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Abstract. Let (M, g) be a compact Riemannian Manifold of dimension n ≥ 3, x 0 ∈ M , and s ∈ (0, 2). We let 2 ⋆ (s) :=2(n-s) n-2

be the critical Hardy-Sobolev exponent. We investigate the existence of positive distributional solutions u ∈ C 0 (M ) to the critical equation ∆gu + a(x)u = u 2 ⋆ (s)-1 dg(x, x 0 ) s in M

where ∆g := -divg(∇) is the Laplace-Beltrami operator, and dg is the Riemannian distance on (M, g). Via a minimization method in the spirit of Aubin, we prove existence in dimension n ≥ 4 when the potential a is sufficiently below the scalar curvature at x 0 . In dimension n = 3, we use a global argument and we prove existence when the mass of the linear operator ∆g + a is positive at x 0 . As a byproduct of our analysis, we compute the best first constant for the related Riemannian Hardy-Sobolev inequality.

Let (M, g) be a compact Riemannian Manifold of dimension n ≥ 3 without boundary. Given s ∈ (0, 2), x 0 ∈ M , and a ∈ C 0 (M ), we consider distributional solutions u ∈ C 0 (M ) to the equation [START_REF] Aubin | Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF] ∆ g u + a(x)u = u 2 ⋆ (s)-1 d g (x, x 0 ) s in M where 2 ⋆ (s) := 2(n-s) n-2 is the Hardy-Sobolev exponent. More precisely, let H 2 1 (M ) be the completion of C ∞ (M ) for the norm u → u 2 + ∇u 2 . The exponent 2 ⋆ (s) is critical in the following sense: the Sobolev space H 2 1 (M ) is continuously embedded in the weighted Lebesgue space L p (M, d g (•, x 0 ) -s ) if and only if 1 ≤ p ≤ 2 ⋆ (s), and this embedding is compact if and only if 1 ≤ p < 2 ⋆ (s).

There is an important literature on Hardy-Sobolev equations in the Euclidean setting of a domain of R n , in particular to show existence or non-existence of solutions, see for instance Ghoussoub-Kang [START_REF] Ghoussoub | Hardy-Sobolev critical elliptic equations with boundary singularities[END_REF], Ghoussoub-Yuan [START_REF] Ghoussoub | Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents[END_REF], Li-Ruf-Guo-Niu [START_REF] Li | Quasilinear elliptic problems with combined critical Sobolev-Hardy terms[END_REF], Musina [START_REF] Musina | Existence of extremals for the Maz'ya and for the Caffarelli-Kohn-Nirenberg inequalities[END_REF], Pucci-Servadei [START_REF] Pucci | Existence, non existence and regularity of radial ground states for p-Laplacian equations with singular weights[END_REF], Kang-Peng [START_REF] Kang | Existence of solutions for elliptic equations with critical Sobolev-Hardy exponents[END_REF], and the references therein. In particular, in the spirit of Brezis-Nirenberg, Ghoussoub-Yuan [START_REF] Ghoussoub | Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents[END_REF] proved the existence of solutions for equations like [START_REF] Aubin | Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF] when n ≥ 4 and the potential a achieves negative values at the interior singular point x 0 . In the present manuscript, our objective is both to study the influence of the curvature when dealing with a Riemannian Manifold, and to tackle dimension n = 3.

We consider the functional

J(u) := M (|∇u| 2 g + au 2 ) dv g M |u| 2 ⋆ (s)
dg(x,x0) s dv g which is well-defined due to the above-mentioned embeddings. Here dv g denotes the Riemannian element of volume. When the operator ∆ g + a is coercive, then, up to multiplication by a positive constant, critical points of the functional J (if they exist) are solutions to equation [START_REF] Aubin | Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF]. In the sequel, we assume that ∆ g + a is coercive. In the spirit of Aubin [START_REF] Aubin | Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF], we investigate the existence of solutions to (1) by minimizing the functional J: it is classical for this type of problem that the difficulty is the lack of compactness for the critical embedding. Since the resolution of the Yamabe problem (see [START_REF] Aubin | Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF], [START_REF] Schoen | Conformal deformation of a Riemannian metric to a constant scalar curvature[END_REF] and [START_REF] Trudinger | Remarks concerning the conformal deformation of Riemannian structures on compact Manifolds[END_REF]), it is also well known that there exists a dichotomy between high dimension (see Aubin [START_REF] Aubin | Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF]) where the arguments are local, and small dimension (see Schoen [START_REF] Schoen | Conformal deformation of a Riemannian metric to a constant scalar curvature[END_REF]) where the arguments are global.

In the sequel, we let Scal g (x) be the scalar curvature at x ∈ M . We let G x0 : M \{x 0 } → R be the Green's function at x 0 for the operator ∆ g + a (this is defined since the operator is coercive). In dimension n = 3, there exists m(x 0 ) ∈ R such that for all α ∈ (0, 1)

G x0 (x) = 1 ω 2 d g (x, x 0 ) + m(x 0 ) + O(d g (x, x 0 ) α ) when x → x 0 .
Here and in the sequel, ω k denote the volume of the canonical k-dimensional unit sphere S k , k ≥ 1. The quantity m(x 0 ) is refered to as the mass of the point x 0 ∈ M . Our main result states as follows:

Theorem 1. Let x 0 ∈ M , s ∈ (0, 2)
, and a ∈ C 0 (M ) be such that the operator ∆ g + a is coercive. We assume that

(2) a(x 0 ) < c n,s Scal g (x 0 ) if n ≥ 4 m(x 0 ) > 0 if n = 3.
with c n,s := (n-2)(6-s) 12(2n-2-s) . Then there exists a positive solution u ∈ C 0 (M )∩H 2 1 (M ) to the Hardy-Sobolev equation [START_REF] Aubin | Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF]. Moreover, u ∈ C 0,θ (M ) for all θ ∈ (0, min{1, 2-s}) and we can choose u as a minimizer of J.

As a consequence of the Positive Mass Theorem (see [START_REF] Schoen | On the proof of the positive mass conjecture in general relativity[END_REF], [START_REF]Proof of the positive action-conjecture in quantum relativity[END_REF]), we get (see Druet [START_REF] Druet | Optimal Sobolev inequality and Extremal functions. The three-dimensional case[END_REF] and Proposition 2 in Section 4 below) that m(x 0 ) > 0 for n = 3 when a ≤ Scal g /8, with the additional assumption that (M, g) is not conformally equivalent to the canonical 3-sphere if a ≡ Scal g /8.

Theorem 1 suggests some remarks. For equations of scalar curvature type, that is when s = 0, a similar result was obtained by Aubin [START_REF] Aubin | Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF] (for n ≥ 4) and by Schoen [START_REF] Schoen | Conformal deformation of a Riemannian metric to a constant scalar curvature[END_REF] (see also Druet [3]) (for n = 3): however, when s ∈ (0, 2), the problem is subcritical outside the singular point x 0 , and therefore it is natural to get a condition at this point. Another remark is that, when s = 0, Aubin (see [START_REF] Aubin | Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF]) obtained the constant c n,0 when n ≥ 4, the potential c n,0 Scal g being such that the Yamabe equation is conformally invariant. When s ∈ (0, 2), the critical equation enjoys no suitable conformal invariance due to the singular term d g (•, x 0 ) -s , and, despite our existence result involves the scalar curvature, one gets another constant c n,s .

It is also to notice that, unlike the case s = 0, the solutions to equations like (1) are not C 2 . This lead us to handle with care issues related to the maximum principle, for which we develop a suitable approach. As in Aubin, the minimization approach leads to computing some test-function estimates. However, unlike the case s = 0, the terms involved in the expansion of the functional are not explicit and we need to collect them suitably to obtain the explicit value of c n,s above.

The proof of Theorem 1 uses the best constant in the Hardy-Sobolev inequality. It follows from the Hardy-Sobolev embedding that there exist A, B > 0 such that

(3) M |u| 2 ⋆ (s) d g (x, x 0 ) s dv g 2 2 ⋆ (s) ≤ A M |∇u| 2 g dv g + B M u 2 dv g
for all u ∈ H 2 1 (M ). We let A 0 (M, g, s, x 0 ) be the best first constant of the Riemannian Hardy-Sobolev inequality, that is (4)

A 0 (M, g, s, x 0 ) := inf{A > 0;

(3) holds for all u ∈ H 2 1 (M )}. We prove the following:

Theorem 2. Let (M, g) be a compact Riemannian Manifold of dimension n ≥ 3, x 0 ∈ M , s ∈ (0, 2) and 2 ⋆ (s) = 2(n-s) n-2 . Then A 0 (M, g, s, x 0 ) = K(n, s),
where K(n, s) is the optimal constant of the Euclidean Hardy-Sobolev inequality, that is

(5) K(n, s) -1 := inf ϕ∈C ∞ c (R n )\{0} R n |∇ϕ| 2 dX R n |ϕ| 2 ⋆ (s) |X| s dX 2 2 ⋆ (s)
Theorem 2 was proved by Aubin [START_REF]Problèmes isopérimétriques et espaces de Sobolev[END_REF] for the case s = 0. The value of K(n, s) is

K(n, s) = [(n -2)(n -s)] -1 1 2 -s ω n-1 Γ 2 (n -s/2 -s) Γ(2(n -s)/2 -s) -2-s n-s .
It was computed independently by Aubin [START_REF]Problèmes isopérimétriques et espaces de Sobolev[END_REF], Rodemich [START_REF] Rodemich | The Sobolev inequalities with best possible constant, Analysis seminar[END_REF] and Talenti [START_REF] Talenti | Best constant in Sobolev inequality[END_REF] for the case s = 0, and the value for s ∈ (0, 2) has been computed by Lieb (see [START_REF] Lieb | Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[END_REF], Theorem 4.3).

A natural question is to know whether the infimum A 0 (M, g, s, x 0 ) is achieved or not, that is if there exists B > 0 such that equality (3) holds for all u ∈ H 2 1 (M ) with A = K(n, s). The answer is positive: this is the object of the work [START_REF] Jaber | Optimal Hardy-Sobolev inequalities on compact Riemannian Manifolds[END_REF].

A very last remark is that Theorem 1 holds when M is a compact manifold with boundary provided x 0 lies in the interior. In particular, we extend Ghoussoub-Yuan's [START_REF] Ghoussoub | Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents[END_REF] result to dimension n = 3: Theorem 3. Let Ω be a smooth bounded domain of R 3 and let x 0 ∈ Ω be an interior point. For a ∈ C 0 (Ω) such that ∆ + a is coercive, we define the Robin function as R(x, y)

:= ω -1 2 |x -y| -1 -G x (y)
where G is the Green's function for ∆ + a with Dirichlet boundary condition. We assume that R(x 0 , x 0 ) < 0. Then there exists a function u ∈ C 0,θ (Ω) for all θ ∈ (0, min{1, 2 -s}) to the Hardy-Sobolev equation

∆u + a(x)u = u 2 ⋆ (s)-1 |x -x 0 | s , u > 0 in Ω and u = 0 on ∂Ω.
This paper is organized as follows. In Section 1, we prove Theorem 2. In Section 2, we prove a general existence theorem for solutions to equation [START_REF] Aubin | Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF]. In Section 3, we compute the full expansion of the functional J taken at the relevant test-functions for dimension n ≥ 4. In Section 4, we perform the test-functions estimate for the specific dimension n = 3 and prove Theorems 1 and 3.

After this work was completed, we learned that Thiam [START_REF] Thiam | Hardy and Hardy-Soboblev Inequalities on Riemannian Manifolds[END_REF] has independently studied similar issues.
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1. The best constant in the Hardy-Sobolev inequality

In this section, we will prove Theorem 2. For that, we begin by the following proposition :

Proposition 1. Let (M, g) be a compact Riemannian Manifold of dimension n ≥ 3, x 0 ∈ M , s ∈ (0, 2). For any ǫ > 0, there exists B ǫ > 0 such that

(6) M |u| 2 ⋆ (s) d g (x, x 0 ) s dv g 2 2 ⋆ (s) ≤ (K(n, s) + ǫ) M |∇u| 2 g dv g + B ǫ M u 2 dv g .
for all u ∈ H 2 1 (M ). Thiam [START_REF] Thiam | Hardy and Hardy-Soboblev Inequalities on Riemannian Manifolds[END_REF] proved a result in the same spirit with addition of an extra remainder term. The case s = 0 has been proved by Aubin [START_REF]Problèmes isopérimétriques et espaces de Sobolev[END_REF] (see also [START_REF] Hebey | Introduction à l'analyse non linéaire sur les Variétés[END_REF], [START_REF]Non linear analysis on Manifolds : Sobolev spaces and inequalities[END_REF] for an exposition in book form). We adapt this proof to our case.

Proof.

Step 1: Covering of M by geodesic balls. For any x ∈ M , we denote as exp x the exponential map at x with respect to the metric g. In the sequel, for any r > 0 and z ∈ M , B r (z) ⊂ M denotes the ball of center 0 and of radius r for the Riemannian distance d g . For any x ∈ M and any ρ > 0, there exist r = r(x, ρ) ∈ (0, i g (M )/2), lim ρ→0 r(x, ρ) = 0 (here, i g (M ) denotes the injectivity radius of (M, g)) such that the exponential chart (B 2r (x), exp -1

x ) satisfies the following properties: on B 2r (x), we have that

(1 -ρ)δ ≤ g ≤ (1 + ρ)δ, (1 -ρ) n 2 dx ≤ dv g ≤ (1 + ρ) n 2 dx, D -1 ρ |T | δ ≤ |T | g ≤ D ρ |T | δ , for all T ∈ χ(T ⋆ M ) where lim ρ→+∞ D ρ = 1, χ(T ⋆ M
) denotes the space of 1-covariant tensor fields on M , δ is the Euclidean metric on R n , that is the standard scalar product on R n , and we have assimilated g to the local metric (exp x ) * g on R n via the exponential map.

It follows from the compactness of M that there exists N ∈ N (depending on ρ) and

x 1 , ..., x N -1 ∈ M \ B r 0 2 (x 0 ) (depending on ρ) such that M \ B r0 (x 0 ) ⊂ ∪ N -1 m=1 B rm (x m ), where r 0 = r(x 0 , ρ) and r m = r(x m , ρ), r m < r 2 0 , for m = 0, . . . , N -1.
Step 2: We claim that for all ǫ > 0 there exists ρ 0 = ρ 0 (ǫ) > 0 such that lim ǫ→0 ρ 0 (ǫ) = 0 and for all ρ ∈ (0, ρ 0 ), all m ∈ {0, . . . , N -1} and all u ∈ C ∞ c (B rm (x m )), we have that :

(7) M |u| 2 ⋆ (s) d g (x, x 0 ) s dv g 2 2 ⋆ (s) ≤ K(n, s) + ǫ 2 M |∇u| 2 g dv g .
Indeed, it follows from ( 5) that for all

ϕ ∈ C ∞ c (R n ) : (8) R n |ϕ| 2 ⋆ (s) |X| s δ dX 2 2 ⋆ (s) ≤ K(n, s) R n |∇ϕ| 2 δ dX. We consider ρ > 0, m ∈ {0, . . . , N } and u ∈ C ∞ c (B rm (x m )) such that (B rm (x m ), exp -1 xm
) is an exponential card as in Step 1. We distinguish two cases : Case 2.1 : If m = 0 then using the properties of the exponential card (B r0 (x 0 ), exp -1 x0 ), developed in Step 1, and the Euclidean Hardy-Sobolev inequality [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF], we write

M |u| 2 ⋆ (s) d g (x, x 0 ) s dv g 2 2 ⋆ (s) ≤ (1 + ρ) n 2 ⋆ (s) K(n, s) R n |∇(u • exp xm )| 2 δ dX ≤ D 2 ρ (1 + ρ) n 2 ⋆ (s) (1 -ρ) -n 2 K(n, s) M |∇u| 2 g dv g .
Letting ρ → 0, we get [START_REF] Ghoussoub | Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents[END_REF], for all u ∈ C ∞ c (B r0 (x 0 )), when m = 0. This proves (7) in the Case 2.1.

Case 2.2 : If m ∈ {1, . . . , N -1} then for all x ∈ B rm (x m ), we have :

d g (x, x 0 ) ≥ λ 0 > 0, with λ 0 = r0 2 -r m .
Thanks to Hölder's inequalities and inequalities of Gagliardo-Nirenberg-Sobolev, we can write that :

M |u| 2 ⋆ (s) d g (x, x 0 ) s dv g 2 2 ⋆ (s) ≤ vol(B rm (x m )) 2 1 2 ⋆ (s) -1 2 ⋆ λ 2s 2 ⋆ (s) 0 Br m (xm) |u| 2 ⋆ dv g 2 2 ⋆ ≤ Q ′ ρ M |∇u| 2 g dv g ,
where lim ρ→0 Q ′ ρ = 0 and 2 ⋆ := 2n/(n -2) is the Sobolev exponent. Letting ρ → 0, we get [START_REF] Ghoussoub | Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents[END_REF], for all u ∈ C ∞ c (B rm (x m )), when m ≥ 1. This ends Step 2.

Step 3: We fix ǫ > 0, ρ ∈ (0, ρ 0 (ǫ)) and x 1 , . . . , x N as in Step 1 and Step 2. We consider now (α m ) m=0,...,N -1 a C ∞ -partition of unity subordinate to the covering (B rm (x m )) m=0,...,N -1 of M and define, for all m = 0, . . . , N -1, a function η m on M by

η m = α 3 m N -1 i=0 α 3 i . We can see easily that (η m ) m=0,...,N -1 is a C ∞ -partition of unity subordinate to the covering (B rm (x m )) m=0,...,N -1 of M s.t. η 1 2 m ∈ C 1 (M ), for every m = 0, . . . , N -1.
We let H > 0 satisfying for each m = 0, . . . , N -1 :

(9) |∇η 1 2 m | g ≤ H.
Step 4: In this step, we will prove the Hardy-Sobolev inequality on C ∞ (M ). Indeed, we let ǫ > 0 and (η m ) m=0,...,N -1 be a C ∞ -partition of unity as in Step 3

and consider u ∈ C ∞ (M ). Since 2 ⋆ (s) 2 > 1, we get that :

M |u| 2 ⋆ (s) d g (x, x 0 ) s dv g 2 2 ⋆ (s) ≤ M | N -1 m=0 η m u 2 | 2 ⋆ (s) 2 d g (x, x 0 ) s dv g 2 2 ⋆ (s) ≤ N -1 m=0 η m u 2 L 2 ⋆ (s) 2 (M,dg(x,x0) -s ) ≤ N -1 m=0 η m u 2 L 2 ⋆ (s) 2 (M,dg(x,x0) -s ) ≤ N -1 m=0 M |η 1 2 m u| 2 ⋆ (s) d g (x, x 0 ) s dv g 2 2 ⋆ (s)
.

Using inequality [START_REF] Ghoussoub | Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents[END_REF] in Step 2 and by density (η

1 2 m u ∈ C 1 (M )), we get that M |η 1 2 m u| 2 ⋆ (s) d g (x, x 0 ) s dv g 2 2 ⋆ (s) ≤ (K(n, s) + ǫ 2 ) M |∇(η 1 2 m u)| 2 g dv g . Hence M |u| 2 ⋆ (s) d g (x, x 0 ) s dv g 2 2 ⋆ (s) ≤ (K(n, s) + ǫ 2 ) N -1 m=0 M η m |∇u| 2 g + 2η 1 2 m |∇u| g |u||∇η 1 2 m | g +|u| 2 |∇η 1 2 m | 2 g dv g .
Using the Cauchy-Schwarz inequality and (9) from Step 3, we get that:

M |u| 2 ⋆ (s) d g (x, x 0 ) s dv g 2 2 ⋆ (s) ≤ (K(n, s)+ ǫ 2 ) ∇u 2 2 + 2N H ∇u 2 u 2 + N H 2 u 2 2 . (10) 
We choose now ǫ 0 > 0 s.t.

(

) (K(n, s) + ǫ 2 )(1 + ǫ 0 ) ≤ K(n, s) + ǫ. Since (12) 2N H ∇u 2 u 2 ≤ ǫ 0 ∇u 2 2 + (N H) 2 ǫ 0 u 2 2 , 11 
then by combining [START_REF]Non linear analysis on Manifolds : Sobolev spaces and inequalities[END_REF] with ( 11) and ( 12), we get that :

M |u| 2 ⋆ (s) d g (x, x 0 ) s dv g 2 2 ⋆ (s) ≤ (K(n, s) + ǫ) M |∇u| 2 g dv g + B ǫ M |u| 2 dv g , where B ǫ = ( (N H) 2 ǫ0 + N H 2 )(K(n, s) + ǫ 2 )
. This proves inequality (6) for functions u ∈ C ∞ (M ). The inequality for H 2 1 (M ) follows by density. This ends the proof of Proposition 1.

Proof of Theorem 2:

We let A ∈ R be such that there exists B > 0 such that inequality (3) holds for all u ∈ H 2 1 (M ). Therefore, we have that

(13) M |u| 2 ⋆ (s) d g (x, x 0 ) s dv g 2 2 ⋆ (s) ≤ A M |∇u| 2 g dv g + B M u 2 dv g . We consider φ ∈ C ∞ c (R n ) such that Supp φ ⊂ B R (0), R > 0 and (B ρ0 (x 0 ), exp -1 x0 ) an exponential chart centered at x 0 with ρ 0 ∈ (0, i g (M )). For all µ > 0 sufficiently small (µ ≤ ρ0 R ), we let φ µ ∈ C ∞ (B ρ0 (x 0 )) be such that φ µ (x) = φ(µ -1 exp -1 x0 (x)
) for all x ∈ B ρ0 (x 0 ). Applying, by density, [START_REF] Lee | The Yamabe problem[END_REF] to φ µ , we write : ( 14)

BµR(x0) |φ µ | 2 ⋆ (s) d g (x, x 0 ) s dv g 2 2 ⋆ (s) ≤ A BµR(x0) |∇φ µ | 2 g dv g + B BµR(x0) φ 2 µ dv g .
For all ǫ > 0, there exists R ǫ > 0 such that

(1 -ǫ)δ ≤ g ≤ (1 + ǫ)δ in B Rǫ (x 0 )
, where g is assimilated to the local metric (exp x0 ) * g on R n . Then, for all µ > 0 sufficiently small such that Rµ < R ǫ , we get successively that :

(15)

BµR(x0) |φ µ | 2 ⋆ (s) d g (x, x 0 ) s dv g ≥ (1 -ǫ) n 2 µ n-s BR(0) φ 2 ⋆ (s) (X) |X| s dX, (16) 
BµR(x0) |∇φ µ | 2 g dv g ≤ (1 + ǫ) n 2 +1 µ n-2 BR(0)
|∇φ| 2 δ dX and ( 17)

BµR(x0) φ 2 µ dv g ≤ (1 + ǫ) n 2 µ n BR(0) φ 2 dX.
Plugging the estimates ( 15), ( 16) and ( 17) into ( 14), letting µ → 0 and then ǫ → 0, we get that

R n φ 2 ⋆ (s) (X) |X| s dX 2 2 ⋆ (s) ≤ A R n |∇φ| 2 δ dX, for all φ ∈ C ∞ c (R n ).
It then follows from the definition of K(n, s) that A ≥ K(n, s). Therefore, it follows from the definition of A 0 (M, g, s, x 0 ) that A 0 (M, g, s, x 0 ) ≥ K(n, s). By Proposition 1, we have that A 0 (M, g, s, x 0 ) ≤ K(n, s). Therefore, A 0 (M, g, s, x 0 ) = K(n, s). This proves Theorem 2.

Remark: Proposition 1 does not allow to conclude whether A 0 (M, g, s, x 0 ) is achieved or not, that is of one can take ǫ = 0 in [START_REF] Ghoussoub | The effect of curvature on the best constant in the Hardy-Sobolev inequalities[END_REF]. Indeed, in our construction, when ǫ → 0, r m → 0 and then H ≥ |∇η

1 2
m | g → +∞ (see the proof of Proposition 1). This implies that lim ǫ→0 B ǫ = +∞. Proving that A 0 (M, g, s, x 0 ) is achieved required different techniques and blow-up analysis: this is the object of the article [START_REF] Jaber | Optimal Hardy-Sobolev inequalities on compact Riemannian Manifolds[END_REF].

A general existence theorem

This section is devoted to the proof of the following Theorem: Theorem 4. Let (M, g) be a compact Riemannian Manifold of dimension n ≥ 3 without boundary. We fix s ∈ (0, 2), x 0 ∈ M , and a ∈ C 0 (M ) such that ∆ g + a is coercive. We assume that [START_REF] Rodemich | The Sobolev inequalities with best possible constant, Analysis seminar[END_REF] inf

u∈H 2 1 (M)\{0} J(u) < 1 K(n, s)
Then the infimum of J on H 2 1 (M ) \ {0} is achieved by a positive function u ∈ H 2 1 (M ) ∩ C 0 (M ). Moreover, up to homothety, u is a solution to (1) and u ∈ C 0,θ (M ) ∩ C 1,α loc (M \ {x 0 }) for all θ ∈ (0, min{1, 2 -s}) and α ∈ (0, 1). The existence of a minimizer of J in H 2 1 (M ) \ {0} has been proved independently by Thiam [START_REF] Thiam | Hardy and Hardy-Soboblev Inequalities on Riemannian Manifolds[END_REF].

We prove Theorem 4 via the classical subcritical approach. For any q ∈ (2, 2 ⋆ (s)], we define

J q (u) := M (|∇u| 2 g + au 2 ) dv g M |u| q dg(x,x0) s dv g 2 q ; u ∈ H 2 1 (M ),
and

H q = u ∈ H 2 1 (M ) ; M |u| q d g (x, x 0 ) s dv g = 1 .
Finally, we define:

λ q = inf u∈H 2 1 (M)\{0}
J q (u).

We fix q ∈ (2, 2 ⋆ (s)). Since the embedding H 2 1 (M ) ֒→ L q (M, d g (•, x 0 ) -s ) is compact, there exists a minimizer for λ (s) q . More precisely, there exists u q ∈ H 2 1 (M ) \ {0} H q , u q ≥ 0 a.e. such that u q verifies weakly the subcritical Hardy-Sobolev equation :

∆ g u q + au q = λ q u q-1 q d g (x, x 0 ) s in M.
In particular, we have that λ q = J q (u q ). Now we proceed in several steps.

Step 1: We claim that the sequence (λ q ) q converge to λ 2 ⋆ (s) when q → 2 ⋆ (s). The proof follows the standard method described in [START_REF] Yamabe | On a Deformation of Riemannian Structures on Compact Manifolds[END_REF] and [START_REF] Aubin | Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF] for instance. We omit the proof.

Step 2: As one checks, the sequence (u q ) q is bounded in H 2 1 (M ) independently of q. Therefore, there exists u ∈ H 2 1 (M ), u ≥ 0 a.e. such that, up to a subsequence, (u q ) q converge to u weakly in H 2 1 (M ) and strongly in L 2 (M ), moreover, the convergence holds a.e. in M . It is classical (see [START_REF] Yamabe | On a Deformation of Riemannian Structures on Compact Manifolds[END_REF] and [START_REF] Aubin | Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF]) that u ∈ H 2 1 (M ) is a weak solution to

∆ g u + au = λ 2 ⋆ (s) u 2 ⋆ (s)-1 d g (x, x 0 ) s in M ; u ≥ 0 a.e. in M.
Step 3: We claim that u ≡ 0 is a minimizer of J (s) and that (u q ) q → u strongly in H 2 1 (M ). Indeed, it follows from the hypothesis (18) that there exists ǫ 0 > 0 such that

(19) λ 2 ⋆ (s) (K(n, s) + ǫ 0 ) < 1.
Now from Proposition 1, we know that there exists B ǫ0 > 0 such that for all q ∈ (2, 2 ⋆ (s)) :

(20)

M |u q | 2 ⋆ (s) d g (x, x 0 ) s dv g 2 2 ⋆ (s) ≤ (K(n, s) + ǫ 0 ) M |∇u q | 2 dv g + B ǫ0 M u 2 q dv g .
Hölder inequality and u q ∈ H q yield: (

M |u q | 2 ⋆ (s) d g (x, x 0 ) s dv g 2 2 ⋆ (s) ≥ 1 + o(1) 21) 
where o(1) → 0 when q → 2 ⋆ (s). Combining ( 20) and ( 21), we get :

(K(n, s) + ǫ 0 )λ q + B ǫ0 M u 2 q dv g ≥ 1 + o(1),
where o(1) → 0 when q → 2 ⋆ (s). Letting q → 2 ⋆ (s) in the last relation, we write :

(K(n, s) + ǫ 0 )λ 2 ⋆ (s) + B(ǫ 0 ) M u 2 dv g ≥ 1.
It then follows from [START_REF] Schoen | Conformal deformation of a Riemannian metric to a constant scalar curvature[END_REF] that B ǫ0 M u 2 dv g > 0, and then u ≡ 0. It is then classical that u ∈ H 2 1 (M ) is a minimizer and that u q → u strongly in H 2 1 (M ) when q → 2 ⋆ (s).

Step 4: We claim that u ∈ C 0,θ (M ), for all θ ∈ (0, min{1, 2 -s}). Following the method used in [START_REF] Ghoussoub | The effect of curvature on the best constant in the Hardy-Sobolev inequalities[END_REF] (see Proposition 8.1) inspired from the strategy developed by Trudinger [START_REF] Trudinger | Remarks concerning the conformal deformation of Riemannian structures on compact Manifolds[END_REF] for the Yamabe problem, we get that u ∈ L p (M ), for all p ≥ 1.

Defining f u (x) := u(x) 2 ⋆ (s)-1
dg (x,x0) s , we then get from Hölder inequality that f u ∈ L p (M ), for all p ∈ [1, n s ). Since ∆ g u+au = f u and u ∈ H 2 1 (M ) and s ∈ (0, 2), it follows from standard elliptic theory (see [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]) that u ∈ C 0,θ (M ), for all θ ∈ (0, min{1, 2 -s}).

Step 5: We claim that u ∈ C 1,α loc (M \ {x 0 }), for all α ∈ (0, 1). Indeed, since u ∈ L p (M ) for all p > 1 (see Step 4), we get that f u ∈ L p loc (M \ {x 0 }) for all p > 1. Since ∆ g u + au = f u and u ∈ H 2 1 (M ), then, up to taking p > n sufficiently large, it follows from standard elliptic theory (see [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]) that u ∈ C 1,α loc (M \ {x 0 }) for all α ∈ (0, 1). Remark: If a ∈ C 0,γ (M ) for some γ ∈ (0, 1) then, using the same argument as above, we get that u ∈ C 2,γ loc (M \ {x 0 }).

Step 6: We claim that u > 0 on M . Indeed, we consider x 1 = x 0 such that B 2r (x 1 ) ⊂⊂ M \ {x 0 }, with r > 0 sufficiently small and a function h defined on B 2r (x 1 ) by h(x) := a(x) -λ 2 ⋆ (s)

|u(x)| 2 ⋆ (s)-2
dg(x,x0) s . Clearly, we have that h ∈ C 0 (B 2r (x 1 )). Since u ∈ H 2 1 (B 2r (x 1 )), u ≥ 0 and (∆ g + h)u = 0 on B 2r (x 1 ). It then follows from standard elliptic theory (see [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF], Theorem 8.20) that there exists C = C(M, g, x 1 , r) > 0 such that sup Br(x1) u ≤ C inf Br (x1) u. This implies that u |Br(x1) > 0. Therefore, u(x) > 0 for all x ∈ M \ {x 0 }.

We are left with proving that u(x 0 ) > 0. We argue by contradiction and we assume that u(x 0 ) = 0.

Step 6.1.: We claim that u is differentiable at x 0 . Here again, we follow the method used in [START_REF] Ghoussoub | The effect of curvature on the best constant in the Hardy-Sobolev inequalities[END_REF] (see Proposition 8.1). Since u ∈ C 0,α (M ), for all α ∈ (0, min{1, 2-s}) (from Step 4) and u(x 0 ) = 0 then for any α ∈ (0, min{1, 2 -s}), there exists a constant C 1 (α) = C(M, g, α) > 0 such that [START_REF] Talenti | Best constant in Sobolev inequality[END_REF] |u(x)| ≤ C 1 (α)d g (x, x 0 ) α for all x ∈ M . Therefore, we have that

(23) ∆ g u + au = f u ,
where with [START_REF] Talenti | Best constant in Sobolev inequality[END_REF], we have that

(24) |f u (x)| ≤ C 2 (α) d g (x, x 0 ) s-α(2 ⋆ (s)-1)
for all x ∈ M \ {x 0 }.

We claim that u ∈ C 0,α (M ), for all α ∈ (0, 1). Indeed, we define α 1 := sup{α ∈ (0, 1) ; u ∈ C 0,α (M )} and N ′ s = s -α 1 (2 ⋆ (s) -1) and distinguish the following cases :

• Case 6.1.1 N ′ s ≤ 0.
In this case, up to taking α close enough to α 1 , we get that f u ∈ L p (M ), for all p ≥ 1. It follows from [START_REF] Thiam | Hardy and Hardy-Soboblev Inequalities on Riemannian Manifolds[END_REF] and standard elliptic theory that there exists θ ∈ (0, 1) such that u ∈ C 1,θ (M ). This proves that α 1 = 1 in Case 6.1.1.

• Case 6.1.2 0 < N ′ s < 1.
In this case, up to taking α close enough to α 1 , we get that

f u ∈ L p (M ), for all p < n N ′ s . Since 1 > N ′ s then there exists p ∈ (n, n N ′ s
) such that f u ∈ L p (M ). Therefore, [START_REF] Thiam | Hardy and Hardy-Soboblev Inequalities on Riemannian Manifolds[END_REF] and standard elliptic theory yield the existence of θ ∈ (0, 1) such that u ∈ C 1,θ (M ). This proves that α 1 = 1 in Case 6.1.2.

• Case 6.1.3 N ′ s = 1.
In this case, up to taking α close enough to α 1 , we get that f u ∈ L p (M ), for all p < n. This implies that for any p ∈ ( n 2 , n), we have that f u ∈ L p (M ). Equation ( 23) and standard elliptic theory then yields u ∈ C 0,θ (M ) for all θ ∈ (0, 1). This proves that α 1 = 1 in Case 6.1.3.

• Case 6.1.4 N ′ s > 1.
In this case, up to taking α close enough to α 1 , we get that f u ∈ L p (M ), for all p < n N ′ s . Therefore, ( 23), N ′ s ∈ (1, 2) (because N ′ s > 0 and s < 2), and standard elliptic theory yield u ∈ C 0,θ (M ) for all θ < 2 -N ′ s . It then follows from the definition of α 1 that α 1 ≥ 2 -N ′ s . This leads to a contradiction with the definition of N ′ s . Then Case 6.1.4 does not occur. These four cases imply that u ∈ C 0,α (M ), for all α ∈ (0, 1). This proves the claim.

In order to end Step 6.1, we proceed as the above, let N ′′ s = s -2 ⋆ (s) + 1 and distinguish two cases : • Case 6.1.5 N ′′ s ≤ 0. In this case, up to taking α close enough to 1, we have that f u ∈ L p (M ), for all p ≥ 1. Therefore, [START_REF] Thiam | Hardy and Hardy-Soboblev Inequalities on Riemannian Manifolds[END_REF] and elliptic theory yield u ∈ C 1 (M ). This proves Step 6.1 in Case 6.1.5.

• Case 6.1.6 N ′′ s > 0. In this case, up to taking α close enough to 1, we have that

f u ∈ L p (M ) for all p < n N ′′ s . Since 1 > N ′′ s , there exists p ∈ (n, n N ′′ s
) such that f u ∈ L p (M ). Therefore, it follows from [START_REF] Thiam | Hardy and Hardy-Soboblev Inequalities on Riemannian Manifolds[END_REF] and elliptic theory that u ∈ C 1 (M ). This proves the claim of Step 6.1 in Case 6.1.6. This ends Step 6.1.

Step 6.2: We prove the contradiction here. Since u ∈ C 1 (M ), we are able to follow the strategy of [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF] (see Lemma 3.4) to adapt Hopf's strong maximum principle. We let Ω ⊂ M \ {x 0 } be an open set such that x 0 ∈ ∂Ω and ∂Ω satisfies an interior sphere condition at x 0 , then there exists an exponential chart (B 2ry (y), exp -1 y ), y ∈ Ω, r y > 0 small enough such that B ry (y) ∩ ∂Ω = {x 0 }. We consider C > 0 such that L g,C (-u) := -(∆ g + C)(-u) ≥ (∆ g + a)(u) ≥ 0 on Ω. We fix ρ ∈ (0, r y ) and introduce the function v ρ defined on the annulus B ry (y) \ B ρ (y) by v ρ (x) = e -kr 2 -e -kr 2 y where r := d g (x, y) and k > 0 to be determined. Now, if λ(x) is the smaller eigenvalue of g -1 then that for any x ∈ B ry (y) \ B ρ (y) we have that:

L g,C v ρ (x) ≥ e -kr 2 4k 2 λ(x)r 2 -2k n i=1 g ii + Γ 0 r -C
where Γ 0 = Γ 0 (g). Hence we choose k large enough so that L g,C v ρ ≥ 0 on B ry (y) \ B ρ (y). Since -u < 0 on ∂B ρ (y) then there exists a constant ǫ > 0 such that -u + ǫv ρ ≤ 0 on ∂B ρ (y). Thus we have -u + ǫv ρ ∈ H 2 1 (B ry (y)\ B ρ (y)), -u + ǫv ρ ≤ 0 on ∂B ρ (y) and L g,C (-u + ǫv ρ ) ≥ 0 on B ry (y) \ B ρ (y). It follows from the weak maximum principle (see Theorem 8.1 in [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]) that [START_REF] Yamabe | On a Deformation of Riemannian Structures on Compact Manifolds[END_REF] -u + ǫv ρ ≤ 0, on B ry (y) \ B ρ (y)

In the sequel, B r (0) denotes a ball in (R n , δ) centered at the origin and of radius r. Now we define ũ = u • exp y and ṽρ = v • exp y on B ry (0). By (25), we get :

(26) ǫṽ ρ ≤ ũ, on B ry (0) \ B ρ (0)
We define X 0 := exp -1 y (x 0 ). Since û(X 0 ) = vρ (X 0 ) = 0, then, by (26), we can write that

∂ û ∂ν (X 0 ) := lim inf t t<0 --→0 ũ(X 0 + tν) -ũ(X 0 ) t ≤ ǫ lim inf t t<0 --→0 ṽρ (X 0 + tν) -ṽρ (X 0 ) t := ǫ ∂v ρ ∂ν (X 0 ),
where ν is the outer normal vector field on B ry (y).Therefore

∂ û ∂ν (X 0 ) ≤ ǫ ∂ṽρ ∂ν (X 0 ), but ∂ṽρ ∂ν (x 0 ) = v ′ ρ (R), it follows that ∂ û ∂ν (X 0 ) ≤ ǫv ′ ρ (r y ) < 0.
This is a contradiction since min M u = u(x 0 ) and therefore ∇ũ(X 0 ) = ∇u(x 0 ) = 0. This ends the proof of Step 6.

Test-functions for n ≥ 4

We consider the test-function sequence (u ǫ ) ǫ>0 defined, for any ǫ > 0, x ∈ M , by

(27) u ǫ (x) = ǫ 1-s 2 ǫ 2-s + d g (x, x 0 ) 2-s n-2 2-s , the function Φ defined on R n by (28) Φ(X) = (1 + |X| 2-s ) -n-2 2-s . Since u ǫ is a Lipschitz function, we have that u ǫ ∈ H 2 1 (M ), for any ǫ > 0. Given ρ ∈ (0, i g (M ))
, where i g (M ) is the injectivity radius on M , we recall that B ρ (x 0 ) be the geodesic ball of center x 0 and radius ρ. Cartan's expansion of the metric g (see [START_REF] Lee | The Yamabe problem[END_REF]) in the exponential chart

(B ρ (x 0 ), exp -1 x0 ) yields (29) det(g)(x) = 1 - R αβ 3 (x 0 )x α x β + O(r 3 ),
where the x α 's are the coordinates of x, r 2 = α (x α ) 2 and (R αβ ) is the Ricci curvature. Integrating on the unit sphere S n-1 yields

S n-1 det(g)(rθ)dθ = ω n-1 1 - Scal g (x 0 ) 6n r 2 + O(r 3 ) .
3.1. Estimate of the gradient term. At first, we estimate M |∇u ǫ | 2 g dv g . For that, we write for all x ∈ M :

|∇u ǫ | 2 g (x) = (n -2) 2 ǫ n-2 r 2(1-s) (ǫ 2-s + r 2-s ) 2(n-s) 2-s
where r = d g (x, x 0 ). Therefore, using (27) and the change of variable t = rǫ -1 , we get that

Bρ(x0) |∇u ǫ | 2 g dv g = (n -2) 2 ǫ n-2 ω n-1 × ρ 0 r n+1 1 - Scalg (x0) 6n r 2 + O(r 3 ) dr r 2s (ǫ 2-s + r 2-s ) 2(n-s) 2-s = (n -2) 2 ω n-1 ρ ǫ 0 t n+1 (1 - Scalg (x0) 6n (ǫt) 2 + O((ǫt) 3 ))dt t 2s (1 + t 2-s ) 2(n-s) 2-s . (30) Straightforward computations yield (31) +∞ 0 t n+1 dt t 2s (1 + t 2-s ) 2(n-s) 2-s = (n -2) -2 ω -1 n-1 R n |∇Φ| 2 dX, and (32) 
ǫ 2 +∞ 0 t n+3 dt t 2s (1 + t 2-s ) 2(n-s) 2-s =    ǫ 2 (n -2) -2 ω -1 n-1 R n |X| 2 |∇Φ| 2 dX if n ≥ 5 , ǫ 2 ln 1 ǫ if n = 4 , O(ǫ) if n = 3. Since M\Bρ(x0) |∇u ǫ | 2 g dv g = O(ǫ n-2 ),
when ǫ → 0, putting together (30) with (31) and (32) yield (33)

M |∇u ǫ | 2 dv g =            R n |∇Φ| 2 dX -R n |X| 2 |∇Φ| 2 dX 6n Scal g (x 0 )ǫ 2 + o(ǫ 2 ) if n ≥ 5 , R n |∇Φ| 2 dX -ω3 6 Scal g (x 0 )ǫ 2 ln( 1 ǫ ) + O(ǫ 2 ) if n = 4 , R n |∇Φ| 2 dX + O(ǫ) if n = 3,
Arguing as the above and using that a ∈ C 0 (M ), we get that :

(34)

M au 2 ǫ dv g =            ǫ 2 a(x 0 ) R n Φ 2 dX + o(ǫ 2 ) if n ≥ 5 , a(x 0 )ω 3 ǫ 2 ln 1 ǫ + O(ǫ 2 ) if n = 4 , O(ǫ) si n = 3, and (35) 
M |u ǫ | 2 ⋆ (s) d g (x, x 0 ) s dv g =    R n |Φ| 2 ⋆ (s) |X| s dX -ǫ 2 Scalg(x0) 6n R n |X| 2-s |Φ| 2 ⋆ (s) dX + o(ǫ 2 ) if n ≥ 4 , R 3 |Φ| 2 ⋆ (s) |X| s dX + O(ǫ) if n = 3.
From Lieb [START_REF] Lieb | Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[END_REF], we know that Φ is an extremal for [START_REF] Ghoussoub | Hardy-Sobolev critical elliptic equations with boundary singularities[END_REF], that is

(36) R n |∇Φ| 2 dX R n |Φ| 2 ⋆ (s) |X| s dX 2 2 ⋆ (s) = K(n, s) -1
Combining (33), (34) and (35) and this last equation, we obtain, for any ǫ > 0, the following results :

(37)

J(u ǫ ) = K(n, s) -1   1 +    (C 1 (n, s)a(x 0 ) -C 2 (n, s)Scal g (x 0 )) ǫ 2 + o(ǫ 2 ) if n ≥ 5 ω 3 ( R 4 |∇Φ| 2 dX) -1 a(x 0 ) -1 6 Scal g (x 0 ) ǫ 2 ln( 1 ǫ ) + O(ǫ 2 ) if n = 4 O(ǫ) if n = 3     
where

C 1 (n, s) := R n |Φ| 2 dX R n |∇Φ| 2 dX C 2 (n, s) := 1 6n R n |X| 2 |∇Φ| 2 dX R n |∇Φ| 2 dX - 2 2 ⋆ (s)6n R n |X| 2-s |Φ| 2 ⋆ (s) dX R n |Φ| 2 ⋆ (s)
|X| s dX Unlike the case s = 0, it is not possible to compute explicitly the constants C 1 (n, s) and C 2 (n, s). However, we are able to explicit their quotient, which is enough to prove our theorem. We need the following lemma taken from Aubin [START_REF] Aubin | Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF] : Lemma 1. Let p, q ∈ R * + such that p -q > 1 and assume that I q p = +∞ 0

t q dt (1+t) p , then I q p+1 = p -q -1 p I q p and I q+1 p+1 = q + 1 p -q -1 I q p+1 .
Indeed, an integration by parts shows that I q p = p q+1 I q+1 p+1 . On the other hand, we can easily see that I q p = I q p+1 + I q+1 p+1 . Together, the above relations yield the lemma.

We apply Lemma 1 to the computation of C 2 (n, s)/C 1 (n, s) when n ≥ 5. We have that

(38) C 2 (n, s) C 1 (n, s) = 1 6n R n |X| 2 |∇Φ| 2 dX R n Φ 2 dX - 2 2 ⋆ (s)6n R n |X| 2-s |Φ| 2 ⋆ (s) dX R n |Φ| 2 ⋆ (s) |X| s dX • R n |∇Φ| 2 dX R n |Φ| 2 dX Independently R n |X| 2 |∇Φ| 2 dX R n |Φ| 2 dX = (n -2) 2 +∞ 0 r n+3-2s dr (1+r 2-s ) 2(n-s) 2-s +∞ 0 r n-1 dr (1+r 2-s ) 2(n-2) 2-s
, up to taking t = r 2-s and using the Lemma 1, we get that :

(39) R n |X| 2 |∇Φ| 2 dX R n |Φ| 2 dX = (n-2) 2 2-s +∞ 0 t n 2-s +1 dt (1+t) 2(n-2) 2-s 1 2-s +∞ 0 t n 2-s +2 dt (1+t) 2(n-2) 2-s = n(n -2)(n + 2 -s) 2(2n -2 -s) , (40) R n |X| 2-s • |Φ| 2 ⋆ (s) dX R n |Φ| 2 dX = n(n -4) 2(n -2)(2n -2 -s) and (41) R n |∇Φ| 2 dX R n |X| -s • |Φ| 2 ⋆ (s) dX = (n -2)(n -s).
Therefore, plugging (39), ( 40) and ( 41) into (38) yields

C 2 (n, s) C 1 (n, s) = (n -2)(6 -s) 12(2n -2 -s)
when n ≥ 5. As a conclusion, the expansion (37) rewrites ( 42)

J(u ǫ ) = K(n, s) -1           1 +                    R n |Φ| 2 dX R n |∇Φ| 2 dX (a(x 0 ) -c n,s Scal g (x 0 )) ǫ 2 + o(ǫ 2 ) if n ≥ 5 ω 3 R 4 |∇Φ| 2 dX (a(x 0 ) -c n,s Scal g (x 0 )) ǫ 2 ln( 1 ǫ ) + O(ǫ 2 ) if n = 4 O(ǫ) if n = 3                              where (43) c n,s := (n -2)(6 -s) 12(2n -2 -s) .
As a consequence, we then get the following theorem:

Theorem 5. Let (M, g) be a compact Riemannian Manifold of dimension n ≥ 3. Let a ∈ C 0 (M ) such that ∆ g + a is coercive, x 0 ∈ M and s ∈ (0, 2). Then for all n ≥ 3, we have that

(44) inf v∈H 2 1 (M)\{0} J(v) ≤ K(n, s) -1 .
Moreover, if n ≥ 4 and a(x 0 ) < c n,s Scal g (x 0 ), where c n,s is as (43), then inequality (44) is strict.

Test-functions: the case n = 3

The argument used for n ≥ 4 is local in the sense that the expansion (42) only involves the values of a and Scal g at the singular point x 0 . When n = 3, the firstorder in (42) of Section 3 has an undetermined sign. It is well-known since Schoen [START_REF] Schoen | Conformal deformation of a Riemannian metric to a constant scalar curvature[END_REF] that the relevant quantity to use in small dimension is the mass, which is a global quantity.

We follow the technique developed by Druet [START_REF] Druet | Optimal Sobolev inequality and Extremal functions. The three-dimensional case[END_REF] for test-function in dimension 3. The case of a manifold with boundary is discussed at the end of this section. We define the Green-function G x0 of the elliptic operator ∆ g + a on x 0 as the unique function strictly positive and symmetric verifying, in the sense of distribution, (45)

∆ g G x0 + aG x0 = D x0 ,
where D x0 is the Dirac mass at x 0 . We fix ρ ∈ (0, i g (M )/2) and we consider a cut-off function η ∈ C ∞ c (B 2ρ (x 0 )) such that η ≡ 1 on B ρ (x 0 ). Then there exists when ǫ → 0. At last, using again the expansion (60) of u ǫ , we obtain that :

M (∆ g β x0 + aβ x0 )(ǫβ x0 + 2 √ ǫηu ǫ )dv g = ǫ M (∆ g β x0 + aβ x0 )(β x0 + 2 η d g (x, x 0 ) )dv g + O ǫ 3-s M (∆ g β x0 + aβ x0 )η d g (x, x 0 )(ǫ 2-s + d g (x, x 0 ) 2-s ) dv g .
The latest relation and (47) allow to write :

M (∆ g β x0 + aβ x0 )(ǫβ x0 + 2 √ ǫηu ǫ )dv g = ǫ M (∆ g β x0 + aβ x0 )(β x0 + 2 η d g (x, x 0 ) )dv g + o(ǫ). Since β x0 ∈ C 0 (M ) ∩ H p 2 (M ) for all p ∈ ( 3 2
, 3), it follows from (45) and (46) that

M (∆ g β x0 + aβ x0 )(β x0 + η d g (x, x 0 ) )dv g = ω 2 β x0 (x 0 ).
Then the last couple of relations give that

M (∆ g β x0 + aβ x0 )(ǫβ x0 + 2 √ ǫηu ǫ )dv g = ǫω 2 β x0 (x 0 ) + o(ǫ) +ǫ M (∆ g β x0 + aβ x0 )(β x0 + η d g (x, x 0 ) )dv g (61)
when ǫ → 0. Knowing, from (47) and ( 48), that

M (∆ g β x0 + aβ x0 ) η d g (x, x 0 ) dv g = - Bρ(x0) ∂ r (ln det(g)) 2d g (x, x 0 ) 3 dv g - M aη 2 d g (x, x 0 ) 2 dv g + - M\Bρ(x0) η d g (x, x 0 ) ∆ g ( η d g (x, x 0 )
)dv g , and combining (53), (55),( 60) and ( 61) with (49), we get that (62)

M (|∇v ǫ | 2 g + av 2 ǫ )dv g = R n Φ∆ δ ΦdX + ǫω 2 β x0 (x 0 ) + o(ǫ)
when ǫ → 0. Let a ∈ C 0 (M ) such that ∆ g + a is coercive, x 0 ∈ M and s ∈ (0, 2). Assume that that the mass at x 0 is positive, that is β x0 (x 0 ) > 0. Then we have that inf v∈H 2 1 (M)\{0}

J(v) < K(n, s) -1 .

Proof of Theorem 1. Theorem 1 follows from the existence result (Theorem 4) and the upper-bounds (Theorem 5 and Theorem 6).

Proof of Theorem 3. As one checks, the estimates (42) and ( 70) hold when M is a smooth compact manifold with boundary provided x 0 lies in the interior. Then Theorem 1 extends to such a case, and Theorem 3 is a corollary.

4.4.

Examples with positive mass.

Proposition 2. Let (M, g) be a compact Riemannian Manifold of dimension n = 3. Let a ∈ C 0 (M ) such that ∆ g + a is coercive, x 0 ∈ M and s ∈ (0, 2). If {a c 3,0 Scal g } or {a ≡ c 3,0 Scal g and (M, g) is not conformally equivalent to the canonical n-sphere} then we have that :

inf v∈H 2 1 (M)\{0} J(v) < K(3, s) -1 .
Indeed, the positivity of the mass in this case was proved by Druet [START_REF]Compactness for Yamabe Metrics in Low Dimensions[END_REF]. We incorporate the proof for the sake of self-completeness.

Lemma 2. Let (M, g) be a compact Riemannian Manifold of dimension n = 3. We consider a, a ′ ∈ C 0 (M ) such that operators ∆ g + a and ∆ g + a ′ are coercive. We denote as G x , G ′ x their respective Green's function at any point x ∈ M . We assume that a a ′ . Then β x > β ′

x for all x ∈ M , where β x , β ′ x ∈ C 0,θ (M ), θ ∈ (0, 1) are such that (71)

ω 2 G x = η x d g (x, •) + β x and ω 2 G ′ x = η x d g (x, •) + β ′ x .
Proof. We fix x ∈ M and we define h x = β ′ x -β x , where β ′ x and β x are as in (71). Noting L := ∆ g + a and L ′ := ∆ g + a ′ , we have that L ′ (h x ) = -(a ′ -a)G x ≤ 0. Since h x ∈ H p 2 (M ) for all p ∈ (1, 3), then for all y ∈ M , Green's formula yields

h x (y) = - M G ′ y (z)(a ′ -a)(z)G x (z) dv g (z).
Therefore h x ≤ 0 since a ≤ a ′ . Moreover, since a ≡ a ′ , we have that h x < 0. This ends the proof.

Proof of Proposition 2 : We consider the operator L 0 := ∆ g + c 3,0 Scal g , β 0 the mass of (M, g) corresponding to L 0 . The Positive Mass Theorem (see [START_REF] Schoen | On the proof of the positive mass conjecture in general relativity[END_REF], [START_REF]Proof of the positive action-conjecture in quantum relativity[END_REF]) gives that β 0 x (x) ≥ 0, the equality being achieved only in the conformal class of the canonical sphere. It then follows from Lemma 2 that β x0 (x 0 ) > 0 when {a c 3,0 Scal g } or {a ≡ c 3,0 Scal g and (M, g) is not conformally equivalent to the unit n-sphere}. It then follows from Theorem 6 that inf v∈H 2 1 (M)\{0} J(v) < K(3, s) -1 .

4. 2 . 2 ⋆+ ( 6 - 2

 2262 Estimate of M v 2 ⋆ (s) ǫ dg(x,x0) s dv g . Since s ∈ (0, 2) then 6 -2s > 2. Therefore there exists C(s) > 0 such that for all X, Y ∈ R, we have :|X + Y | 6-2s -|X| 6-2s -(6 -2s)XY |X| 4-2s ≤ C(s) |X| 4-2s Y 2 + |Y |6-2s This allows to writeM v (s) ǫ d g (x, x 0 ) s dv g = M (ηu ǫ + √ ǫβ x0 ) 6-2s d g (x, x 0 ) s dv g = Bρ(x0) (u ǫ + √ ǫβ x0 ) 6-2s d g (x, x 0 ) s dv g + O(ǫ 3-s ) 2s)|u ǫ | 6-2s-2 u ǫ √ ǫβ x0 d g (x, x 0 ) s dv g + R 2 (ǫ) + o(ǫ) x0 + ǫ 3-s β 6-2s x0 d g (x, x 0 ) s dv g = o(ǫ)(64)Theorem 6. Let (M, g) be a compact Riemannian Manifold of dimension n = 3.

⋆ (s)

1 (M ) such that we can write G x0 as follow :

for all x ∈ M . According to (45) and (46), we have that (47)

where (48)

In particular, for all p ∈ (1, 3), we have f x0 ∈ L p (M ). Therefore, it follows from standard elliptic theory that β x0 ∈ C 0 (M )∩C 1 loc (M \{x 0 })∩H p 2 (M ) for all p ∈ (1, 3). In particular, the mass satisfies m(x 0 ) = β x0 (x 0 ). For any ǫ > 0, we define, on M , the function

where u ǫ is the general test-function defined as (27). This section is devoted to computing the expansion of J(v ǫ ). We compute the different terms separately.

4.1.

The leading term M (|∇v ǫ | 2 g + av 2 ǫ )dv g . Integration by parts and using the definition of v ǫ , we write, for any ǫ > 0, that :

Writing u 2 ǫ in the form : (50)

with O(1) ∈ C 2 (M \ B ρ (x 0 )) uniformly bounded with respect to ǫ, we obtain that

By integrating by parts, using (50) and since ∂ ν η = 0 then we write

We have also that

where, as in (30),

This latest relation and (54) give that (55)

Writing now u ǫ in the form (56)

Since u ǫ is radially symmetrical, denoting ∆ δ as the Laplacian in the Euclidean metric δ, we get with a change of variable and Cartan's expansion of the metric (29) that

where Φ is defined in (28). Since

when ǫ → 0. Similar computations to the ones we just developed give that ǫ Bρ(x0)

Cartan's expansion of the metric g, (29) and to this latest relation yield

Relations ( 57), ( 58) and (59) yield

when ǫ → 0. Using that β x0 ∈ C 0,θ (M ) for all θ ∈ (0, 1), we get that

|X| s in R n , a changes of variable and an integration by parts yields

where ν is the normal vector field on the Euclidean ball B R (0).

for all X ∈ R n , passing to the limit in (67) yields

Hence, the latest relation and (66) give that (68)

when ǫ → 0. Combining (64), ( 65) and ( 68) with (63), we get that (69)

Φ 2 ⋆ (s) (X) |X| s dX + ǫ (2β x0 (x 0 )ω 2 ) + o(ǫ), when ǫ → 0.

4.3. Expansion of J(v ǫ ) and proof of Theorem 1. Equality (69), ( 62) and (67) yield

when ǫ → 0. Noting that m(x 0 ) = β x0 (x 0 ), we then get the following as a consequence of (70):