22) via the exponential chart (Ω α , exp -1 zα ) (by taking x = exp zα (µ α X)), we obtain that (23) R n |η α (∆ ĝα η α )| û2 α dv ĝα ≤ C 7 M u 2 α dv g , where C 7 > 0 is a constant independent of α. Since u α H 2 1 (M) = O(1) when α → +∞, then relation (23) yields (24) R n |∇η α | 2 ĝα û2 α dv ĝα ≤ C 8 ,
where C 8 > 0 is a constant independent of α. On the other hand, we write that

R n η 2 α |∇û α | 2 ĝα dv ĝα ≤ B 3R 0 4 (zα) |∇u α | 2 g dv g ≤ I α (u α ) - M αu 2 α dv g < K(n, s) -1 (25)
for all α > 0. Plugging ( 24) and ( 25) into (20), we then obtain that

R n |∇(η α ûα )| 2 ĝα dv ĝα ≤ C 9
where C 9 > 0 is a constant independent of α. The last relation and ( 21) give

R n |∇(η α ûα )| 2 δ dX ≤ C n 2 +1 5 R n |∇(η α ûα )| 2 ĝα dv ĝα ≤ C 10 (26)
where C 10 > 0 is a constant independent of α. This implies that the sequence

(η α ûα ) α>0 is bounded in D 2 1 (R n ) then there exists û ∈ D 2 1 (R n ) such that, up to a subsequence, η α ûα ⇀ û as α → +∞.
It remains to prove that û ≡ 0. Indeed, since ûα ≤ 1 and λ α ∈ (0, K(n, s) -1 ) then for all X ∈ B Rαµ -1 α (0), we can write :

∆ ĝα ûα (X) = λ α û2 * (s)-1 α d ĝα (X, X 0,α ) s -αµ 2 α ûα ≤ K(n, s) -1 d ĝα (X, X 0,α ) s ûα = F α (X)û α , (27) 
where

F α (X) := K(n, s) -1 d ĝα (X, X 0,α ) s .
We consider r ∈ ( n 2 , n s ). It follows from ( 21) that ( 28)

C -1/2 5 |X -X 0,α | ≤ d ĝα (X, X 0,α ) ≤ C 1/2 5 |X -X 0,α |. and (29) C -n/2 5 ≤ det(ĝ α )(X) ≤ C n/2 5
for all X ∈ B R0 (0). We distinguish two cases :

Case 1.1.1 : X 0,α → X 0 as α → +∞. In this case, we get with ( 16) that for all α > 0, X α , X 0,α ∈ B R1 (0), for R 1 > 0 sufficiently large and by ( 28) and (29), we obtain that B2R 1 (0) F r α dv ĝα ≤ C 11 , where C 11 > 0 is a constant independent of α. Case 1.1.2 : X 0,α → +∞ as α → +∞. In this case, coming back to relations (28), (29) and by Dominated Convergence Theorem, we get that lim α→+∞ F α C 0 (B2R 1 (0)) = 0, where for all α > 0,

X α ∈ B R1 (0). It follows that BR 1 (0) F r α dv ĝα ≤ C 12 where C 12 > 0 is independent of α.
Hence, we get in both cases, up to a subsequence, that there exists R 1 > 0 such that for all α > 0, X α ∈ B R1 (0) and B2R 1 (0) F r α dv ĝα ≤ C 13 , where C 13 = max(C 11 , C 12 ). Moreover, for all θ ≤ min(1, 2 -s), ûα ∈ C 0,θ (B 2R1 (0)) and ûα > 0. Thanks to Theorem 4.1 in Han-Lin [START_REF] Han | Elliptic partial differential equations[END_REF] (see also Lemma 3 in the Appendix), we get that (30)

1 = max BR 1 (0) ûα ≤ C 14 ûα L 2 (B2R 1 (0)) ,
where C 14 > 0 is a constant independent of α. Since (η α ûα ) α>0 is bounded and converges weakly to û as α → +∞ in D 2 1 (R n ), the convergence is strong in L 2 loc and then, letting α → +∞ in (30), we get that û L 2 (B2R 1 (0)) ≥ C -1 14 and then û ≡ 0. This ends the proof of Step 1.1.

Step 1.2: We claim that λ α → K(n, s) -1 as α → +∞.

Proof. Indeed, since for all α > 0, we have λ α ∈ (0, K(n, s) -1 ) then, up to a subsequence, λ α → λ ≤ K(n, s) -1 as α → +∞. We proceed by contradiction and assume that λ = K(n, s) -1 . Then there exist ǫ 0 > 0 and α 0 > 0 such that for all α > α 0 :

(31) K(n, s) -1 > λ + ǫ 0 .
By Jaber [START_REF] Jaber | Hardy-Sobolev equations on compact Riemannian manifolds[END_REF], for all ǫ > 0 there exist B ǫ > 0 such that for all α > 0, we have :

(32) M |u α | 2 ⋆ (s) d g (x, x 0 ) s dv g 2 2 ⋆ (s) ≤ (K(n, s) + ǫ) M |∇u α | 2 g dv g + B ǫ M u 2 α dv g . Since u α 2 ⋆ (s),s = 1, I α (u α ) = λ α and u α → 0 in L 2 (M ) as α → +∞ then 1 ≤ 1 λ α + ǫ 0 + ǫ λ α + o(1).
Letting α → +∞ and then ǫ → 0 in the last relation, we obtain that λ λ+ǫ0 ≥ 1, a contradiction since λ ≥ 0 and ǫ 0 > 0. This proves that λ = K(n, s) -1 .

Step 1.3: We claim that there exists A ≥ 0 such that û verifies on

C ∞ c (R n ) : (33) ∆ δ û + Aû = K(n, s) -1 û2 * (s)-1 |X-X0| s if X 0,α α→+∞ -----→ X 0 0 if |X 0,α | α→+∞ -----→ +∞.
Proof. We consider R > 0 and ϕ ∈ C ∞ (B R (0)). Indeed, thanks to Cartan's expansion of the metric g (see for instance [START_REF] Lee | The Yamabe problem[END_REF]), we have for all α > 0 :

ĝα (X) = δ(z α ) + o(µ α )
uniformly on B R (0). This implies that (34)

R n ∇û α , ∇ϕ ĝα dv ĝα = BR(0) ∇û α , ∇ϕ δ dX + o(µ α ) Since η α ûα ⇀ û on D 2 1 (R n
) and µ α → 0 as α → +∞ then by (34), we get that

(35) lim α→+∞ R n ∇(η α ûα ), ∇ϕ ĝα dv ĝα = BR(0)
∇û, ∇ϕ δ dX.

Now, since I α (u α ) = λ α and λ α ∈ (0, K(n, s) -1 ) then we get (36) αµ 2 α BR(0) û2 α dv ĝα < K(n, s) -1 .
By Dominated Convergence Theorem, we obtain that (37)

BR(0) û2 α dv ĝα α→+∞ -----→ BR(0) û2 dX.
Together, Relations (36) and (37) give that

αµ 2 α ≤ K(n, s) -1 BR(0) û2 dX + o(1).
Hence, αµ 2 α = O(1) and there exists A ≥ 0 such that, up to a subsequence, lim α→+∞ αµ 2 α = A. Using Dominated Convergence Theorem again, we obtain that

(38) lim α→+∞ R n αµ 2 α ûα ϕdv ĝα = A R n ûϕdX.
At last, we consider the sequence (h α ) α>0 defined on B R (0) by :

X ∈ B R (0) → h α (X) = û2 * (s)-1 α ϕ d ĝα (X, X 0,α ) s det(ĝ α ).
We claim that lim α→+∞ BR(0)

h α dX = 0 if |X 0,α | α→+∞ -----→ +∞ BR(0) ϕû 2 * (s)-1 dX |X-X0| s if X 0,α α→+∞ -----→ X 0 .
We distinguish two cases :

Case 1.3.1 : X 0,α → +∞ as α → +∞. In this case, lim α→+∞ d ĝα (X, X 0,α ) -s = 0 in C 0 c (R n ). Hence lim α→+∞ BR(0) h α dX = 0. This proves the claim in case 1.3.1. Case 1.3.2 : There exists X 0 ∈ R n such that X 0,α → X 0 as α → +∞. Let us consider the function h defined on B R (0) by X → h(X) = (û 2 * (s)-1 ϕ)(X)/|X - X 0 | s δ .
In this case, for all ǫ > 0, there exists h(X)dX.

α 1 = α 1 (ǫ) > 0 such that for all α > α 1 , X 0,α ∈ B ǫ 2 (X 0 ). Then for all X ∈ B R (0) \ B ǫ (X 0 ), we have : |X -X 0,α | δ ≥ ǫ 2 .
On the other hand, we get by ( 28) and (29) that

Bǫ(X0) h α dX ≤ C 10 ϕ ∞ B2ǫ(X0,α) dX |X -X 0,α | s ≤ C 16 • ǫ n-s . ( 40 
)
where C 16 > 0 is a constant independent of α. In a similar way, we prove that (41)

Bǫ(X0) hdX ≤ C 17 ǫ n-s ,
where C 17 > 0 is a constant independent of α. Combining (39), ( 40) and (41), it follows for all α > α 1 that

BR(0) h α dX - BR(0) hdX = o α (1) + O(ǫ n-s ).
Letting α → +∞ then ǫ → 0 in the last relation, we obtain that (42)

lim α→+∞ R n û2 * (s)-1 α ϕ d ĝα (X, X 0 ) s dv ĝα = R n û2 * (s)-1 ϕ |X -X 0 | s dX.
This proves the claim in case 1.3.2. Hence, by combining relations (35), ( 38) and ( 42) with ( 17), we get (33). This ends Step 1.3.

Step 1.4: We claim that X 0,α = µ -1 α exp -1 zα (x 0 ) is bounded when α → +∞. Proof. We proceed by contradiction and we assume that |X 0,α | → +∞ as α → +∞. We proved in Step 1.3 that we obtain in this case :

(43) ∆ δ û + Aû = 0, weakly on C ∞ c (R n ). Let η ∈ C ∞ (R n ) be such that η ≡ 1 in B 1 (0), 0 ≤ η ≤ 1 and η ≡ 0 in R n \ B 2 (0)
. Now, we consider R > 0 and define the function ηR on R n by ηR (X) = η(R -1 X). Multiplying (43) by ηR û and integrating by parts, we get that (44)

R n ∇û, ∇(η R û) δ dX + A R n ηR û2 dX = 0.
To get the contradiction, we need the following lemma :

Lemma 1. We claim that lim R→+∞ R n ∇û, ∇(η R û) δ dX = û 2 D 2 1 (R n ) .
Proof of Lemma 1: Indeed, we have that :

(45)

R n ∇û, ∇(η R û) δ dX = R n ηR |∇û| 2 δ dX + R n ∇û, ∇η R δ ûdX.
Applying Dominated Convergence Theorem, we get that

(46) lim R→+∞ R n ηR |∇û| 2 δ dX = û 2 D 2 1 (R n ) .
On the other hand, we obtain by Inequalities of Cauchy-Schwarz then by Hölder's inequalities that Letting R → +∞ in (45) and thanks to relations (46) and (47), we get the claim. This proves Lemma 1. Now, going back to relation (44) and thanks to Lemma 1, we get that

R n ∇û, ∇η R δ ûdX ≤ û 2 D 2 1 (R n ) × C 18 R 2 B2R(0)\BR(0) û2 dX ≤ C 19 û 2 D 2 1 (R n ) × B2R(0)\BR(0) û2 * dX
û 2 D 2 1 (R n ) + A R n ηR û2 dX = o R (1),
where lim R→+∞ o R (1) = 0. Thus is a contradiction since ηR û2 ≥ 0 and û ≡ 0. This contradiction completes the proof of Step 1.4.

As a consequence, Step 1.4 implies that |X 0,α | = O(1) when α → +∞, which yields [START_REF] Han | Elliptic partial differential equations[END_REF]. Therefore, there exists X 0 ∈ R n such that the function û verifies in the distribution sense :

(48) ∆ δ û + Aû = K(n, s) -1 û2 * (s)-1 |X -X 0 | s .
Step 1.5: We claim that A = 0.

Proof. We proceed by contradiction and assume that A > 0. At first, let us prove that û ∈ L 2 (R n ). Multiplying (48) by ηR û and integrating over R n , we obtain (49)

R n ∇û, ∇(η R û) δ dX + A R n ηR û2 dX = K(n, s) -1 R n ηR û2 * (s) |X -X 0 | s dX. We claim that û2 * (s) |X -X 0 | -s ∈ L 1 (R n ).
We prove the claim. For all α > 0, we have that M u 2 * (s) α dg(x,x0) s dv g = 1. Then for R > 0, we obtain by a change of variable that BR(0)

|ηα ûα| 2 * (s) d ĝα (X,X0,α) s dv ĝα ≤ 1. Letting α → +∞ then R → +∞, we get that (50) R n û2 * (s) |X -X 0 | s dX ≤ 1.
This proves the claim.

Letting R → +∞ in (49) and using (50), we get, thanks to Lemma 1, that lim R→+∞ A R n ηR û2 dX ≤ C 20 , where C 20 > 0 is independent of α. Applying Beppo-Livi Theorem in the last relation, we get that û2 ∈ L 1 (R n ). Now, we consider the function

f : R n \ {X 0 } × R → R (X, v) → f (X, v) = K(n, s) -1 |v| 2 * (s)-2 |X -X 0 | s δ -A v.
f is clearly continuous on R n \ {X 0 } × R and û verifies ∆ δ û = f (X, û), it follows by Standard Elliptic Theory (see for instance [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]) that û ∈ C ∞ c (R n \{X 0 })∩H 1 2,loc (R n \ {X 0 }). By the Claim 5.3 in [START_REF] Fillippucci | On a p-Laplace equation with multiple critical nonlinearities[END_REF] (once one checks that û and f satisfy all the condition of the Claim), we obtain after simple computations that A R n û2 dX = 0. A contradiction since û ∈ L 2 (R n ) and û ≡ 0. This ends the proof of Step 1.5.

As a consequence, Step 1.6 implies that there exists X 0 ∈ R n such that the function û verifies in the distribution sense :

(51) ∆ δ û = K(n, s) -1 û2 ⋆ (s)-1 |X -X 0 | s .
Step 1.6 : We claim that there exists a > 0 such that (52)

û(X) = a 2-s 2 k 2-s 2 a 2-s + |X -X 0 | 2-s n-2 2-s for all X ∈ R n ,
where k 2-s := (n -s)(n -2)K(n, s).

Proof. Indeed, Multiplying (51) by ηR û, integrating over R n and letting R → +∞, we obtain that

R n |∇û| 2 dX = K(n, s) -1 R n û2 * (s) |X -X 0 | s dX.
Thanks to the definition of K(n, s) and with the last relation, we get that (53)

R n û2 * (s) |X -X 0 | s dX ≥ 1.
Inequalities ( 53) and (50) give that

R n û2 * (s) |X -X 0 | s dX = 1.
This implies that, up to a translation, û is a minimizer for the Euclidean Hardy-Sobolev inequality. By Lemma 3 in [START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF] (see , Horiuchi [START_REF] Horiuchi | Best constant in weighted Sobolev inequality with weights being powers of distance from the origin[END_REF] and also Theorem 4.3 in Lieb [START_REF] Lieb | Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[END_REF] and Theorem 4 in Catrina-Wang [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF]), we get that û

(X) = b c + |X -X 0 | 2-s -n-2
2-s for some b = 0 and c > 0. Since û satisfies (51), we get (52). This proves the claim.

Step 1.7 : We claim that, up to a subsequence,

η α ûα → û in C 0,β loc (R n ), for all β ∈ (0, min(1, 2 -s)).
Proof. Given R ′ > 0, we get by Step 1.0 (equation ( 17)) and Step 1.6, up to a subsequence of (û α ) α>0 , that

∆ ĝα ûα = F α on C ∞ (B R (0)) where F α (X) = -αµ 2 α ûα +λ α û2 * (s)-1 α d ĝα (X,X0,α) s . We consider p ∈ (n/2, inf(n/s, n)). Knowing that ûα ≤ 1 leads to F α L p (B R ′ (0)) = O(1).
It follows by Standard Elliptic Theory (see [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]) that for all β ∈ (0, min(1, 2-s)) and all R < R ′ , (û α ) ∈ C 0,β (B R (0)) and there exists C 21 = C 21 (M, g, s, R, R ′ , β) > 0 such that ûα C 0,β (BR(0)) ≤ C. Therefore the convergence holds in C 0,β ′ (B R (0)) for all β ′ < β. This ends the proof of Step 1.7.

Theorem 2 follows from Steps 1.0 to 1.7.

Corollary 1. Up to a subsequence of (x α ) α>0 , we have

d g (x 0 , x α ) = o(µ α ) when α → +∞. Moreover, (η α ûα ) goes weakly to û in D 2 1 (R n ) and strongly in C 0,β loc (R n ) for β ∈ (0, inf{1, 2 -s}) where û(X) = k 2-s k 2-s +|X| 2-s n-2 2-s for all X ∈ R n with k 2-s = (n -2)(n -s)K(n, s). In addition, lim R→+∞ lim α→+∞ M\BRµ α (x0) u 2 * (s) α d g (x, x 0 ) s dv g = 0.
Proof. At first, we apply Theorem 2 with z α = x α . In this case, we get that

η α ûα → û in C 0 c (R n ) as α → +∞. This implies that lim α→+∞ ûα (0) = û(0), but ûα (0) = 1 then û(0) = 1.
Since û(0) = 1 and û ∞ = 1, Then 0 is a maximum of û. On the other hand, we can see from the explicit form of û in Theorem 2 that for all X ∈ R n , û(X) ≤ û(X 0 ). Therefore X 0 = 0. Hence, we obtain, up to a subsequence of (z α ) α>0 , that (54)

d g (x α , x 0 ) = µ α d ĝα (X 0,α , 0) = µ α |X 0,α | = o(µ α ).
We now apply Theorem 2 with z α = x 0 : this is possible due to (54). With the change of variable X = µ -1 α exp -1 x0 (x), we write that

BRµ α (x0) |u α | 2 * (s) d g (x, x 0 ) s dv g = BR(0) |û α | 2 * (s) |X| s dv ĝ0,α
with ĝ0,α (X) = exp * x0 g(µ α X), we get by applying the Dominated Convergence Theorem twice and thanks to Theorem 2 that

lim R→+∞ lim α→+∞ BRµ α (x0) u 2 * (s) α d g (x, x 0 ) s dv g = lim R→+∞ lim α→+∞ BR(0) |û α | 2 * (s) |X| s dv ĝ0,α = R n û2 * (s) |X| s dX = 1. (55) 
Corollary 1 follows from this latest relation and u α 2 ⋆ (s),s = 1.

Proof of Theorem 1

In order to prove Theorem 1, we proceed by contradiction and assume that for all α > 0, there exists ũα ∈ H 2 1 (M ) such that (56)

M |ũ α | 2 * (s) d g (x, x 0 ) s dv g 2 2 * (s) > K(n, s) M |∇ũ α | 2 dv g + α M ũ2 α dv g .
We proceed in several steps :

Step 2.1: We claim that for all α > 0 there exists Proof. Given α > 0. By (56), there exists ũα ∈ H 2 1 (M ) that verifies I α (ũ α ) < K(n, s) -1 . This implies that λ α := inf v∈H 2 1 (M)\{0} I α (v) < K(n, s) -1 . Hence, thanks to Jaber [START_REF] Jaber | Hardy-Sobolev equations on compact Riemannian manifolds[END_REF] (Theorem 4, see also Thiam [START_REF] Thiam | Hardy and Hardy-Soboblev Inequalities on Riemannian Manifolds[END_REF]), we get the Claim of Step 2.1.

u α ∈ C 0,β (M ) ∩ C 2,θ (M \ {x 0 }), β ∈ (0, min(1, 2 -s)), θ ∈ (0,
Step 2.2: Following Druet arguments in [START_REF] Druet | The best constants problem in Sobolev inequalities[END_REF] (see also Hebey [START_REF]Sharp Sobolev inequalities of Second Order[END_REF]), we claim that there exists C 22 > 0 such that for all x ∈ M et α > 0, we have :

(58) d g (x 0 , x) n 2 -1 u α (x) ≤ C 22 .
Proof. We proceed by contradiction and assume that there exists a sequence (y α ) α>0 ∈ M such that (59)

sup x∈M d g (x 0 , x) n 2 -1 u α (x) = d g (x 0 , y α ) n 2 -1 u α (y α )
and ( 60)

lim α→+∞ d g (x 0 , y α ) n 2 -1 u α (y α ) = +∞.
Since M is compact, we then obtain that lim α→+∞ u α (y α ) = +∞. Thanks to Proposition (1) , we get that, up to a subsequence, y α → x 0 as α → ∞. Now, for all α > 0, we let rα = u α (y α )

-2 n-2 .
We claim that for a given α > 0 and R > 0,

B rα (yα) u 2 * (s) α d g (x, x 0 ) s dv g = ε R + o(1) (61) 
, where lim

R→+∞ ε R = 0.
Indeed, we fix ρ > 0. Since y α → x 0 et rα → 0 as α → +∞ then we write, up to a subsequence of (y α ) α>0 , that :

(62)

B rα (yα) u 2 * (s) α d g (x, x 0 ) s dv g = B rα (yα)∩Bρ(x0) u 2 * (s) α d g (x, x 0 ) s dv g .
Given R > 0. Thanks to Corollary 1, we have that

Bρ(x0)\BRµ α (x0) u 2 * (s) α d g (x, x 0 ) s dv g = ε R + o(1),
where the function ε R : R → R verifies lim R→+∞ ε R = 0. Therefore,

B rα (yα) u 2 * (s) α d g (x, x 0 ) s dv g = B rα (yα)∩Bρ(x0) u 2 * (s) α d g (x, x 0 ) s dv g = B rα (yα)∩(Bρ(x0)\BRµ α (x0)) u 2 * (s) α d g (x, x 0 ) s dv g + B rα (yα)∩BRµ α (x0) u 2 * (s) α d g (x, x 0 ) s dv g ≤ ε R + o(1) + B rα (yα)∩BRµ α (x0) u 2 * (s) α d g (x, x 0 ) s dv g , (63) 
where the function ε R : R → R verifies lim R→+∞ ε R = 0 We distinguish two cases : Case 2.2.1 : B rα (y α ) ∩ B Rµα (x 0 ) = φ. In this case, we obtain immediately (61) from (63). Independently, we consider an exponential chart

(Ω 0 , exp -1 x0 ) centered at x 0 such that exp -1 x0 (Ω 0 ) = B R0 (0), R 0 ∈ (0, i g (M )).
Under the same assumptions of Theorem 2, we assume that z α = x 0 and we let Ỹα = µ -1 α exp -1 x0 (y α ) and ĝ0,α : X ∈ B R0 (0) → exp * x0 g(µ α X). By compactness arguments, there exists a constant

C 23 > 1 such that for all X, Y ∈ R n , µ α |X|, µ α |Y | < R 0 : C -1 23 |X -Y | ≤ d ĝ0,α (X, Y ) ≤ C 23 |X -Y |.
Then we have :

(67) | Ỹα | = O(1) and µ -1 α exp -1 x0 (B rα (y α )) ⊆ B C23 rα µα ( Ỹα ).
Using (67) and the change of variable X = µ -1 α exp -1 x0 (x), we obtain :

B rα (yα)∩BRµ α (x0) u 2 * (s) α d g (x, x 0 ) s dv g ≤ B C 23 rα µα ( Ỹα) û2 * (s) α d ĝ0,α (X, 0) s dv ĝ0 .
By Dominated Convergence Theorem, it follows that

B rα (yα)∩BRµ α (x0) u 2 ⋆ (s) α d g (x, x 0 ) s dv g = o(1).
Therefore, from the last relation and (63), we get (61). This ends the proof in the Case 2.2.2. Now, we consider a family (Ω α , exp -1 yα ) α>0 of exponential charts centered at y α and we define on

B R0 r-1 α (0) ⊂ R n , R 0 ∈ (0, i g (M )) the function ūα (X) = r n 2 -1 α
u α (exp yα (r α X)) and the metric ḡα (X) = exp * yα g(r α X). Using the same arguments of Step 1.2, we prove that there exists ū ∈ D 2 1 (R n ) such that ūα → ū weakly in D 2 1 (R n ) as α → +∞. To prove that ū is non vanishing, we need the following Lemma :

Lemma 2. The sequence (ū α ) α>0 is C 0 -bounded on any compact in R n . Indeed, by (59) we have that (68) ūα (X) ≤ d g (x 0 , y α ) d g (x 0 , exp yα (r α X)) n 2 -1
for all X ∈ B R0 r-1 α (0). Given R > 0, we get for all X ∈ B R (0) that d g (x 0 , exp yα (r α X)) ≥ d g (x 0 , y α ) -Rr α .

By (68) and the last triangular inequality, we get for all

X ∈ B R (0) that (69) ūα (X) ≤ 1 -R rα d g (x 0 , y α ) -2 n-2
. By (60), we have that d g (x 0 , y α ) -1 rα = o(1). Combining this last relation with (69), we get for all X ∈ B R (0), that ūα (X) ≤ 1 + o(1) in C 0 (B R (0)). This ends the proof of the Lemma.

Since ūα (0) = 1 for all α > 0 then using the same arguments of Step 1.1 and Lemma 2, we obtain by Theorem 4.1 in Han-Lin [START_REF] Han | Elliptic partial differential equations[END_REF] (see also Lemma 3 in the Appendix) that there exists C 24 > 0, r > 0 independent of α such that ūα L 2 (Br(0)) ≥ C 24 . Letting α → +∞ in the last relation, we deduce that ū ≡ 0. Similarly, we prove as in Step 1.7 that ūα → ū in C 0 loc (R n ). Coming back to (61), we write that for any α > 0 that (70)

B1(0) ū2 * (s) α d ḡα (X, X 0,α ) s dv ḡα = B rα (yα) u 2 * (s) α d g (x, x 0 ) s dv g = o(1) + ε R ,
where the function ε R : R → R verifies lim R→+∞ ε R = 0. Letting α → +∞ then R → +∞ in the last relation, we then get : B1(0) |X| -s ū2 ⋆ (s) dX = 0. Contradiction since ū ∈ C 0 (B 1 (0)) and ū(0) = lim α→0 ūα (0) = 1. This ends Step 2.2.

Step 2.3: Here goes the final argument (we adapt the one in Druet [START_REF] Druet | The best constants problem in Sobolev inequalities[END_REF] and in Hebey [START_REF]Sharp Sobolev inequalities of Second Order[END_REF] to our case). We fix ρ ∈ (0, i g (M )) sufficiently small. We consider a smooth cut-off function η on M such that 0 ≤ η ≤ 1, η ≡ 1 on B ρ (x 0 ) and η ≡ 0 on M \ B 2ρ (x 0 ). We define the function η 0 on B 2ρ (x 0 ) by η 0 = η • exp -1 x0 . We let dx = (exp This implies that for all α > 0 we have : In order to get a contradiction, we estimate the RHS (respectively the LHS) of the Equation (71), by comparing the L 2 -norm of |∇(η 0 u α )| δ0 (resp. the L 2 ⋆ (s) -norm of η 0 u α ) with respect to δ0 with the L 2 -norm of |∇u α | g (resp. the L 2 ⋆ (s) -norm of u α ) with respect to g. We let r 0 (x) = d g (x, x 0 ) be the geodesic distance to x 0 . Cartan's expansion of the metric g (see [START_REF] Lee | The Yamabe problem[END_REF]) in the exponential chart (B 2ρ (x 0 ), exp 

  This implies that there exists a constant C 15 = C 15 (ǫ) > 0 independent of α such that |h α | ≤ C 15 • |ϕ|. Coming back to Dominated Convergence Theorem, we obtain with the last relation that (39) lim α→+∞ BR(0)\Bǫ(X0) h α (X)dX = BR(0)\Bǫ(X0)

where 2 *

 2 = 2n/(n -2) and C 18 , C 19 > 0 are independents of α. It follows from the last relation, Sobolev's embedding theorem and the Dominated Convergence theorem that (47) lim R→+∞ R n ∇û, ∇η R δ ûdX = 0.

1 )

 1 such that u α > 0 and verifies (57)∆ g u α + αu α = λ α u 2 * (s)-1 α d g (x, x 0 ) swith λ α ∈ (0, K(n, s) -1 ), λ α = I α (u α ) and M u 2 * (s) α dg(x,x0) s dv g = 1.

Case 2 . 2 . 2 :

 222 B rα (y α ) ∩ B Rµα (x 0 ) = φ. In this case, we obtain that (64) d g (x 0 , y α ) ≤ rα + Rµ α . By (60), we get that (65) lim α→+∞ rα d g (x 0 , y α ) = 0. Together, relations (64) and (65) give that (66) rα µ α = o(1) and d g (x 0 , y α ) = O(µ α ).

2 *

 2 -1 x0 ) * dX and δ0 = (exp -1 x0 ) * δ. We consider two constants, C 25 , C 26 > 0, independents of α such that |∇η 0 | g ≤ C 25 and |∆ g η 0 | g ≤ C 26 . The sharp Euclidean Hardy-Sobolev inequality gives for all α > 0 thatR n |η(u α • exp x0 )| 2 * (s) |X| s dX 2 (s) ≤ K(n, s) R n |∇(η(u α • exp x0 ))| 2 δ dX.

M 2 *

 2 |η 0 u α | 2 * (s) d δ0 (x, x 0 ) s dx 2 (s) ≤ K(n, s) M |∇(η 0 u α )| 2 δ0 dx.

( 1 + 2 0 2 0|∇u α | 2 g(∆ g u α )f 0 u α dv g ≤ λ α M f 0 u 2 *

 12222 C 27 r 2 0 (x))|∇(η 0 u α )| 2 g (1 + C 28 r 2 0 (x))dv g ≤ M |∇(η 0 u α )| 2 g dv g + C 29 M r (x)|∇(η 0 u α )| 2 g dv g ≤ M |∇(η 0 u α )| 2 g dv g +where C i > 0, i = 27, . . . , 30 are independent of α. Independently, we get by integrating by parts thatM |∇(η 0 u α )| 2 g dv g = M η |∇u α | 2 g dv g + M η 0 ∆ g η 0 u 2 α dv g ≤ M |∇u α | 2 g dv g + C 26 M dv g = M ∇(f 0 u α ) -u α ∇f 0 , ∇u α g dv g .Multiplying equation (57) by f 0 u α then integrating by parts over M , we get :M ∇(f 0 u α ), ∇u α g dv g = M (s) α d g (x, x 0 ) s dv g . (75)By Step 2.2, there exists a constant C 31 > 0 independent of α such that we have for all x ∈ M : (76) u 2 ⋆ (s)

Since u α → 0 as α → +∞ in C 0 loc (M \ {x 0 }) (Proposition 1), there exists a constant C 39 > 0 independent of α such that 

Plugging ( 86) into (83), and using that λ α < K(n, s) -1 , we obtain that (87)

where C 40 > 0 is a constant independent of α. Combining (80), ( 87) with (71), we then get :

where C 41 > 0 is a constant independent of α. Contradiction since α → +∞. This ends the proof of Theorem 1.

Proof of (7) : We write B := B 0 (M, g, s, x 0 ) for simplicity. It follows from [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF] and the definition (8

When n = 3, we let G x0 be the Green's function for the coercive operator ∆ g + K(3, s) -1 B, and we define (the regular part of G x0 )

where η is a cut-off function such that η ≡ 1 around x 0 . It follows from Standard Elliptic Theory that

Definition The "mass of the Green function G x0 " is defined and denoted by m(x 0 ) := β x0 (x 0 ).

Note that m(x 0 ) does not depend on the chosen cut-off function η. Now, we define the test-function sequence (u ǫ ) ǫ>0 on M by

It follows from [START_REF] Jaber | Hardy-Sobolev equations on compact Riemannian manifolds[END_REF] that

when ǫ → 0, where γ n > 0 for all n ≥ 3,

and

It then follows from (89) that Ω n (M, g, s, x 0 ) ≥ 0. This proves [START_REF] Ceccon | Optimal Riemannian L p -Gagliardo-Nirenberg inequalities revisited[END_REF].

Appendix

Following arguments as in Han and Lin [START_REF] Han | Elliptic partial differential equations[END_REF] (see Theorem 4.1), we have that Lemma 3. Let B 2 (0) be the ball in R n of center 0 and radius 2, g be a Riemannian on B 2 (0) and let A = A(g) > 0 be such that for all φ ∈ C ∞ c (B 2 (0)), we have :

, where L 2 g is the Lebesgue space of (B 1 (0), dv g ). We consider u ∈ H 2 1 (B 1 (0), g), u ≥ 0 a.e. such that we have ∆ g u ≤ f u, on H 2 1,0 (B 1 (0), g) and B1(0) |f | r dv g ≤ k with r > n 2 and k > 0 is a constant depending of (M, g), f, r . Then u ∈ L ∞ loc (B 1 (0)). Moreover, for all p > 0, there exists a constant C 42 = C(n, p, r, g, k) such that for all θ ∈]0, 1[ we have :

We use another version of this lemma adapted for compact Riemannian manifolds.