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We show that taking into account the temporal intensity profile of a pulsed pump beam may lead to significant deviations from the predictions based on a continuous wave analysis of the modulation instability process occurring in a dispersion oscillating fiber operating under the conditions that lead to gain sideband splitting. Potential application to a pulse doubling scheme with tunable delay is discussed.

Introduction

Modulation instability (MI) is a nonlinear process that has been widely investigated in various fields of physics including plasma, hydrodynamics and optics, to cite a few. In the presence of a high power continuous wave (CW), MI leads to the emergence and amplification of gain sidebands in the wave spectrum. In nonlinear fiber optics, such a process has been demonstrated in fibers with anomalous, constant group velocity dispersion (GVD) [START_REF] Tai | Observation of modulational instability in optical fibers[END_REF], as well as in normal GVD fibers by enabling the fulfillment of the nonlinear phase-matching condition through either fourth order dispersion [START_REF] Pitois | Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber[END_REF], birefringence or a multimodal structure [3; 4]. More recently, a renewed experimental and theoretical interest in MI studies has been stimulated by the availability of fibers presenting a longitudinal and periodic modulation of their dispersion properties [START_REF] Droques | Experimental demonstration of modulation instability in an optical fiber with a periodic dispersion landscape[END_REF]. Indeed, thanks to the periodic dispersion landscape, which leads to quasi-phasematching (QPM) of the nonlinear four-wave mixing (FWM) process, MI sidebands can be observed even in the regime of normal average GVD of a dispersion-oscillating optical fiber (DOF) [6; 7; 8]. Recent experiments have confirmed the QPM-induced MI process in the normal GVD regime of microstructure DOF around 1 m [START_REF] Droques | Experimental demonstration of modulation instability in an optical fiber with a periodic dispersion landscape[END_REF], as well as of non-microstructure highly nonlinear DOF at telecom wavelengths [9; 10]. In the case of large-amplitude dispersion oscillations, a process of spectral splitting of the MI spectrum has been highlighted [11; 12], and recently experimentally confirmed [START_REF] Feng | Experimental demonstration of gain sideband splitting in dispersion oscillating fibers[END_REF].

In most of the studies, the theoretical analysis of the first stages of the MI process is based on the assumption of a CW with a fixed power P. However, from the experimental point of view, in order to reach such a power P, it is often required to consider a relatively long (with respect to the MI-induced modulation period) pulsed signal whose peak power is equal to P [5; 9]. This is what is often referred as the quasi-CW approximation. It has already been shown that, when using a pulsed pump, the temporal duration of the pump pulses may strongly influence the output signal spectrum: e.g., consider the case of supercontinuum generation [START_REF] Andreana | Control of near-infrared supercontinuum bandwidth by adjusting pump pulse duration[END_REF]. We focus here on the influence of the pump pulse duration in the initial stages of the modulation instability process when no cascading of the process has occurred, and when no coherent temporal structures have emerged. We will consider here three different configurations. The first one corresponds to the standard MI in a fiber with constant anomalous dispersion. The second configuration deals with the Quasi Phase Matched (QPM) MI which occurs in a DOF with relatively weak dispersion oscillations. Finally, we will investigate the development of MI in a DOF under the conditions (of strong dispersion oscillations) that lead to the spectral splitting of the 1 st QPM sideband.

As a basis of the discussion, we first recall the results that may be obtained from a CW analysis, and we use a Floquet linear stability analysis (LSA) in order to predict the instability domains and their evolution according to the peak pump power level. We then discuss the influence of the finite temporal duration of the long pulsed pump. Our conclusions are confirmed by the direct numerical simulation of the nonlinear Schrodinger equation (NLSE). In a last section, we shall introduce an application that takes advantage of the specific features which are experienced by the signal MI gain under the conditions of spectral splitting. Given the power selective nature of the gain process when amplifying a continuous seed, we point out that, within a certain range of parameters, a pulsed pump may lead to the generation of two much shorter signal pulses, whose temporal width and delay can be continuously adjusted by means of controlling the pump power.

2.

Analysis based on a continuous wave

1. Model under investigation

The evolution of the optical field in an optical fiber can be described by the NLSE
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where  is the complex electrical field, z is the propagation distance and t is the reduced time.

The NLSE includes both Kerr nonlinearity  and second-order dispersion  2 , which is allowed to periodically oscillate in the longitudinal z direction. In order to illustrate our discussion, let us consider first a CW pump operating at telecommunication wavelengths (1550 nm), with a power P varying in the range of 0 to 9 W. The pump is injected in a highly nonlinear fiber (HNLF) with the nonlinear coefficient  = 10 W -1 km -1 .

MI gain profiles in a constant dispersion fiber

Let us first consider a HNLF with the constant anomalous dispersion  2 = -0.8 ps 2 /km and length L= 200m (fiber A). The linear gain profile g an () of the MI process can be analytically derived from a standard linear stability analysis of Eq.(1) as
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for |<  c , with  c given by [15] Figure 1(a) illustrates the MI gain profile for a pump power P=5.6 W. The evolution of the spectrum according to the pump power as predicted by Eq. ( 2) is plotted on Fig. 2(a). When the pump power grows larger, the frequency of maximum MI gain  m moves toward higher frequencies; moreover, the maximum gain g m grows larger according to the following wellknown rules 

a pump of comparatively larger power P=P 1 fully overlaps the gain profile that is induced by a pump with power P 2 , where P 1 >P 2 . obtained from the LSA using the Floquet approach for fibers B and C respectively. The resonant frequency predicted by Eq. 6 is denoted by a blue dashed line.

3. MI gain profiles in a DOF

Let us now consider MI in a 400-meter long HNLF with longitudinally oscillating dispersion according to the sinusoidal law
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where  2av = 0.8 ps 2 /km is the average fiber dispersion,  2amp = 2 ps 2 /km is the amplitude of the dispersion oscillations and  = 20 m is their spatial period (this fiber is called fiber B). The previous parameters are in the same range as the parameters of the HNLF that was experimentally investigated in Ref. [10; 11]. The resulting MI leads to the emergence of nonequally spaced sidebands, where the central frequency
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The MI gain at the resonant frequency  p_DOF may be estimated in terms of a Bessel function of order p, J p [START_REF] Droques | Dynamics of the modulation instability spectrum in optical fibers with oscillating dispersion[END_REF] ,
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Additional insight on the shape of the MI gain sideband may be obtained by taking advantage of a Floquet-based LSA, which has been shown to be a very powerful tool for the analysis of the evolution of the MI gain spectrum in DOFs [8; 11; 12; 17]. In Fig. 1(b) we plot the output sideband spectrum for a CW pump power P=5.6 W. As can be seen, unequally spaced spectral peaks are obtained, with peak values that do not decrease monotonically with the sideband order p. A more systematic study of the impact of pump power (Fig. 2(b)) shows that, in agreement with Eq. ( 6), the central frequencies of the various sidebands decrease as the pump power grows larger. Moreover, in this case there is no longer a complete overlap of the sideband gain profile obtained for a pump power P with the gain profiles which are obtained at pump powers P'<P.

4. MI gain profiles in a DOF with sideband splitting

By properly adjusting the pump wavelength, it is possible to change the average dispersion of the HNLF, hence control the ratio between the dispersion variation amplitude and the average dispersion, or  2amp/  2av . Let us consider here the regime of strong dispersion oscillations, with  2av = 0.1 ps 2 /km so that  2amp/  2av = 20 (this fiber is called fiber C). In this regime, when
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83, the gain predicted by Eq. ( 7) vanishes for some values and a QPM sideband splitting may appear. This phenomenon has been first theoretically predicted in [START_REF] Finot | Gain sideband splitting in dispersion oscillating fibers[END_REF], and it was recently experimentally confirmed in ref. [START_REF] Feng | Experimental demonstration of gain sideband splitting in dispersion oscillating fibers[END_REF]. In Fig. 1(c), the P=5.6 W pump power is such that a single branch of the 1 st QPM sideband is visible. The results of a more systematic study of the influence of the pump power are reported in Fig. 2(c), which shows that up to 5 branches of the 1 st QPM sideband can be observed for pump power values comprised between P=2W and P=5W. Note that the results of Fig. 1(c) and Fig. 2(c), based on the Floquet LSA, will be confirmed in section 3C (see Fig. 6(a)) by means of the numerical integration of the NLSE.

3.

Impact of a pumping with a finite temporal width

1. Situation under investigation

Let us investigate now the impact of a quasi-CW pump. We compare different temporal intensity profiles: a Gaussian, a super-Gaussian (of order 3), and a triangular pump pulse. These relatively long pulses (of several hundreds of ps duration) are plotted on Fig. 3(a), together with the probability distribution function pdf(P) of the power that can be associated with those profiles.

The peak power of the pulses was chosen to be identical in all cases. The full width at half 

2. Qualitative analysis

Let us study now the MI spectrum generated by the pulsed pumps of Fig. 3. Given their relatively long duration, we may neglect any dispersion-induced modifications of the temporal intensity of the pump. We may thus consider, as a first approximation, that the pump profile remains constant upon propagation, and that the resulting MI spectrum can be analytically estimated by averaging over the pump power profile, i.e., we use the simple formula
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The resulting spectra which are obtained for a pulsed pump with a peak-power of 5.6W, which is identical to the power value that used in Fig. 1, are plotted on Fig. 4.

In the case of the standard MI gain in fiber A (see Fig 4(a)), we may note that using a pulsed pump has only a moderate influence on the MI gain profile. Indeed, here the shape of the MI spectrum is essentially determined by the pump pulse peak power. Note however that the peak gain value may slightly vary with pulse shape, for a constant pump energy. Indeed, whereas the CW analysis predicts a 90 dB MI gain, with a super-Gaussian pump one has nearly 89 dB of gain. However the gain drops by as much as 7 dB with a Gaussian pulse, and by 10 dB with a triangular pulse. When considering now the MI gain spectrum that is obtained in a DOF with weak dispersion oscillations (fiber B, see Fig. 4(b)), the influence of the pulse shape remains also quite limited.

Except for the previously mentioned MI gain decrease (with respect to the case of a CW pump), the overall MI gain spectrum remains very close to the predictions obtained for a perfectly CW pump, which validates the recent experimental results using ns pump pulses [5; 9].

In the case of fiber C, the situation is radically different. Indeed, Fig. 4(c) shows that noticeable differences now appear between the MI gain spectrum which is obtained by the Floquet analysis for the CW case, and the spectra which are obtained by taking into account the pump shape.

Instead of observing a single branch of the 1 st QPM gain sideband, two or three additional gain branches become visible. Whereas for CW pumping, the MI gain vanishes for sideband frequencies higher than the cut-off frequency of 7.3 THz, a significant gain is still present above this frequency in the secondary branches which are obtained for a pulsed pump. The ratio between the peak values of the inner branch centered at 6.9 THz and the outer branch centered at 7.6 THz crucially depends on the pump pulse shape. For a super-Gaussian pulse, this ratio is of 18 dB, whereas for a Gaussian pulse, the ratio drops down to 6 dB. For a triangular pulse, the ratio among the inner and outer branches is close to 1 (-0.6 dB), i.e., they are of comparable amplitude. Indeed, Fig. 4(c) shows that the value of the inner branch spectral peak gain may change by more than 20 dBs as the pump shape is varied. To complete our study, we plotted on Fig. 5 the evolution of the sideband gain spectrum as a function of the input peak power of a Gaussian pump as predicted by Eq. 8. In the case of fiber A and B, the MI gain spectra of Fig. 5 remain qualitatively very similar to their counterparts obtained for a CW pump as reported in panels (a) and (b) of Fig. 2. To the contrary, comparing panels (c) of Fig. 2 and Fig. 5 reveals that, in the case of fiber C, the gain spectra for a CW or a Gaussian pulsed pump are fundamentally different. Indeed, sideband branches that only exist for a finite range of CW pump powers (e.g., consider the branches around 6.9 THz and 7.6 THz, which appear for CW powers above 5 W and 3.2 W, and disappear for CW powers above 8.7 W and 5.8 W in Fig. 2(c)) no longer vanish at high peak powers in the case of a pulsed pump.

Numerical simulations

The previous analysis relies on the approximate approach that is based on the use of Eq. 8.

However, the pulsed nature of the pump may potentially lead to other nonlinear propagation effects, such as self-phase modulation, that may significantly broaden the pump spectrum. In order to confirm the validity of our conclusions on the MI gain dynamics in fiber C, we numerically solved the NLSE by means of the standard split-step Fourier algorithm, including a weak input white noise seed. Simulations were averaged over 36 shots, and are summarized on Fig. 6 for a CW pump and a Gaussian pump, respectively. The results of the full numerical analysis are in good quantitative agreement with the results of the LSA that we discussed in the previous sections. In particular, the persistence of the sideband branches at high pump powers in the case of pulsed pumping is well confirmed. 

4.

Pulse doubling and delay tuning

1. Pulse doubling and intensity bandpass filtering

In ref [START_REF] Feng | Wavelength conversion and temporal compression of a pulse train using a dispersion oscillating fibre[END_REF] it was experimentally demonstrated that the parametric amplification of a continuous seed in a DOF may be used for the frequency conversion of a nearly sinusoidal pump profile into a train of ultrashort pulses, that are frequency-shifted by several THz from the pump. Let us consider now the particular case of using a pump with a finite temporal duration, and a carrier wavelength in the vicinity of the zero dispersion value, so that a spectral splitting of the sideband gain occurs. As we shall see, this situation leads to additional interesting potential applications for the generation of frequency converted pulse trains. We now add to our simulations a relatively low-power, deterministic CW seed (e.g., around 0.5 W) with a frequency offset of 7.6

THz relative to the pump (so that the seed is located in what we previously called the outer branch of the 1 st QPM sideband). When pumped by a 5.6 W CW, the seed only experiences moderate gain (by solving Eq. ( 1), we obtain a gain value below 10 dB). We term here gain or amplification factor the ratio between the peak power of the amplified waveform in the temporal domain and the power of the continuous seed. To the contrary, Fig. 7(a) shows that, when a Gaussian pump is involved (black dashed line), the seed experiences a gain well in excess of 20 dB. Additionally, the most noticeable property of the seed amplification process is that the resulting seed temporal waveform (see the black solid line in Fig. 7(a)) does not reflect the shape of the pump profile. Indeed, instead of a single peaked structure, we observe in Fig. 7(a) that two well-separated pulses with temporal durations much shorter than the pump (55 ps against of 400 ps) are generated. The physical mechanism for the generation of the amplified seed temporal pulse doublet is very different from the mechanisms which lead to the generation of pulse pairs in, e.g., fibers with constant anomalous dispersion [18; 19], in SPM or XPM driven processes [20; 21], or in the soliton splitting occurring in a DOF with anomalous dispersion [START_REF] Sysoliatin | Soliton fission management by dispersion oscillating fiber[END_REF]. Here, as we may clearly see from Fig. 7(b), the double peak structure in the signal pulse is associated with the pump power selectivity of the MI gain process: only a small range of instantaneous power values across the pump pulse profile provides a large amplification of the continuous seed. Such a power-dependent filtering behavior leads to the emergence of symmetric peaks both in the leading edge as well as in trailing edge of the signal seed waveform. On the contrary, the central portion of the pump pulse (whose power lies above the range of powers that lead to signal gain) has no contribution to the seed amplification. Note that such a bandpass power filtering property (when considering the amplification factor that is associated with each input pump power value) cannot be achieved in the standard MI process that occurs in fibers with constant anomalous dispersion: in that situation, only high-pass nonlinear transfer functions can be implemented. Once again, the details of the intensity profile of the pump pulse are of crucial importance for establishing a bandpass nonlinear power transfer function. When using a super-Gaussian pulse (grey lines, Fig. 7(a)) of the same energy and peak power as the previously considered Gaussian pulse, the FWHM duration of the resulting seed pulses is decreased down to 17 ps (corresponding to a 25-fold compression compared to the input pump pulse duration), whereas the delay between the two seed pulse components is increased to nearly 400 ps. Such a difference in the temporal width is essentially explained by the increasingly abrupt edges of the super-Gaussian pump when compared with the Gaussian pump pulse.

When considering super-Gaussian pump pulses with a peak power of 6W, it is interesting to point out that the previously discussed seed pulse doubling process may be efficiently used to convert an initial 1.25 GHz ps pump pulse train into a 12.5 ps, 2.5 GHz pulse train with moderate pulse-to-pulse fluctuations (below 5% of amplitude jitter) and a very high duty cycle ratio (see Fig. 9). In the additional simulation shown in Fig. 10(a), we show that the pulse doubling effect is not restricted to pump pulses with durations of several hundreds of picoseconds. Indeed, even with a 

2. Delay tuning

By increasing the pump pulse power from 5.3 W until 8 W (Fig. 11), we may observe several additional interesting properties of the seed pulse doubling process. Indeed, the time delay between the two seed pulses can be continuously tuned between 180 and 360 ps by simply adjusting the input power of the 400-ps Gaussian pump (see Fig. 11(a1) and 12(a)). We should emphasize that the present physical mechanism that introduces a relative time delay of the frequency-converted pulses strongly differs from the usual delay-line schemes that are associated with combining parametric wavelength conversion and dispersion [23; 24]. When compared with many fiber-based slow-light devices [START_REF] Thevenaz | Slow and fast light in optical fibres[END_REF], our approach has the advantage that the tuning of the temporal delay is immune to any significant variations of the peak power of the pulse pair. On the other hand, the temporal width of the generated pulses exhibits a monotonic decrease, from 65 to 32 ps FWHM durations (see Fig. derivative of the delay with respect to the peak power, i.e. the slope of the curves. It then appears that a pulse pair induced by a super-Gaussian pump (dashed curves in Fig. 12) should be relatively less affected by temporal jitter than a pulse pair that is induced by Gaussian pump (solid curves in Fig. 12). 

Conclusion

In this article we have explored the significant influence that the temporal profile of a pulsed pump may have on the MI-induced gain spectrum in specially designed optical fibers with a periodically varying dispersion profile along the longitudinal direction. If the QCW approximation may hold for describing the MI process in fibers with constant dispersion or in DOFs with a weak to moderate amplitude of dispersion oscillations, much more care should be taken when dealing with a pulsed source operating close to the zero dispersion wavelength of a DOF. Indeed, we have shown that in this situation the details of the pump pulse shape may strongly affect the spectral splitting of the MI gain spectrum. Moreover, using a pulsed pump beam leads to the conservation of branches that would otherwise disappear under CW pumping conditions.

When considering the amplification of a seed signal with a suitable frequency offset from the pump, we have described a novel all-optical signal processing functionality. Namely, the possibility to achieve pulse splitting or doubling, associated with large compression ratio enhancements. The relative time delay between the generated signal pulse doublet is continuously tunable along with the time duration of the individual sub-pulses, with negligible signal peak power distortion. The continuous adjustment of the delay between the two signal replicas as the pump power is varied, may find relevant applications in pump-probe experiments.

All of these properties are associated with the use of strongly DOFs, operating close to the point of spectral splitting of the MI gain spectrum.

Figure 1 :

 1 Figure 1 : Evolution of the MI gain profile at the fiber output for a CW pump power P=5.6 W in fibers A, B and C (subplots a, b and c respectively).

Figure 2 :

 2 Figure 2 : Evolution of the MI gain profile g(P,) according to pump power P for a CW (a) Analytical results from Eq. 2 in the case of fiber A. Blue line denotes the maximum MI frequency as predicted by Eq. 4. (b-c) Results

Figure 3 :

 3 Figure 3 : (a) Comparison of the three temporal intensity profiles of the pulses under investigation : (b) Probability distribution function associated with these profiles (the temporal span of the simulations is 2 ns). Gaussian, super-Gaussian and triangular shapes are plotted using black solid, grey solid and light grey solid lines, respectively.

Figure 4 :

 4 Figure 4 : Details of the output spectra obtained for pulsed pumps having a common peak power of 5.6 W. Results obtained with a Gaussian, super-Gaussian and triangular shapes (black, dark grey and light grey solid lines respectively) are compared with results predicted by the LSA for the CW case (blue diamonds). MI spectra obtained in fibers A, B and C are plotted in panels (a), (b) and (c), respectively.

Figure 5 :

 5 Figure 5 : Evolution of the MI gain profile g(P,) according to the peak power P for a Gaussian pulse in fiber A, B and C (panels a, b and c).

Figure 6 :

 6 Figure 6 : Evolution of the first QPM band according to pump power according for (a) a continuous pump and (b) a Gaussian pump. Results are obtained from the numerical integration of the NLSE.

Figure 7 :

 7 Figure 7 : (a) Time profile of the amplified CW seed when pumped by either a Gaussian pulse (black curve) or by a super-Gaussian pulse (grey curve). The temporal profiles of the seed after amplification (solid curves) are compared with the input pump profiles (dashed curves, left). (b) Amplification factor versus instantaneous pump power.

Figure 8 :

 8 Figure 8 : (a) Optical spectrum of the amplified seed when pumped by a 400-ps Gaussian pulse (black curve) and optical band pass filter used to isolate the amplified seed (grey line). Plot (a2) is a magnification of plot (a1). (b) Spectrogram of the amplified seed on a logarithmic scale (b1) and its magnification with results on a linear scale (b2).

Figure 9 :

 9 Figure 9 : Amplification factor experienced by the CW seed (solid black curves) compared against the temporal pump power profile (dashed grey curves) for a super-Gaussian pump pulse train similar to Fig. 7(a) at the repetition rate of 1.25 GHz.

2. 5

 5 ps signal pulses are generated. However, as the pump temporal width decreases, the resulting signal temporal structures exhibit an increased temporal asymmetry. Indeed, as clearly outlined by Fig.10(b), the sub-pulses that are generated in correspondence of the leading and trailing edges of the pump experience different levels of amplification. Such temporal asymmetry is explained by a combination of a several factors acting simultaneously: temporal walk-off between the pump and the seed, cross-phase modulation induced by the pump on the seed, spectral broadening of the pump due to self-phase modulation. Moreover, a comparison between panels (a) of Fig.7and Fig.10shows that the seed amplification factor drops significantly as the pump duration is reduced.

Figure 10 :

 10 Figure 10 : (a) Amplification factor experienced by the CW seed pulse (solid black curves) compared against the temporal pump power profile (dashed grey curves) for 17.5 ps FWHM duration Gaussian pump pulses. (b) Amplification factor versus instantaneous pump power for signal pulses generated at the leading edge (solid black curve) or the trailing edge (grey curve) of the pump pulse.
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  12(b)). The optical spectrum of the amplified seed is also influenced by the peak power: as shown in Fig 11(c), and in agreement with the mechanism of pump-induced XPM, the spectral splitting previously outlined in Fig. 10 increases as the pump peak power grows larger [20; 21].

Figure 11 :

 11 Figure 11 : (a) Evolution of the seed temporal intensity profile vs. the pump peak power for a (a1) Gaussian and a (a2) super-Gaussian pump profile. (b) Evolution of the seed spectral intensity profile vs. the pump peak power for a Gaussian pump profile.

Figure 12 :

 12 Figure 12 : Evolution of the time delay among the two pulses obtained from the seed (a) and of the FWHM temporal width of the individual pulses (b) vs. the pump peak power for either a Gaussian (black curves) or a super-Gaussian (dashed curves) pump pulse shape.
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The spectrum obtained after amplification of the continuous seed by a Gaussian pump is plotted in Fig. 8(a1), with details of the amplified seed given in Fig. 8(a2). We may observe the spectrally broadened seed and idler, as well as the growth of amplified spontaneous emission (ASE) noise, mainly in the 2 nd QPM sidebands. In order to better understand the spectrotemporal structure of the pulse doublet, we have also computed its spectrogram. From Fig. 8(b1), we note that most of the ASE noise is temporally concentrated in-between the two pulses, where the instantaneous power of the pump is close to its maximal value. As a consequence, this ASE that is spectrally located around 7 THz should not impair dramatically the quality of the generated doublet, since it can be easily removed by the bandpass optical filter (OBPF) that is required to isolate the seed or the idler. Magnification of the spectrogram in Fig. 8(b2) reveals that the two sub-pulses of the amplified seed doublet are not exactly at the same central frequency. The frequency separation of a few tens of GHz among the sub-pulses is explained by the cross-phase modulation that is induced by the leading and trailing edges of the pump pulse [START_REF]Nonlinear Fiber Optics, Fourth Edition[END_REF], and could offer the additional possibility to isolate a single pulse by using a narrow OBPF.